Cold in Biology and Medicine: state of the art and perspectives

Authors:

Team of authors. Edited by Professor O. Yu. Petrenko

 

Reviewers:

Olena S. Protsenko

Doctor of Sciences in Medicine, Professor, Head of the Department of General and Clinical Pathology, School of Medicine; V.N. Karazin Kharkiv National University, Kharkiv.

ORCID: 0000-0001-6998-9783

Scopus Author ID: 57218323678

Receacher ID: FUT-8385-2022

 

Denys V. Kolybo

Doctor of Sciences in  Biolog, Professor, Head of the Immunobiology laboratory, Chief Researcher of the Department of Molecular Immunology; Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv.

ORCID: 0000-0002-8476-0992

Scopus Author ID: 6602890146

Receacher ID: DAS-9216-2022

 

Natalia G. Malova

Doctor of Sciences in  Biology, Senior Researcher, Head of the Pharmacology Laboratory of the Department of Experimental Pharmacology and Toxicology; State Institution “V. Danylevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine”, Kharkiv.

ORCID: 0000-0001-8106-1603

Scopus Author ID: 56866160100

Receacher ID: DWO-5112-2022

 

Affiliation:

Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 327

DOI:

https://doi.org/10.15407/978-966-00-1867-9

ISBN: 978-966-00-1867-9

Language: Ukrainian

How to Cite:

Team of authors. Edited by Prof. O. Yu. Petrenko. (2023) Cold in Biology and Medicine: state of the art and perspectives. Kyiv, Naukova Dumka. 327p. [in Ukrainian].

Abstract:

The monograph highlights the main development stages of the Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine. It provides an infor-mation about the major achievements in cryobiology and cryomedicine, fundamental and applied researches being of a priority value. Certain scientific directions formed during this time and coi-ned as the separate scientific schools have been specially empasized. Particular attention is paid to the basic aspects of cryopreservation of biological objects, mechanisms of cold adaptation of biolo-gical systems, modern methodical approaches to cryopreservation of genetic resources and stem cells of various origins, development of low-temperature techniques in modern biology and regenerative medicine.

The monograph is intended to biologists and medical specialists, biology and medicine students, those having an interest in modern cryotechniques in biology and medicine.

Keywords:

cryobiology, cryomedicine, cryopreservation, cryoprotectants, cold adaptation, hypothermia, stem cells, cryobanking, cold exposure, liquid nitrogen, preservation of genetic resources

References:

For Part 1 

  1. Zhehunov, F., & Nardid, O.A. (Eds) (2019). Osnovy kriobiologii i kriomeditsyny. Kharkiv: Brovin AV. [in Russian].
  2. Gryshchenko, V.I., Prokopiuk, O.S., Lipina, O.V., et al. (2004). Sposib roboty nyzkotemperaturnoho banku biolohichnykh obiektiv.[The method of operation of the low-temperature bank of biological objects.] (Patent of Ukraine № 69041A). [in Ukrainian].
  3. Hroshevoi, M.Y., Fedorovych, A.N., & Chyzhevskyi, V.V. (2007) Sposib vyznachennia rivnia kriohennoi ridyny [The method of determining the level of cryogenic liquid] (Patent of Ukraine № 21402). [in Ukrainian].
  4. Chyzhevskyi, V.V., Vysekantsev, I.P., Hroshevoi, M.I. (2003). Optymizatsiia umov zberihannia biolohichnoho materialu v nyzkotemperaturnomu banku. In Suchasni aspekty reproduktolohii, perynatalnoi medytsyny ta kriobiolohii. ( 242-247). Kharkiv: KhDMU [ in Ukrainian].
  5. Chizhevsky, V. V., Groshevoj, M. I., & Prokopyuk, O. S. (2007). Peculiarities of using the low temperature tank for long-term storage of biological material in liquid nitrogen vapours. Problems of Cryobiology, 17(3), 305–311.
  6. Chizhevsky, V. V., Groshevoj, M. I., Prokopyuk, O. S., Bespalov, A. A. (2004). Cryogenic storehouse: temperature field geometry and optimization of storage conditions for biomaterials. Tsitologiia. 46 (9), 881-882.

For Part 2

  1. Belous,M., Grishchenko, V.I. (1994). Kriobiologiya. Kyiv: Naukova dumka [ in Russian].
  2. Vorobjeva, G.S., Kompaniets, A.M., Ivashkov, V.I. (1981). Razrabotka metoda kriokonservirovaniya trombocitov s DMAC dlya klinicheskih celej. In Konservirovanie krovi i ee komponentov, Gavrilova,K., & Agranenko V.A. (Eds). (pp. 77-78). Moskow [in Russian].
  3. Vorotilin,M. (1982). Sravnitelnoe izuchenie effektivnosti kriokonservacii eritrocitov pod zashitoj 1,2 – propandiola (a-propilenglikolya) i glicerina. Problemy gematologii. (10), 15-18. [in Russian].
  4. Gavrilo, V.B. (1983). Spektrofotometricheskoe opredelenie soderzhaniya gidroperekisej lipidov v plazme krovi. Laboratornoe delo. (3), 33-36. [in Russian].
  5. Ganston, F.D. (1986) Himiya i biohimiya lipidov. Vol.11. (pp. 12- 16). Moskow: Himiya [in Russian].
  6. Gorbachev, S.V. (1974). Raboty po fizicheskoj himii. Moskow: Vysshaya shkola [in Russian].
  7. Gordienko, E.A., & Pushkar N.S. (1994). Fizicheskie osnovy nizkotemperaturnogo konservirovaniya kletochnyh suspenzij. Kyiv: Naukova dumka [in Russian].
  8. Gordiienko, Ye.O., Gordiienko, O.I., Marushchenko V.V. et al. (2008). Udoskonalena model pasyvnoho masoperenosu kriz plazmatychnu membranu klityny. Biofizychnyi Visnyk. 21 (2), 75–80. [in Ukrainian].
  9. Gordienko, O. I., Gordienko, E. A., Linnik, T. P., & Kompaniets, A. M. (2002). Mechanisms of Cryoprotectant Permeation via Erythrocytes Membranes. Problems of Cryobiology, (4), 9–15.
  10. Zhivotova, E.N., Zinchenko, A.V., Chekanova, V.V., et al. (2006). Termicheskij analiz binarnyh sistem voda − oksietilirovannyj glicerin (stepen polimerizacii n = 5 i 25) pri temperaturah nizhe 273 K. Dopovidi NAN Ukrainy. (9), 74-79. [in Russian]
  11. Zinchenko, A.V., Mank, V.V., & Ovcharenko, F.V. (1982). Stroenie i fazovye sostoyaniya vodno–glicerinovyh rastvorov. Doklady AN USSR. (8), 38–42. [in Russian].
  12. Knysh, O.V., Ovsiannikov, S.Ie., Nikitchenko, Yu.V., et al. (2006). Doslidzhennia antyradykalnykh vlastyvostei krioprotektoriv ta yikh vplyvu na intensyvnist POL u systemi «trombotsyty-plazmy». Medychna khimiia. 8 (3), 25-28. [in Ukrainian].
  13. Kompaniets, A. M., Nikolenko, A. V., Chekanova, V. V., & Trots, Y. P. (2005). Erythrocyte cryopreservation under protection of oxyethylated glycerol oligomer (n = 25). Problems of Cryobiology, 15(3), 561–565.
  14. Kuhling, K. (1985). Spravochnik po fizike. Moskow: Mir [in Russian].
  15. Landau, L.D., Lifshits, E.M. (1976). Statisticheskaya fizika. (Ch.1.) Moskow: Nauka [in Russian].
  16. Maeno, N. (1988). Nauka o lde. Moskow: Mir [in Russian].
  17. Melnikova, E.B., Lankin, V.Z., Zenkov, N.K., et al. (2006). Okislitelnyj stres. Prooksidanty i antioksidanty. Moskow: Slovo [in Russian].
  18. Mikson, K. B., Kopeika, E. F., & Linnik, T. P. (2009). Conditions for Loach (Misgurnus fossilis) Embryo Vitrification in Cryoprotective Media. Problems of Cryobiology, 19(2), 154–162.
  19. Nikolenko, A.N., Kompaniets, A.M., & Lougovoy, V.I. (1995). Cryoprotective properties of polyols and their derivatives during freezing of platelets. Problems of Cryobiology, (4), 36–40.
  20. Ovsyanikov, S.E., Knysh, O.V., Linnik, T.P., et al. (2006). Zavisimost antiradikalnoj aktinosti krioprotektorov riadov poliolov i ih oksietilnyh proizvodnyh ot himicheskoj struktury. IX Ukrainskyi biokhimichnyi zyizd: tezy dopovidei. (pp. 156-157). Kharkiv. [in Russian].
  21. Ogurtsova, V. V., Kovalenko, S. Y., Kovalenko, I. F., & Gordienko, O. I. (2017). Activation Energy of Water and Cryoprotectant Molecules Penetration Through Plasma Membrane of Murine Enterocytes and Dynamics of Their Dehydration During Freezing. Problems of Cryobiology and Cryomedicine, 27(3), 242–249. https://doi.org/10.15407/cryo27.03.242
  22. Grishchenko, V.I., Kompaniets, A.M., & Knysh, O.V. (2006). Sposib vydalennia krioprotektora iz suspenzii trombotsytiv. [ Method for removing cryoprotectant from platelet suspension]. (Patent of Ukraine № U200510926). [in Ukrainian].
  23. Kompaniets, A.M., Nikolenko, O.V., & Oliinyk, S.T. (1994). Sposib konservuvannia trombotsytiv. [Method of preserving platelets]. (Patent of Ukraine №4680905/30-14.) [in Ukrainian].
  24. Pakhomova, Y. S., Chekanova, V. V., & Kompaniets, A. M. (2013). Cryoprotective Properties of Solutions Based on Non-Penetrative OEGn = 25 Combined with Penetrating Cryoprotectants During Freezing of Human Erythrocytes. Problems of Cryobiology and Cryomedicine, 22(1), 26–39.
  25. Petrenko, Y. A. (2003). Cryopreservation of Human Embryonic Liver Cells Using DMSO and High Molecular Weight Polymers. Problems of Cryobiology, (3), 80–87.
  26. Ramazanov, V. V., & Bondarenko, V. A. (2010). Osmotic Properties of Erythrocytes Frozen in Media Containing Non-Penetrating and Penetrating Cryoprotectants. Problems of Cryobiology, 20(1), 47–58.
  27. Rachinskij,Yu., & Rachinskaja, M.F. (1982). Tehnika laboratornih rabot. Leningrad: Himiya [in Russian].
  28. Rozenberg, M.E. (1983). Polimery na osnove vinilacetata. Leningrad: Himiya [in Russian].
  29. Sakun, O.V., & Gordiyenko, O.I. (2009). Teoretychna otsinka znachennia optymalnoi z pohliadu dvokhfaktornoi teorii krioposhkodzhennia shvydkosti okholodzhennia pry liniinykh rezhymakh zamorozhuvannia klitynnoi suspenzii. Biofizychnyi visnyk. 22 (1), 123-129. [in Ukrainian].
  30. Sushko, O.B., Mishchenko, A.H., Kompaniiets, A.M., et al. (2009). Efektyvnist zastosuvannia bufernykh seredovyshch, krioprotektoriv i rezhymiv zamorozhuvannia spermy zherebtsiv. Visnyk ahrarnoi nauky. (9), 35- 39. [in Ukrainian].
  31. Todrin, A. F., Popivnenko, L. I., & Kovalenko, S. Y. (2009). Thermophysical Properties of Cryoprotectants. I. Temperature and Heat of Melting. Problems of Cryobiology, 19(2), 163–176.
  32. Shrago, M.I., Guchok, M.M., & Kalugin, Yu.V. (1981). Nekotorye principy napravlennogo sinteza krioprotektorov. In Aktualnye problemy kriobiologii. (pp. 157-200). Kyiv: Naukova Dumka [in Russian].
  33. Angell, C.A., MacFarlane, D.R. (1981). Conductimetric and calorimetric method for the study of homogeneous nucleation and crystallization below both Th and Tc. Journal of Advanced Ceramics. (4), 66-72.
  34. Baudot, A., Alger, L., & Baudot, P. (2000). Glass-forming tendency in the system water – dimethyl sulfoxide. Cryobiology. 40 (2), 151-158. https://doi.org/10.1006/cryo.2000.2234
  35. Bessis, M. (1973). Living blood cells and their ultrastructure. New York: Springer Verlag.
  36. Bohon, R.L., & Conway, W.T. (1972). DTA studies of the glycerol-water system. Thermochimica Acta. 4(3-5), 321-341. https://doi.org/10.1016/0040-6031(72)87016-3
  37. Boutron, P. (1986). Comparison with the theory of the kinetics and extent of ice crystallization and of the glass-forming tendency in aqueous cryoprotective solution. Cryobiology.23(1), 88-102. https://doi.org/10.1016/0011-2240(86)90022-2
  38. Boutron, P., & Kaufmann, A. (1978). Stability of the amorphous state in the system water – glycerol – dimethylsulphoxide. Cryobiology. 15(1), 93-108. https://doi.org/10.1016/0011-2240(78)90012-3
  39. Bronshteyn, P.L., & Steponkus, P.L. (1995). Nucleation and growth of ice crystals in concentrated solutions of ethylene glycol. Cryobiology. 32(1), 1-22. https://doi.org/10.1006/cryo.1995.1001
  40. Carpenter, J.F. (1992). Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Physiology. 89(19), 8953-8957. https://doi.org/10.1073/pnas.89.19.8953
  41. Chang, T., & Zhao, G. (2021). Ice inhibition for cryopreservation: materials, strategies and challenges. Advanced Science (Weinh). 8(6), Article 2002425. https://doi.org/10.1002/advs.202002425
  42. Chen, C. (2011). Solvent-assisted poly(vinylalcohol) gelated crystalline colloidal array protonic crystals. Soft matter. (7), 915-921. https://doi.org/10.1039/C0SM00923G
  43. Choi, J.H. (2001). Phase behavior and physical gelation of high molecular weight syndiotactic poly(vinylalcohol) solution. Macromolecules. (34), 2964-3002. https://doi.org/10.1021/ma001710s
  44. Congdon, T. (2013). Antifreeze (glyco) protein mimitic behavior of poly (vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromalecules. (14), 1578- 1586. https://doi.org/10.1021/bm400217j
  45. Damas, C., Leprince, Т., et al. (2008). Behavior study of polyvinyl alcohol aqueous solution in presence of short chain micelle-forming polyols. Colloid and Polymer Science. 286, 999-1007. https://doi.org/10.1007/s00396-008-1862-6
  46. De Vries, A.L. (1969). Freezing resistance in some Antarctic fishes. Science. 163 (3871), 1073-1075. https://doi.org/10.1126/science.163.3871.1073
  47. Deller, R.C., Vatish, M., Mitchell, D.A., et al. (2014). Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nature Communications. 5, Article number: 3244. https://doi.org/10.1038/ncomms4244
  48. Dumont, F., Marechal, P-A, & Gervais P. (2004). Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Applied Environmental Microbiology. 70 (1), 268-272. https://doi.org/10.1128/AEM.70.1.268-272.2004
  49. Fahy, G.M., MacFarlane, D.R., Angell, C.A., & Meryman, H.T. (1984). Vitrifiication as an approach to cryopreservation. Cryobiology. 21 (4), 407-426. https://doi.org/10.1016/0011-2240(84)90079-8
  50. Fahy, G.M., & Wowk, B. (2021). Principles of Ice-Free Cryopreservation by Vitrification. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. (pp. 27-97). New York: Humana. https://doi.org/10.1007/978-1-0716-0783-1_2
  51. Finch, C.A. (1973). Poly(vinyl alcohol): properties and applications. New York: Wiley.
  52. Fowler, A. (2005). Cryo-injury and biopreservation. Annals of the New York Academy of Sciences. 1066. P.119-135. https://doi.org/10.1196/annals.1363.010
  53. Gao, D., & Critser, J.K. (2000). Mechanisms of cryoinjury in living cells. Institute for Laboratory Animal Research (ILAR) Journal. 41 (4), 187-196. https://doi.org/10.1093/ilar.41.4.187
  54. Gibson, M. J. (2010). Slowing the growth of ice with synthetic macromolecules beyond antifreeze (glyco) proteins. Polymer Chemistry. 1 (8), 1141-1152. https://doi.org/10.1039/c0py00089b
  55. Gibson, М.J, Barker, С., Spains, S., et al. (2009). Inhibition of crystal growth by synthetic glycopolymers: implication for the rational design of antifreeze glycoprotein mimics. Biomacromolecules. 10 (2), 328-333. https://doi.org/10.1021/bm801069x
  56. Gordiyenko, O.I., Kovalenko, S.Ye., Kovalenko, I.F., et al. (2018). Theoretical estimation of the optimum cooling rate of a cell suspension at linear freezing modes based on a two factor theory of cryodamage. CryoLetters. 39 (6), 380-385.
  57. Hey, J.M., & MacFarlane, D.R. (1997). Kinetic analyses of crystallization and devitrification: Comparison of activation energies in aqueous solutions of glycerol and dimethyl sulphoxide. Journal of Non-Crystalline Solids. 211 (3), 262-270. https://doi.org/10.1016/S0022-3093(96)00637-0
  58. Hunt, C.J. (2017). Cryopreservation: Vitrification and Controlled Rate Cooling. In: Crook, J., Ludwig, T. (eds) Stem Cell Banking. Methods in Molecular Biology, vol 1590. (pp. 41-77). New York: Humana. https://doi.org/10.1007/978-1-4939-6921-0_5
  59. Jin, B., Kusanagi, K., Ueda, M., et al. (2008). Formation of extracellular and intracellular ice during warming of vitrified mouse morulae and its effect on embryo survival. Cryobiology. 56, 233-240. https://doi.org/10.1016/j.cryobiol.2008.03.004
  60. Koshimoto, C., Mazur, Р. (2002). Effect of warming rate, temperature and antifreeze proteins on the survival of mouse spermatozoa frozen at an optimal rate. Cryobiology. 45, 49-59. https://doi.org/10.1016/S0011-2240(02)00105-0
  61. Kristiansen, E., Kristiansen, К., & Zachariassen, Е.К. (2005). The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology. 51 (3), 262-270. https://doi.org/10.1016/j.cryobiol.2005.07.007
  62. Lepock, J.R., Keith, A.D., & Kruuv, J. (1984). Permeability changes in years after freeze-thaw damage: comparison to reproductive survival. CryoLetters. 5 (4), 277-280.
  63. Li, R., Yu, G., Azarin, S.M., & Hubel, A. (2018). Freezing responses in DMSO-based cryopreservation of human iPS cells: aggregates versus single cells. Tissue Engineering Part C Methods. 24 (5), 289-299. https://doi.org/10.1089/ten.tec.2017.0531
  64. Liu, S., Wang, W., von Moos, E., et al. (2007). In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue. Biomacromolecules. (8), 1456-1462. https://doi.org/10.1021/bm061044o
  65. MacFarlane, D.R., & Douglas, R. (1986). Devitrification in glass-forming aqueous solutions. Cryobiology. 23 (3), 230-244. https://doi.org/10.1016/0011-2240(86)90049-0
  66. Malsam, J., & Aksan, A. (2009). Hydrogen bonding and kinetics/thermodynamic transitions of aqueous trehalose solutions at cryogenic temperatures. Journal of Physical Chemistry, B. 113 (19), 6792-6799. https://doi.org/10.1021/jp8099434
  67. Matsumura, K. (2009). Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials. (30), 4842-4849. https://doi.org/10.1016/j.biomaterials.2009.05.025
  68. Mazur, P., Leibo, S.P., & Chee, E.H.Y. (1972). A two factors hypothesis of freezing injury. Cell Research. 71, 345-385. https://doi.org/10.1016/0014-4827(72)90303-5
  69. Mazur, P. (1984). Freezing of living cells: mechanisms and implications. American Journal of Physiology-Cell Physiology. 247 (3 Pt 1), C125-C142. https://doi.org/10.1152/ajpcell.1984.247.3.C125
  70. Mazur, P. (1977). The role of intracellular freezing in the death of cells at supraoptimal rates. Cryobiology. 14 (2), 251-272. https://doi.org/10.1016/0011-2240(77)90175-4
  71. Mazur, P. (1966).Theoretical and experimental effects of cooling and warming velocity on the survival of frozen and thawed cells. Cryobiology. 2, 181-192. https://doi.org/10.1016/S0011-2240(66)80165-7
  72. Moussa, M., Dumont, F., & Ferrier-Cornet, J.M. (2008). Cell inactivation and membrane damage after long-term treatments at sub-zero temperature in the supercooled and frozen states. Biotechnology & Bioengineering. 101 (6), 1245-1255. https://doi.org/10.1002/bit.21981
  73. Muraoka, M., Ohtake, М., & Yamamoto, Y. (2019). Kinetic inhibition effect of Type I and III antifreeze proteins on unidirectional tetrahydrofuran hydrate crystal growth. Royal Society of Chemistry Advances. 9 (20), 1530-1537. https://doi.org/10.1039/C9RA00627C
  74. Murata, K., & Tanaka, H. (2012). Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture. Nature Materials. 11 (5), 436-443. https://doi.org/10.1038/nmat3271
  75. Osetsky, А.I., Kirilyuk, A.L., & Gurina, T.M. (2005). Study of devitrification kinetics of cryoprotectant aqueous solutions using thermoplastic deformation method. Problems of Cryobiology. 15 (2), 137-146.
  76. Osetsky, А.I., & Sevastianov, S.S. (2015). Microvolumetric scanning tensodilatometer for biophysical studies. ScienceRise. 2 (2), 106-111.
  77. Osetsky, А.I., & Sevastyanov, S.S. (2016). Effect of hydrogen bonds on crystallization kinetics of aqueous solutions of cryoprotective agents. Problems of Cryobiology and Cryomedicine. 26 (3), 199-212. https://doi.org/10.15407/cryo26.03.199
  78. Osetsky, А.I. (2011). Тhermodynamic aspects of cluster crystallization in cryoprotective solutions. CryoLetters. 32 (3), 216-224.
  79. Pegg, D.E. (2015). Principles of Cryopreservation. In: Wolkers, W., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 1257 (pp. 3-19). New York: Springer. https://doi.org/10.1007/978-1-4939-2193-5_1
  80. Peltier, R., Brimble, M.A., Wojnar, J.M., et al. (2010). Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chemical Science. (1), 538-551. https://doi.org/10.1039/c0sc00194e
  81. Pertaya, N., Marshall, B.Ch., Celik, Y., et al. (2008). Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity. Biophysical Journal. 95 (1), 333-341. https://doi.org/10.1529/biophysj.107.125328
  82. Poisson, J.S., Acker, J.P., Briard, J.G., et al. (2019). Modulating intracellular ice growth with cell-permeating small-molecule ice recrystallization inhibitors. Langmuir. 35 (23), 7452-7458. https://doi.org/10.1021/acs.langmuir.8b02126
  83. Rasmussen, D.H., & Luyet, B.J. (1969). Complementary study of some non- equilibrium phase transition in frozen solution of glycerol, ethylene glycol, sucrose and glucose. Biodynamica. 10, 319-331.
  84. Rasmussen, D.H., & MacKenzie, A.P. (1968). Phase diagram for the system water – dimethylsulphoxide. Nature. 220, 1315-1317. https://doi.org/10.1038/2201315a0
  85. Shinoda, K., Yamaguchi, T., Hori, R., et al. (1961). The surface tension and the critical micelle concentration in aqueous solution of β-D-alkyl glucosides and their mixtures. Bulletin of the Chemical Society of Japan. (34), 237−241. https://doi.org/10.1246/bcsj.34.237
  86. Tachibana, Y. (2004). Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angewandte Chemie. (43), 856-862. https://doi.org/10.1002/anie.200353110
  87. Tesei, G., Paradossi, G., & Chiessi, Е. (2012). Poly (vinyl alcohol) oligomer in dilute aqueous solution: A comparative molecular dynamics simulation study. The Journal of Physical Chemistry. B. 116, 10008-100019. https://doi.org/10.1021/jp305296p
  88. Thirumala, S., & Devireddy, R.V. (2005). A simplified procedure to determine the optimal rate of freezing biological systems. Journal of Biomechanical Engineering. 127 (2), 295-300. https://doi.org/10.1115/1.1865213
  89. Towey, J.J., Soper, A.K., & Dougan, L. (2012). Molecular insight into the hydrogen bonding and micro-segregation of a cryoprotectant molecule. Journal of Physical Chemistry, B. 116 (47), 13898-13904. https://doi.org/10.1021/jp3093034
  90. Weng, L., Swei, А., & Toner, М. (2018). Role synthetic antifreeze agents in catalyzing ice nucleation. Cryobiology. 84, 91-94. https://doi.org/10.1016/j.cryobiol.2018.08.010
  91. Wesley-Smith, J., Walters, C., Pammenter, N.W., & Berjak, P. (2015). Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Annals of Botany. 115 (6), 991-1000. https://doi.org/10.1093/aob/mcv009
  92. Wilkinson, B.L., Stone, R.S., Capicciotti, C., et al. (2012). Total synthesis of homogeneous antifreeze glycopeptides and glycoprotein. Angewandte International Edition Chemie. Int. Ed. (1), 3606-3610. https://doi.org/10.1002/anie.201108682
  93. William, N, & Acker, JP. (2020). Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers. Cryobiology. 97, 217-221. https://doi.org/10.1016/j.cryobiol.2020.10.002
  94. Woelders, H, & Chavero, A. (2004). Theoretical prediction of «optimal» freezing programmes. Cryobiology. 49 (3), 258-271. https://doi.org/10.1016/j.cryobiol.2004.09.001
  95. Wowk, B. (2010). Thermodynamic aspects of vitrification. Cryobiology. 60, 11-22. https://doi.org/10.1016/j.cryobiol.2009.05.007
  96. Yu, G, Yap, YR, Pollock, K, & Hubel, A. (2017). Characterizing intracellular ice formation of lymphoblasts using low-temperature raman spectroscopy. Biophysical Journal. 112 (12), 2653-2663. https://doi.org/10.1016/j.bpj.2017.05.009

For Part 3      

  1. Aksionova,Yu., Kurylo, I.O. (2018). Vidkladannia narodzhen v Ukraini kriz pryzmu realnykh pokolin zhinok. Demohrafiia ta sotsialna ekonomika. (3), 11-25. [in Ukrainian].
  2. Belous, A.M., Grishenko, V.I. (1994). Kriobiologiya. Kyiv: Naukova dumka [in Russian].
  3. Burkova, V.V., Vysekantsev, I.P., & Lavrik, A.A. (2014). Sohrannost infekcionnoj aktivnosti promyshlennyh shtammov virusa beshenstva, hranivshihsya pri razlichnyh temperaturah. Zhivye i biokosnye sistemy. (9), Article 23. Retrieved from http://www.jbks.ru/archive/issue-9/article-23 [in Russian].
  4. Butskyi, K. I., Puhovkin, A. Y., & Kopeika, E. F. (2014). Effect of Hormone Injections on Quality Parameters and Cryoresistance of Sperm from Silver Carp (Hypophthalmichthys molitrix, Val. 1844). Problems of Cryobiology and Cryomedicine, 24(2), 140–148. https://doi.org/10.15407/cryo24.02.140
  5. Varyanitsa, V.V., & Vysekantsev, I.P. (2019). Zashitnye sredy dlya hraneniya standartnogo shtamma virusa beshenstva CVS pri temperaturah –20, –80°C. Vestnik problem biologii i mediciny. (4, Pt.1), 205–211. [in Russian].
  6. Goltsev, A.M., Petrushko, M.P., Piniaiev, V.I. (2020). Kriokonservuvannia hamet ta embrioniv: zhyttia do zapytannia. Kyiv: Naukova Dumka [in Ukrainian].
  7. Kononenko, I.S., Puhovkin, A.Yu., Kononenko, R.V., Cherepnin, V.O., Butskyi, K.I., & Kopeika, E.F. (2017). Optymizatsiia umov kriokonservuvannia spermy sterliadi (Acipenser ruthenus, L. 1758) dlia zaplidnennia ikry v umovakh rybnykh hospodarstv. Rybohospodarska nauka Ukrainy. (3), 83–97. [in Ukrainian].
  8. Kopeika, E. F. (2014). Ecological Niche as the Factor Determining Cryoresistance in Fish Spermatozoa. Problems of Cryobiology and Cryomedicine, 24(4), 302–311. https://doi.org/10.15407/cryo24.04.302
  9. Lvov, D.K. (Eds) (2008). Meditsinskaya virusologiya. Moskow: Medicinskoe informacionnoe agentstvo [in Russian].
  10. Nardid, O. A. (2014). Effect of Low Temperatures on Protein Systems. Problems of Cryobiology and Cryomedicine, 24(2), 83–101. https://doi.org/10.15407/cryo24.02.083
  11. Pavlovych, O.V., Hapon, H.O., Yurchuk, T.O., & Petrushko, M.P. (2019). Kriokonservuvannia spermatozoidiv liudyny z pronykaiuchymy i nepronykaiuchymy krioprotektoramy. Medytsyna siogodni i zavtra. (4), 27–34. [in Ukrainian].
  12. Prystalov, A.I., Kulieshova, L.G., & Rozanov, L.F. (2017). Prystrii dlia vakuum-infiltratsii zhyvtsiv plodovo-iahidnykh kultur. [The device for vacuum infiltration of cuttings of fruit and berry crops ]. (Patent of Ukraine № 121556). [in Ukrainian].
  13. Petrushko, M. P., Pavlovich, E. V., Pinyaev, V. I., Volkova, N. A. & Podyfaliy, V. V. (2017). Apoptosis and the processes of DNA fragmentation in native and cryopreserved human sperm cells with normo- and pathosperma. Cytology and Genetics. 51, 278–281. https://doi.org/10.3103/S0095452717040065
  14. Pugovkin, A.Iu., Kopeika, E.F., Nardid, O.A., Cherkashina, Ia.O. (2014). Issledovanie pronicaemosti membran spermatozoidov karpa dlya molekul vody. Biofizika. 59(3):481-487. [in Russian].
  15. Puhovkin, A.Iu., Kononenko, I.S., Cherepnin, V.O., Hrytsyniak, I.I., Kopieika, E.F. (2016). Pronyknist membran spermatozoidiv sterliadi (Acipenser ruthenus, L., 1758) dlia molekul vody. Rybohospodarska nauka Ukrainy. (1). 70–77. [in Ukrainian].
  16. Puhovkin, A. Y., & Kopeika, E. F. (2016). Plasma Membrane Permeability of Carp (Cyprinus carpio, L., 1758) Spermatozoa for Water and Cryoprotectants Molecules at Different Stages of Cryopreservation. Problems of Cryobiology and Cryomedicine, 26(4), 340–348. https://doi.org/10.15407/cryo26.04.340
  17. Tsutsaeva, A.A., Vysekantsev, I.P., Iserovich, P.G., et al. (1982). Vliyanie rezhimov zamorazhivaniya na vyzhivaemost bakteriofagov E. coli. Mikrobiologiya. 51 (4), 632–635. [in Russian].
  18. Shatabaeva, E.O., Mun, G.A., Shajhutdinov, E.M., & Hutoryanskij, V.V. (2020). Zhelatin: istochniki, poluchenie i primenenie v pishevoj promyshlennosti i biomedicine. Vestnik KazNU. Seriya himicheskaya. (3), 28–46. [in Russian].
  19. Adeniyi, O.M., Azimov, U., & Burluka, A. (2018). Algae biofuel: current status and future applications. Renewable and Sustainable Energy Reviews. 90, 316-335. https://doi.org/10.1016/j.rser.2018.03.067
  20. Agarwal, A., & Tvrda, E. (2017). Chapter 5 Slow Freezing of Human Sperm. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Cryopreservation of Mammalian Gametes and Embryos. Methods in Molecular Biology, vol 1568 (pp. 67-78). New York: Humana Press. https://doi.org/10.1007/978-1-4939-6828-2_5
  21. Ahres, M., Gierczik, K., Boldizsár, Á., et al. (2020). Temperature and light-quality-dependent regulation of freezing tolerance in barley. Plants. 9 (1). Article 83. Retrieved from https://www.mdpi.com/2223-7747/9/1/83. https://doi.org/10.3390/plants9010083
  22. AlDalain, E., Bysov, A., Shevchenko, O., et al. (2014). Several viral diseases of Lycopersicon esculentum circulating in Ukraine. Bulletin of Taras Shevchenko National University of Kyiv-Biology. 68 (3), 96-98. https://doi.org/10.17721/1728_2748.2014.68.96-98
  23. Allem, A.C. (2000). The terms genetic resource, biological resource, and biodiversity examined. The Environmentalist. 20, 335-341.https://doi.org/10.1023/A:1006730000698
  24. Avidor-Reiss, T., Mazur, M., Fishman, E.L., & Sindhwani, P. (2019). The role of sperm centrioles in human reproduction – the known and the unknown. Frontiers in Cell and Developmental Biology. 7. Article number 188. Retrieved from https://doi.org/10.3389/fcell.2019.00188
  25. Bartley, D.M., Nguyen, T.T.T., Halwart, M., & Silva, S.S. (2009). Use and exchange of aquatic genetic resources in aquaculture: Information relevant to access and benefit sharing. Reviews in Aquaculture. 1 (3-4), 157-62. https://doi.org/10.1111/j.1753-5131.2009.01009.x
  26. Bettoni, J.C., Costa, M.D., Gardin, J.P.P, et al. (2016). Cryotherapy: A new technique to obtain grapevine plants free of viruses. Revista Brasileira de Fruticultura. 38 (2). Article number e-883. Retrieved from https://doi.org/10.1590/0100-29452016833
  27. Bobe, J., & Labbé, C. (2010). Egg and sperm quality in fish. General and Comparative Endocrinology. 165, 535-548. https://doi.org/10.1016/j.ygcen.2009.02.011
  28. Borowitzka, M.A. (2018). Biology of microalgae. In: Levine, I.A., Fleurence, J. (Eds.) Microalgae in health and disease prevention. (pp. 23-72). London: Academic Press. https://doi.org/10.1016/B978-0-12-811405-6.00003-7
  29. Buderatska, N., Gontar, J., Ilyin, I., Lavrinenko, S., Petrushko, M., & Yurchuk, T. (2020). Does human oocyte cryopreservation affect equally on embryo chromosome aneuploidy? Cryobiology. 93, 33-36. https://doi.org/10.1016/j.cryobiol.2020.03.002
  30. Byrd, W. (2002). Cryopreservation, thawing, and transfer of human embryos. Seminars in Reproductive Medicine. 20 (1), 37-43. https://doi.org/10.1055/s-2002-23518
  31. Cabrita, E., Robles, V., & Herráez, M.P. (2009). Methods in Reproductive Aquaculture: Marine and Freshwater Species. Boca Raton: CRC Press.
  32. Cabrita, E., Alvarez, R., Anel, E., & Herraez, M.P. (1999). The hypoosmotic swelling test performed with coulter counter: a method to assay functional integrity of sperm membrane in rainbow trout. Animal Reproduction Science. 55, 279-287. https://doi.org/10.1016/S0378-4320(99)00014-7
  33. Cao, E., Chen, Y., Cui, Z., & Forster, P.R. (2003). Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnology and Bioengineering. 82 (6), 684-690. https://doi.org/10.1002/bit.10612
  34. Ceccato, P., Ramirez, B., Manyangadze, T., et al. (2018). Data and tools to integrate climate and environmental information into public health. Infectious Diseases of Poverty. 7 (1). Article number 126. Retrieved from https://doi.org/10.1186/s40249-018-0501-9
  35. Centola, GM, Raubertas, RF, & Mattox, JH. (1992). Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. Journal of Andrology. 13 (3), 283-288.
  36. Chaudhury, R., & Malik, S.K. (2017). Cryopreservation of plant species: practical approaches from handling to cryobanking, Pusa Campus, New Delhi: Indian Council of Agricultural Research (ICAR) – National Bureau of Plant Genetic Resources.
  37. Cheregi, O., Ekendahl, S., Engelbrektsson, J., et al. (2019). Microalgae biotechnology in Nordic countries – the potential of local strains. Physiologia Plantarum. 166 (1), 438-450. https://doi.org/10.1111/ppl.12951
  38. Chernobai, N., Kadnikova, N., & Kovalenko, I. (2019). The role of cold adaptation in cryopreservation of Dunaliella salina Teod. microalgae. Advances in Biology & Earth Sciences. 4 (2), 119-127.
  39. Chivian, E., & Bernstein, A. (2008). Sustaining life: How human health depends on biodiversity. New York: Center for Health and the Global Environment. Oxford University Press.
  40. Cliquet, F., & Wasniewski, M. (2015). The fluorescent antibody virus neutralization test. In: Rupprecht, C., Nagarajan, T. (Eds.) Current laboratory techniques in rabies diagnosis, research and prevention; Vol. 2. (pp. 217-231). San Diego: Academic Press; https://doi.org/10.1016/B978-0-12-801919-1.00018-X
  41. Cloud, J.G., & Thorgaard, G.H. (1993). Genetic conservation of salmonid fishes. New York: Plenum Press. https://doi.org/10.1007/978-1-4615-2866-1
  42. Coelho, N., Gonçalves, S., & Romano, A. (2020). Endemic plant species conservation: Biotechnological approaches. Plants. 9 (3). Article number 345. Retrieved from https://doi.org/10.3390/plants9030345
  43. FAO (2012). Cryoconservation of animal genetic resources. FAO Animal Production and Health Guidelines No. 12. Rome.
  44. Curry, M.R. (2000). Cryopreservation of semen from domestic livestock. Reviews of Reproduction. 5, 46-52. https://doi.org/10.1530/ror.0.0050046
  45. Day, J.G., Benson, E.E., Harding, K., et al. (2005).Cryopreservation and conservation of microalgae: the development of a pan-european scientific and biotechnological resource (the COBRA project). CryoLetters. 26 (4), 231-238.
  46. Day, J.G., & Brand, J.J. (2005). Cryopreservation methods for maintaining cultures. In: Andersen, R.A. (Eds.) Algal culturing techniques. (pp. 165-187). New York: Academic Press. https://doi.org/10.1016/B978-012088426-1/50013-5
  47. Dolmans, M.M., & Donnez, J. (2021). Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue. Best Practice & Research: Clinical Obstetrics & Gynaecology. 70, 63-80. https://doi.org/10.1016/j.bpobgyn.2020.06.011
  48. Fabre, J., & Dereuddre, J. (1990). Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. CryoLetters. 11, 423-426.
  49. FAO. (2013). In vivo conservation of animal genetic resources. FAO Animal Production and Health Guidelines, No. 14. Rome.
  50. Fooks, A.R., Banyard, A.C., Horton, D.L., et al. (2014). Current status of rabies and prospects for elimination. The Lancet. 384 (9951), 1389-1399. https://doi.org/10.1016/S0140-6736(13)62707-5
  51. Gäbler-Schwarz, S., Rad Menéndez, C., Achilles-Day, U.E.M., et al. (2013). Cryopreservation of Phaeocystis antarctica. CryoLetters. 34 (6), 561-570.
  52. Gangl, D., Zedler, J.A., Rajakumar, P.D., et al. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany. 66 (22), 6975-6990. https://doi.org/10.1093/jxb/erv426
  53. Gaston, K.J. (1996). What is biodiversity? In: Gaston, K. J. (Eds.) Biodiversity: A biology of numbers and difference. (pp. 1-9). Oxford: Blackwell Science.
  54. Gould, E.A. (1999). Methods for long-term virus preservation. Molecular Biotechnology. 13 (1), 57-66. https://doi.org/10.1385/MB:13:1:57
  55. Gurina, T.M., Pakhomov, A.V., Polyakova, A.L., Legach, E.I., & Bozhok, G.A. (2016). The development of the cell cryopreservation protocol with controlled rate thawing. Cell Tissue Bank. 17 (2), 303-316. https://doi.org/10.1007/s10561-015-9533-6
  56. Gwo, J.C., Jamieson, B.G.M., & Leung, L.K.P. (2009). Live preservation of fish gametes. In: Jamieson, B. G. M. (Eds.) Reproductive biology and phylogeny of fishes (agnathans and bony fishes). (pp. 395-484). Boca Raton: CRS Press. https://doi.org/10.1201/b10257-12
  57. Hagedorn, M., Ricker, J., McCarthy, M., et al. (2009). Biophysics of zebrafish (Danio rerio) sperm. Cryobiology. 58, 12-19. https://doi.org/10.1016/j.cryobiol.2008.09.013
  58. Heesch, S., Day, J.G., Yamagishi, T., et al. (2012). Cryopreservation of the model alga Ectocarpus (Phaeophyceae). CryoLetters. 33 (5), 327-336.
  59. Hilsdorf, A., & Hallerman, E. (2017). Genetic resources of neotropical fishes. Cham: Springer. https://doi.org/10.1007/978-3-319-55838-7
  60. Hooper, D.C. (2016). Rabies virus. In: Detrick, B., Schmitz, J.L., Hamilton, R.G. (Eds.) Manual of molecular and clinical laboratory immunology; 8th ed. (pp. 665-673). Washington: ASM Press. https://doi.org/10.1128/9781555818722.ch69
  61. Hubálek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology. 46 (3), 205-229. https://doi.org/10.1016/S0011-2240(03)00046-4
  62. Isachenko, V., Isachenko, E., Montag, M., et al. (2005). Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reproductive BioMedicine Online. 10 (3), 350-354. https://doi.org/10.1016/S1472-6483(10)61795-6
  63. Janská, A., Marsík, P., Zelenková, S., & Ovesná, J. (2010). Cold stress and acclimation – what is important for metabolic adjustment? Plant Biology. 12 (3), 395-405. https://doi.org/10.1111/j.1438-8677.2009.00299.x
  64. Kiroshka, V., Trutaieva, I., & Bondarenko, T. (2018). Efficiency of mannitol-supplemented medium during adding/removing ovarian tissue with penetrating cryoprotective agents. Cell Tissue Bank. 19 (1), 123-132. https://doi.org/10.1007/s10561-017-9623-8
  65. Kopeika, E., Kopeika, J., & Zhang, T. (2007). Cryopreservation of fish sperm. In: Day, J.G., & Stacey, G.N. (Eds.) Cryopreservation and freeze-drying protocols. (pp. 203-217). Totowa: Humana Press. https://doi.org/10.1007/978-1-59745-362-2_14
  66. Kopeika, E.F., & Kopeika, J.E. (2007). Variability of sperm quality after cryopreservation in fish. In: Alavi, S.H.M., Cosson, J., Coward, K., Rafiee, G. (Eds.) Fish spermatology. (pp. 347-396). Oxford: Alpha Science International.
  67. Kovac, J.R., & Lipshultz, L.I. (2016). Azoospermia and the cancer patient: are there any options? Asian Journal of Andrology. 18 (3), 409. https://doi.org/10.4103/1008-682X.179248
  68. Kuleshova, L. Gianaroli, L., Magli, C., et al. (1999). Birth following vitrification of a small number of human oocytes: Case Report. Human Reproduction. 14 (12), 3077-3079. https://doi.org/10.1093/humrep/14.12.3077
  69. Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 67 (1), 73-80. https://doi.org/10.1016/j.theriogenology.2006.09.014
  70. Labbe, C., Bussiere, J.F., Guillouet, P., Leboeuf, B., & Magistrini, M. (2001). Cholesterol/phospholipid ratio in sperm of several domestic species does not directly predict sperm fitness for cryopreservation. Genetics Selection Evolution. 33, 61-74. https://doi.org/10.1186/BF03500873
  71. Rupprecht, C.E., Fooks, A.R., Abela-Ridder, B. (Eds.) Laboratory techniques in rabies, 5th ed; Vol. 1. Geneva: World Health Organization; 2018.
  72. Lassalle, B., Testart, J., Renard, J.P. (1985). Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertility and Sterility. 44 (5), 645-651. https://doi.org/10.1016/S0015-0282(16)48981-8
  73. Leibo, S.P., & Mazur, P. (1971). The role of cooling rates in low-temperature preservation. Cryobiology. 8 (5), 447-452. https://doi.org/10.1016/0011-2240(71)90035-6
  74. Leonel, E.C.R., Corral, A., Risco, R., et al. (2019). Stepped vitrification technique for human ovarian tissue cryopreservation. Scientific Reports. 9. Article number: 20008. Retrieved from https://doi.org/10.1038/s41598-019-56585-7
  75. Levi-Setti, P.E., Negri, L., Baggiani, A., et al. (2020). Testicular sperm extraction and intracytoplasmic sperm injection outcome in cancer survivors with no available cryopreserved sperm. Journal of Assisted Reproduction and Genetics. 37 (4), 875-882. https://doi.org/10.1007/s10815-020-01697-7
  76. Levi-Setti, P.E., Patrizio, P., & Scaravelli, G. (2016). Evolution of human oocyte cryopreservation: slow freezing versus vitrification. Current Opinion in Endocrinology, Diabetes and Obesity. 23 (6), 445-450. https://doi.org/10.1097/MED.0000000000000289
  77. Fuller, B.J., Lane, N., Benson, E.E. (Eds.) (2004). Life in the frozen state. Boca Raton: CRC Press.
  78. Liu, G., Li, S., Yuan, H., et al. (2018). Effect of sodium alginate on mouse ovary vitrification. Theriogenology. 113, 78-84. https://doi.org/10.1016/j.theriogenology.2018.02.006
  79. Martínez-Páramo, S., Horváth, Á., Labbé, C., et al. (2017). Cryobanking of aquatic species. Aquaculture. 472, 156-177. https://doi.org/10.1016/j.aquaculture.2016.05.042
  80. Mazur, P., Leibo, S.P., & Chu, E.H.Y. (1972). A two-factor hypothesis of freezing injury. Experimental Cell Research. 71, 345-355. https://doi.org/10.1016/0014-4827(72)90303-5
  81. Nadarajan, J., & Pritchard, H.W. (2014). Biophysical characteristics of successful oil seed embryo cryoprotection and cryopreservation using vacuum infiltration vitrification: An innovation in plant cell preservation. PLoSONE. 9. Article number e96169. Retrieved from https://doi.org/10.1371/journal.pone.0096169
  82. Niino, T., Thwin, W., Watanabe, K., et al. (2014). Cryopreservation of mat rush lateral buds by air dehydrationusing aluminum cryo-plate. Plant Biotechnology. 31, 281-287. https://doi.org/10.5511/plantbiotechnology.14.0624a
  83. O’Reilly, P., & Doyle, R. (2007). Live gene banking of endangered populations of Atlantic salmon. In: The Atlantic Salmon: Genetics, conservation and management. (pp. 425-469). Oxford: Blackwell Publishing. https://doi.org/10.1002/9780470995846.ch14
  84. Orciari, L.A., Hanlon, C.A., & Franka, R. (2015). Rabies Virus. In: Jorgensen J.H., Pfaller M.A. (Eds.) Manual of clinical microbiology, 11th ed. (pp. 1633-1643). Washington: ASM Press. https://doi.org/10.1128/9781555817381.ch94
  85. Oren, A. (2014). The ecology of Dunaliella in high-salt environments. Journal of Biological Research-Thessaloniki. 21(1), 1-8. https://doi.org/10.1186/s40709-014-0023-y
  86. Organization for Animal Health. (2018). Chapter 3.1.17. Rabies (infection with rabies virus and other lyssaviruses). In: Manual of diagnostic tests and vaccines for terrestrial animals. 8th edition. (pp. 578-612). Retrieved from https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.17_RABIES.pdf
  87. Panner Selvam, M.K., Finelli, R., Baskaran, S., & Agarwal, A. (2020). Dysregulation of key proteins associated with sperm motility and fertility potential in cancer patients. International Journal of Molecular Sciences. 21 (18). Article number 6754. Retrieved from https://doi.org/10.3390/ijms21186754
  88. Paras, L., Freisinger, J., Esterbauer, B., et al. (2008). Cryopreservation technique: comparison of Test yolk buffer versus SpermCryo and vapour versus computerised freezing. Andrologia. 40 (1), 18-22. https://doi.org/10.1111/j.1439-0272.2008.00803.x
  89. Pegg, D.E. (2015). Principles of Cryopreservation. In: Wolkers, W., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 1257. (pp. 3-19). New York: Springer. https://doi.org/10.1007/978-1-4939-2193-5_1
  90. Petrunkina, A.M. (2007). Fundamental aspects of gamete cryobiology. Journal of Reproductive Medicine and Endocrinology. 4 (2), 78-91.
  91. Petrushko, M.P. (2005). Role of cell cycles phases and pronuclei morphology in viability of native and cryopreserved zygotes. Problems of Cryobiology. 15 (2), 202-206.
  92. Petrushko, M.P., Yurchuk, T.O., Buderatska, N.O., & Piniaiev, V.I. (2018). Oolemma invagination of fresh and cryopreserved human oocytes during in vitro fertilization by ICSI. Problems of Cryobiology and Cryomedicine. 28 (3), 258-265. https://doi.org/10.15407/cryo28.03.258
  93. Prakash, O., Nimonkar, Y., & Shouche, Y.S. (2013). Practice and prospects of microbial preservation. FEMS Microbiology Letters. 339 (1), 1-9. https://doi.org/10.1111/1574-6968.12034
  94. Raad, G., Azouri, J., Rizk, K., et al. (2019). Adverse effects of paternal obesity on the motile spermatozoa quality. PLoS One. 14 (2). Article number e0211837. Retrieved from https://doi.org/10.1371/journal.pone.0211837
  95. Reed, B.M. (2008). Plant cryopreservation: a practical guide. New York: Springer. https://doi.org/10.1007/978-0-387-72276-4_1
  96. Sadchenko, A.O., Vashchenko, O.V., Puhovkin, A.Yu, et al. (2017). Some characteristics of interactions of pharmaceuticals and their active pharmaceutical ingredients with lipid membranes. Biophysics. 62 (4), 570-579. https://doi.org/10.1134/S0006350917040194
  97. Sakai, A., & Engelmann, F. (2007). Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters. 28 (3), 151-172.
  98. Sakai, A., & Nishiyama, Y. (1978.) Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience. 13 (3), 225-227. https://doi.org/10.21273/HORTSCI.13.3.225
  99. Sharpe, R.M. (2010). Environmental/lifestyle effects on spermatogenesis. Philosophical Transactions of the Royal Society. 365 (1546), 1697-1712. https://doi.org/10.1098/rstb.2009.0206
  100. Shevchenko, N., Kovalenko, G., Kovalenko, I., & Stribul, T. (2021). Discovery of osmotic responses of sweet potato meristems in cryoprotective solutions. Problems of Cryobiology and Cryomedicine. 31 (2), 180-184. https://doi.org/10.15407/cryo31.02.180
  101. Siddiqui, M.S.I., Giasuddin, M., Chowdhury, S.M.Z.H., et al. (2015). Comparative effectiveness of dimethyl sulphoxide (DMSO) and glycerol as cryoprotective agent in preserving Vero cells. Bangladesh Veterinarian. 32(2), 35-41. https://doi.org/10.3329/bvet.v32i2.30608
  102. Smith, D. (2003). Culture collections over the world. International Microbiology. 6 (2), 95-100. https://doi.org/10.1007/s10123-003-0114-3
  103. Smith, D., & Ryan, M.J. (2012). Implementing best practices and validation of cryopreservation techniques for microorganisms. Scientific World Journal. 2012. Article number 805659. Retrieved from https://doi.org/10.1100/2012/805659
  104. Suquet, M., Dreanno, C., Fauvel, C., Cosson, J., & Billard, R. (2000). Cryopreservation for sperm in marine fish. Aquaculture Research. 31, 231-243. https://doi.org/10.1046/j.1365-2109.2000.00445.x
  105. Teixeira, A.S., González-Benito, M.E., & Molina-García, A.D. (2014). Determination of glassy state bycryo-SEM and DSC in cryopreservation of mint shoot tips by encapsulation-dehydration. Plant Cell, Tissue and Organ Culture. 119, 269-280. https://doi.org/10.1007/s11240-014-0531-3
  106. Tilman, D., May, R., Lehman, C.L., & Nowak, M.A. (1994). Habitat destruction and the extinction debt. Nature. 371, 65-66. https://doi.org/10.1038/371065a0
  107. Trounson, A., & Mohr, L. (1983). Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 305 (5936), 707-709. https://doi.org/10.1038/305707a0
  108. Uragami, A., Sakai, A., Nagai, M., & Takahashi, T. (1989). Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Reports. 8, 418-421. https://doi.org/10.1007/BF00270083
  109. Uzunova-Doneva, T., & Donev, T. (2005). Anabiosis and conservation of microorganisms. Journal of Culture Collections. 4 (1), 17-28.
  110. Van der Elst, J., Camus, M., Van den Abbeel, E., Maes, R., Devroey, P., & Van Steirteghem, A.C. (1995). Prospective randomized study on the cryopreservation of human embryos with dimethylsulfoxide or 1,2-propanediol protocols. Fertility and Sterility. 63 (1), 92-100. https://doi.org/10.1016/S0015-0282(16)57302-6
  111. Varianytsia, V.V., & Vysekantsev, I.P. (2020). Effectiveness of protective media applying for long-term storage of the rabies virus L. Pasteur strain at various low temperatures. Problems of Cryobiology and Cryomedicine. 30 (3), 283. https://doi.org/10.15407/cryo30.03.283
  112. Varianytsia, V.V., & Vysekantsev, I.P. (2020). Impact of storage temperature regimens and protective media composition on rabies virus CVS strain preservation. Problems of Cryobiology and Cryomedicine. 30 (2), 148-157. https://doi.org/10.15407/cryo30.02.148
  113. Varianytsia, V.V., & Vysekantsev, I.P. (2020). Influence of protective media composition and storage temperatures on preservation of rabies virus vaccine strain L. Pasteur. IOSR Journal Of Pharmacy And Biological Sciences. 15 (3), 20-29.
  114. Varianytsia, V.V., & Vysekantsev, I.P. (2018). Long-term storage of rabies virus fixed strains L. Pasteur and CVS at temperatures of -20 and -80°C using protective media. Problems of Cryobiology and Cryomedicine. 28 (2), 169. https://doi.org/10.15407/cryo28.02.169
  115. Varianytsia, V.V., & Vysekantsev, I.P. (2019). Protective media for storage of L. Pasteur rabies virus strain at different temperatures. IOSR Journal Of Pharmacy. 9 (1), 9-18.
  116. Vozovyk, K., Bobrova, O., Prystalov, A., et al. (2020). Amorphous state stability of plant vitrification solutions. Biologija. 66 (1), 47-53. https://doi.org/10.6001/biologija.v66i1.4190
  117. Wang, B., Wang, R.R., Cui, Z.H., et al. (2014). Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances.32, 583-595. https://doi.org/10.1016/j.biotechadv.2014.03.003
  118. Wang, Q.C., Cuellar, W.J., Rajamäki, M.-L., et. al. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology. 9 (2), 237-250. https://doi.org/10.1111/j.1364-3703.2007.00456.x
  119. World Health Organization. (2007). Annex 2. Recommendations for inactivated rabies vaccine for human use produced in cell substrates and embryonated eggs. WHO Expert Committee on Biological Standardization. Fifty-sixth report. (pp. 83-132). (WHO Technical Report Series No. 941). Geneva: World Health Organization. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/43594/WHO_TRS_941.pdf?sequence=1
  120. World Health Organization. (2004). International statistical classification of diseases and related health problems, 10th revision. Geneva: World Health Organization.
  121. World Health Organization. (2018). WHO expert consultation on rabies: third report. Geneva: World Health Organization.
  122. Yamamoto, S., Rafique, T., Priyantha, W., et al. (2011). Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters. 32 (3), 256-265.
  123. Yukhta, M.S., Volkova, N.O., & Goltsev, A.N. (2018). Cryopreservation of seminiferous tubules of immature rat testes with using of low cooling rates. Problems of Cryobiology and Cryomedicine. 28 (2), 185. https://doi.org/10.15407/cryo28.02.185
  124. Yurchuk, T., Petrushkо, M., Gapon, A., et al. (2021). The impact of cryopreservation on the morphology of spermatozoa in men with oligoasthenoteratozoospermia. Cryobiology. 100, 117-124.https://doi.org/10.1016/j.cryobiol.2021.02.009
  125. Yurchuk, T.A., Petrushko, M.P., Piniaiev, V.I., & Buderatskaya, N.A. (2018). Vitrification of human embryos after manipulation with zona pellucida. Problems of Cryobiology and Cryomedicine. 28 (2), 184. https://doi.org/10.15407/cryo28.02.184
  126. Yurchuk, T.A., Petrushko, M.P., & Pinyaev, V.I. (2017). Cryoresistance of human embryos at the morula stage with aberrant compaction. Problems of Cryobiology and Cryomedicine. 27 (2), 169. https://doi.org/10.15407/cryo27.02.169
  127. Yurchuk, T.O., Pavlovich, O.V., Gapon, G.O., Pugovkin, A.Y., & Petrushko, M.P. (2021). Lipid peroxidation and DNA fragmentation in fresh and cryopreserved spermatozoa of men at different spermatogenesis state. Ukrainian Biochemical Journal. 93 (2), 24-29. https://doi.org/10.15407/ubj93.03.024
  128. Zhang, S.P., Lu, C.F., Gong, F., et al. (2017). Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. Journal of Assisted Reproduction and Genetics. 34 (5), 563-571. https://doi.org/10.1007/s10815-017-0881-y

For Part 4

  1. Abdulkadyrov, K.M., Romanenko, N.A., & Selivanov, E.A. (2006). Nash opyt po zagotovke, testirovaniyu i hraneniyu gemopoeticheskih kletok pupovinnoj krovi. Kletochnaya transplantologiya i tkanevaya inzheneriya. 3 (1), 63–65. [in Russian].
  2. Belous, A.M., & Grishenko, V.I. (1994). Kriobiologiya. Kyiv: Naukova dumka [in Russian].
  3. Volkova, N.O., Yukhta, M.S., Chernyshenko, L.H., et al. (2019). Zastosuvannia biopolimeriv pry kriokonservuvanni testykuliarnoi tkanyny shchuriv. Visnyk problem biolohii i medytsyny. (2), 67-70. [in Ukrainian].
  4. Doncov, V.I., Krutko, V.N., Mrikaev, B.M., & Uhanov, S.V. (2006). Aktivnye formy kisloroda kak sistema: znachenie v fiziologii, patologii i estestvennom starenii. Trudy instituta sistemnogo analiza Rossijskoj akademii nauk. 19, 50–69. [in Russian].
  5. Zhuravlev, A.I., & Zubkova, S.M. (2008). Antioksidanty. Svobodnoradikalnaya patologiya. Moskow: MIKO-PRINT [in Russian].
  6. Liashenko, T.D., & Sukach, O.M. (2009). Kharakterystyka izolovanykh nervovykh klityn novonarodzhenykh shchuriv. Patolohiia. 6 (1), 55-58. [in Ukrainian].
  7. Sukach, O. (2017). Sposib otrymannia neiralnykh klityn-poperednykiv. [ The method of obtaining neural progenitor cells]. (Patent of Ukraine №119411). [in Ukrainian].
  8. Sukach, A.N. (2005). Harakteristika embrionalnyh nervnyh kletok cheloveka, poluchennyh nefermentativnym sposobom. Tsitologiia. 47 (3), 207-213. [in Russian].
  9. Sukach, A.N., Lebedinskiy, A.S., Ochenashko, O.V., & Petrenko, A.Yu. (2016). Transplantaciya kriokonservirovannyh nejralnyh kletok plodov krys v sostave suspenzii i mnogokletochnyh agregatov krysam s povrezhdeniem spinnogo mozga. Kletochnaya i organnaya transplantologiya. 4 (1), 14-21. [in Russian].
  10. Sukach, A.N., Lyashenko, T.D., & Shevchenko, M.V. (2013). Svojstva izolirovannyh kletok nervnoj tkani novorozhdennyh krys v kulture. Biotechnologia Acta. 6 (3), 63-68. [in Russian].
  11. Acker, J., Larese, A., Yang, H., et al. (1999). Intracellular ice formation is affected by cell interactions. Cryobiology. 38 (4), 363-371. https://doi.org/10.1006/cryo.1999.2179
  12. Allenspach, A.L., & Kraemer, T.G. (1989). Ice crystal patterns in artificial gels of extracellular matrix macromolecules after quick-freezing and freeze-substitution. Cryobiology. 26 (2), 170-179. https://doi.org/10.1016/0011-2240(89)90048-5
  13. Anitua, E., Pino, A., Troya, M., et al. (2018). A novel personalized 3D injectable protein scaffold for regenerative medicine. Journal of Materials Science: Materials in Medicine. 29 (7), 1-14.https://doi.org/10.1007/s10856-017-6012-6
  14. Arai, K., Murata, D., Takao, S., Verissiomo, A.R., & Nakayama, K. (2020). Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs. PLoS One. 15 (4). Article number e0230428. Retrieved from https://doi.org/10.1371/journal.pone.0243249
  15. Awan, M., Buriak, I., Fleck, R., et al. (2020). Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine. 15 (3), 1463-1491. https://doi.org/10.2217/rme-2019-0145
  16. Baert, Y., Braye, A., Struijk, R.B., et al. (2015). Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertility and sterility. 104 (5), 1244-1252. e524. https://doi.org/10.1016/j.fertnstert.2015.07.1134
  17. Baert, Y., Van Saen, D., Haentjens, P., In’t Veld, P., Tournaye, H., & Goossens, E. (2013). What is the best cryopreservation protocol for human testicular tissue banking? Human Reproduction. 28 (7), 1816-1826. https://doi.org/10.1093/humrep/det100
  18. Baggiani, M., Dell’Anno, M.T., Pistello, M., et al. (2020). Human neural stem cell systems to explore pathogen-related neurodevelopmental and neurodegenerative disorders. Cells. 9 (8), 1893. https://doi.org/10.3390/cells9081893
  19. Bagó, J.R., Sheets, K.T., & Hingtgen, S.D. (2016). Neural stem cell therapy for cancer. Methods. 99, 37-43. https://doi.org/10.1016/j.ymeth.2015.08.013
  20. Ballen, K.K., Gluckman, E., & Broxmeyer, H.E. (2013). Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 122 (4), 491-498. https://doi.org/10.1182/blood-2013-02-453175
  21. Banda, E., & Grabel, L. (2016). Directed differentiation of human embryonic stem cells into neural progenitors. Methods in Molecular Biology. 1307, 289-298. https://doi.org/10.1007/7651_2014_67
  22. Batnyam, O., Suye, S., & Fujita, S. (2017). Direct cryopreservation of adherent cells on an elastic nanofiber sheet featuring a low glass-transition temperature. RSC Advances. 7 (81), 51264-51271. https://doi.org/10.1039/C7RA10604A
  23. Baudot, A., Alger, L., & Boutron, P. (2000). Glass-forming tendency in the system water-dimethyl sulfoxide. Cryobiology. 40 (2), 151-158. https://doi.org/10.1006/cryo.2000.2234
  24. Baudot, A., & Odagescu, V. (2004). Thermal properties of ethylene glycol aqueous solutions. Cryobiology. 48 (3), 283-294.https://doi.org/10.1016/j.cryobiol.2004.02.003
  25. Beattie, R., & Hippenmeyer, S. (2017). Mechanisms of radial glia progenitor cell lineage progression. FEBS Letters. 591, 3993-4008. https://doi.org/10.1002/1873-3468.12906
  26. Benmelouka, A.Y., Munir, M., Sayed, A., et al. (2021). Neural stem cell-based therapies and glioblastoma management: current evidence and clinical challenges. International Journal of Molecular Sciences. 22 (5). Article number 2258. Retrieved from https://doi.org/10.3390/ijms22052258
  27. Benton, L., Shan, L.X., & Hardy, M.P. (1995). Differentiation of adult Leydig cells. The Journal of Steroid Biochemistry and Molecular Biology. 53, 61-68. https://doi.org/10.1016/0960-0760(95)00022-R
  28. Berg, D.A., Bond, A.M., & Ming, G. (2018). Radial glial cells in the adult dentate gyrus: What are they and where do they come from? F1000Research. 7. Article number 277. Retrieved from https://doi.org/10.12688/f1000research.12684.1
  29. Best, B.P. (2015). Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Research. 18 (5), 422-436. https://doi.org/10.1089/rej.2014.1656
  30. Bielanski, A., Nadin-Davis, S., Sapp, T., et al. (2000). Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology. 40 (2), 110-116. https://doi.org/10.1006/cryo.1999.2227
  31. Bischof, J. (2015). Nanowarming: A new concept in tissue and organ preservation. Cryobiology. 71 (1), 176. https://doi.org/10.1016/j.cryobiol.2015.05.051
  32. Boutron, P., Delage, D., Roustit, B., et al. (1982). Ternary systems with 1,2-propanediol-a new gain in the stability of the amorphous state in the system water-1,2-propanediol-1-propanol. Cryobiology. 19 (5), 550-564. https://doi.org/10.1016/0011-2240(82)90184-5
  33. Boutron, P., & Kaufmann, A. (1979). Stability of the amorphous state in the system water-glycerol-ethylene glycol. Cryobiology. 16 (1), 83-89. https://doi.org/10.1016/0011-2240(79)90015-4
  34. Breunig, J.J., Haydar, T.F., & Rakic, P. (2011). Neural stem cells: historical perspective and future prospects. Neuron. 70, 614-625. https://doi.org/10.1016/j.neuron.2011.05.005
  35. Brix, J., Zhou, Y., & Luo, Y.L. (2015). The epigenetic reprogramming roadmap in generation of iPSCs from somatic cells. Journal of Genetics and Genomics. 42, 661-670. https://doi.org/10.1016/j.jgg.2015.10.001
  36. Cameron, H.A., Woolley, C.S., McEwen, B.S., & Gould, E. (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 56 (2), 337-344. https://doi.org/10.1016/0306-4522(93)90335-D
  37. Cassady, J.P., D’Alessio, A.C., Sarkar, S., et al. (2014). Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Reports. 3, 948-956. https://doi.org/10.1016/j.stemcr.2014.10.001
  38. Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem cells International. 2016. Article number 9176357. Retrieved from https://doi.org/10.1155/2016/9176357
  39. Chau, M.J., Deveau, T.C., Song, M., et al. (2014). iPSC Transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 32, 3075-3087. https://doi.org/10.1002/stem.1802
  40. Chen, B., Wright, B., Sahoo, R., et al. (2013). A novel alternative to cryopreservation for the short-term storage of stem cells for use in cell therapy using alginate encapsulation. Tissue Engineering Part C: Methods. 19 (7), 568-576. https://doi.org/10.1089/ten.tec.2012.0489
  41. Chen, G., Wang, Y., Xu, Z., et al. (2013). Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. Journal of Translational Medicine. 11. Article number: 21. Retrieved from https://doi.org/10.1186/1479-5876-11-21
  42. Chen, G., Yue, A., Ruan, Z., et al. (2016). Comparison of the effects of different cryoprotectants on stem cells from umbilical cord blood. Stem cells international. 2016. Article number 1396783. Retrieved from https://doi.org/10.1155/2016/1396783
  43. Chen, X., Zhong, Z., Xu, Z., Chen, L., & Wang, Y. (2010). 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free radical research. 44 (6), 587-604. https://doi.org/10.3109/10715761003709802
  44. Cheng, L., Hu, W., Qiu, B., et al. (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Research. 24, 665-679. https://doi.org/10.1038/cr.2014.32
  45. Chiti, M.C., Dolmans, M.M., Donnez, J., et al. (2017). Fibrin in reproductive tissue engineering: a review on its application as a biomaterial for fertility preservation. Annals of biomedical engineering. 45 (7), 1650-1663. https://doi.org/10.1007/s10439-017-1817-5
  46. Chiu-Lam, A., Staples, E., Pepine, C.J., et al. (2021). Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions. Science Advances. 7 (2). Article number: eabe3005. Retrieved from https://doi.org/10.1126/sciadv.abe3005
  47. Choi, C.I., Yoon, H., Drucker, K.L., et al. (2018). The thrombin receptor restricts subventricular zone neural stem cell expansion and differentiation. Scientific Reports. 8. Article number: 9360. Retrieved from https://doi.org/10.1038/s41598-018-27613-9
  48. Choi, D.H., Kim, J.H., Kim, S.M., et al. (2017). Therapeutic potential of induced neural stem cells for Parkinson’s disease. International Journal of Molecular Sciences. 18 (1). Article number: 224. Retrieved from https://doi.org/10.3390/ijms18010224
  49. Chong, Y.K., Toh, T.B., Zaiden, N., et al. (2009). Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells. 27, 29-39. https://doi.org/10.1634/stemcells.2008-0009
  50. Chou, R.-H., Lu, C.-Y., Lee, W., et al. (2014). The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine. Cell Transplant. 23, 567-571. https://doi.org/10.3727/096368914X678508
  51. Corti, S., Nizzardo, M., Simone, C., et al. (2012). Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell Research. 318, 1528-1541. https://doi.org/10.1016/j.yexcr.2012.02.040
  52. Costa, M.H.G., McDevitt, T.C., Cabral, J.M.S., et al. (2017). Tridimensional configurations of human mesenchymal stem/stromal cells to enhance cell paracrine potential towards wound healing processes. Journal of biotechnology. 262, 28-39. https://doi.org/10.1016/j.jbiotec.2017.09.020
  53. Costa, P.F., Dias, A.F., Reis, R.L., & Gomes, M.E. (2012). Cryopreservation of cell/scaffold tissue-engineered constructs. Tissue Engineering – Part C: Methods. 18 (11), 852-858. https://doi.org/10.1089/ten.tec.2011.0649
  54. Cox, J.J., Reimann, F., Nicholas, A.K., et al. (2006). An SCN9A channelopathy causes congenital inability to experience pain. Nature. 444, 894-898. https://doi.org/10.1038/nature05413
  55. Cui, G.H., Shao, S.J., Yang, J.J., et al. (2016). Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action. Molecular Neurobiology. 53, 1108-1123. https://doi.org/10.1007/s12035-014-9069-y
  56. Daadi, M.M., Maag, A.L., & Steinberg, G.K. (2008). Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS ONE. 3 (2). Article number: e1644. Retrieved from https://doi.org/10.1371/journal.pone.0001644
  57. Dalby, M.J., Riehle, M.O., Johnstone, H.J., et al. (2003). Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features. Journal of Biomedical Materials Research Part A. 67 (3), 1025-1032. https://doi.org/10.1002/jbm.a.10139
  58. Date, I., Imaoka, T., & Miyoshi, Y. (1996). Chromaffin cell survival and host dopaminergic fiber recovery in a patient with Parkinson’s disease treated by cografts of adrenal medulla and pretransected peripheral nerve. Case report. Journal of Neurosurgery. 84 (4), 685-689. https://doi.org/10.3171/jns.1996.84.4.0685
  59. De Graaf, I.A.M., Draaisma, A., Schoeman, O., et al. (2007). Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology. 54, 1-12. https://doi.org/10.1016/j.cryobiol.2006.09.002
  60. Deleyrolle, L.P., & Reynolds, B.A. (2009). Isolation, expansion, and differentiation of adult Mammalian neural stem and progenitor cells using the neurosphere assay. Methods in Molecular Biology. 549, 91-101. https://doi.org/10.1007/978-1-60327-931-4_7
  61. Can, G. D., Akdere, Ö.E., Can, M.E., et al. (2018). A completely human-derived biomaterial mimicking limbal niche: Platelet-rich fibrin gel. Experimental eye research. 173, 1-12. https://doi.org/10.1016/j.exer.2018.04.013
  62. Dong, H., Li, X., Chen, K., Li, N., & Kagami, H. (2021). Cryopreserved spontaneous spheroids from compact bone-derived mesenchymal stromal cells for bone tissue engineering. Tissue Engineering – Part C: Methods. 27 (4), 253-263. https://doi.org/10.1089/ten.tec.2021.0001
  63. Dumont, J.E., Lamy, F., Roger, P., & Maenhaut, C. (1992). Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiological Reviews. 72, 667-697. https://doi.org/10.1152/physrev.1992.72.3.667
  64. Ehrlich, L.E., Fahy, G.M., Wowk, B.G., et al. (2018). Thermal analyses of a human kidney and a rabbit kidney during cryopreservation by vitrification. Journal of Biomechanical Engineering. 140 (1). Article number: 011005. Retrieved from https://doi.org/10.1115/1.4037406
  65. Elkabetz, Y., Panagiotakos, G., Al Shamy, G., et al. (2008). Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes & Development. 22, 152-165. https://doi.org/10.1101/gad.1616208
  66. Ellis, P., Fagan, B.M., Magness, S.T., et al. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Developmental Neuroscience. 26, 148-165. https://doi.org/10.1159/000082134
  67. Eltom, A., Zhong, G., & Muhammad, A. (2019). Scaffold techniques and designs in tissue engineering functions and purposes: a review. Advances in Materials Science and Engineering. 2019. Article number 3429527. Retrieved from https://doi.org/10.1155/2019/3429527
  68. Erharter, A., Rizzi, S., Mertens, J., & Edenhofer, F. (2019). Take the shortcut-direct conversion of somatic cells into induced neural stem cells and their biomedical applications. FEBS Letters. 593, 3353-3369. https://doi.org/10.1002/1873-3468.13656
  69. Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine. 4, 1313-1317. https://doi.org/10.1038/3305
  70. Fahy, G.M., MacFarlane, D.R., Angell, C.A., & Meryman, H.T. (1984). Vitrification as an approach to cryopreservation. Cryobiology. 21, 407-426. https://doi.org/10.1016/0011-2240(84)90079-8
  71. Farrant, J. (1969) Is there a common mechanism of protection of living cells by polyvinylpyrrolidone and glycerol ding freezing? Nature. 222 (5199), 1175-1176. https://doi.org/10.1038/2221175a0
  72. Feldman, E.L., Boulis, N.M., Hur, J., et al. (2014). Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Annals of Neurology. 75, 363-373. https://doi.org/10.1002/ana.24113
  73. Fuchs, E., & Chen, T. (2013). A matter of life and death: Self-renewal in stem cells. EMBO Reports. 14, 39-48. https://doi.org/10.1038/embor.2012.197
  74. Gage, F.H, & Temple, S. (2013). Neural stem cells: generating and regenerating the brain. Neuron. 80, 588-601. https://doi.org/10.1016/j.neuron.2013.10.037
  75. Gao, R., Xiu, W., Zhang, L., et al. (2017). Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state. Biomaterials. 119, 53-67. https://doi.org/10.1016/j.biomaterials.2016.12.007
  76. Gao, Z., Ring, H.L., Sharma, A., et al. (2020). Preparation of scalable silica-coated iron oxide nanoparticles for nanowarming. Advanced Science. 7. Article number: 1901624. Retrieved from https://doi.org/10.1002/advs.201901624
  77. Garcia-Leon, J.A., Caceres-Palomo, L., Sanchez-Mejias, E., et al. (2020). Human pluripotent stem cell-derived neural cells as a relevant platform for drug screening in Alzheimer’s disease. International Journal of Molecular Sciences. 21 (18). Article number: 6867. Retrieved from https://doi.org/10.3390/ijms21186867
  78. Garitaonandia, I., Gonzalez, R., Christiansen-Weber, T., et al. (2016). Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease. Scientific Reports. 6. Article number: 34478. Retrieved from https://doi.org/10.1038/srep34478
  79. Ge, W., Ren, C., Duan, X., et al. (2015). Differentiation of mesenchymal stem cells into neural stem cells using cerebrospinal fluid. Cell Biochem Biophys. 71, 449-455. https://doi.org/10.1007/s12013-014-0222-z
  80. George, A., Pushkaran, S., Konstantinidis, D.G., et al. (2013). Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 121 (11), 2099-2107. https://doi.org/10.1182/blood-2012-07-441188
  81. Goh, B.C., Thirumala, S., Kilroy, G., Devireddy, R.V., & Gimble J.M. (2007). Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. Journal of Tissue Engineering and Regenerative Medicine. 1 (4), 322-324. https://doi.org/10.1002/term.35
  82. Gohbara, A., Katagiri, K., Sato, T., et al. (2010). In vitro murine spermatogenesis in an organ culture system. Biology of reproduction. 83 (2), 261-267. https://doi.org/10.1095/biolreprod.110.083899
  83. Gonzalez, R., Garitaonandia, I., Poustovoitov, M., et al. (2016). Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinsons disease. Cell Transplantation. 25, 1945-1966. https://doi.org/10.3727/096368916X691682
  84. Grochowski, C., Radzikowska, E., Maciejewski, R. (2018). Neural stem cell therapy – Brief review. Clinical Neurology and Neurosurgery. 173, 8-14. https://doi.org/10.1016/j.clineuro.2018.07.013
  85. Gryshkov, O., Pogozhykh, D., Zernetsch, H., et al. (2014). Process engineering of high voltage alginate encapsulation of mesenchymal stem cells. Materials Science and Engineering. C, Materials for biological applications. 3, 77-83. https://doi.org/10.1016/j.msec.2013.11.048
  86. Guan, K., Wagner, S., Unsöld, B., et al. (2007). Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circulation research. 100 (11), 1615-1625. https://doi.org/10.1161/01.RES.0000269182.22798.d9
  87. Guo, N.-N., Liu, L.-P., Zheng, Y.-W., & Li, Y.-M. (2020). Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach. World Journal of Stem Cells. 12 (1), 25-34. https://doi.org/10.4252/wjsc.v12.i1.25
  88. Guo, W., Patzlaff, N.E., Jobe, E.M., et al. (2012). Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nature Protocols. 7, 2005-2012. https://doi.org/10.1038/nprot.2012.123
  89. Haest, C.W., Kamp, D., Plasa, G., & Deuticke, B. (1977). Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by −SH-oxidizing agents. Biochimica et Biophysica Acta. 469 (2), 226-230. https://doi.org/10.1016/0005-2736(77)90186-9
  90. Hajek, J., Baron, R., Sandi-Monroy, N., et al. (2021). A randomised, multi-center, open trial comparing a semi-automated closed vitrification system with a manual open system in women undergoing IVF. Human Reproduction. 36 (8), 2101-2110. https://doi.org/10.1093/humrep/deab140
  91. Hamra, F.K., Chapman, K.M., Nguyen, D.M, et al. (2005). Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proceedings of the National Academy of Sciences of the USA. 102 (48), 17430-17435. https://doi.org/10.1073/pnas.0508780102
  92. Hatte, L, Le Corre, S, Baudot, A, Louis, G, Letourneur, D, Doucet, C, & Meddahi-Pellé, A (2016). New application for biohydrogels: myoblast cryopreservation for cell therapy. Frontiers in bioengineering and biotechnology. Conference Abstract: 10th World Biomaterials Congress. https://doi.org/10.3389/conf.FBIOE.2016.01.00444
  93. Hou, P.S., Chuang, C.Y., Yeh, C.H., et al. (2017). Direct conversion of human fibroblasts into neural progenitors using transcription factors enriched in human ESC‐derived neural progenitors. Stem Cell Reports. 8, 54-68. https://doi.org/10.1016/j.stemcr.2016.11.006
  94. Hwang, Y.S., Suzuki, S., Seita, Y., et al. (2020). Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nature communications. 11 (1). Article number: 5656. Retrieved from https://doi.org/10.1038/s41467-020-19350-3
  95. Imamura, T., Uesaka, M., & Nakashima, K. (2014). Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences. 369 (1652). Article number: 20130511. Retrieved from https://doi.org/10.1098/rstb.2013.0511
  96. Irimia, D., & Karlsson, J. (2002). Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct. Biophysical journal. 82 (4), 1858-1868. https://doi.org/10.1016/S0006-3495(02)75536-7
  97. Itoh, T., Kacchi, M., Abe, H., et al. (2001). High recovery from successful cryopreservation of bovine small preantral follicles embedded within collagen gels. Tissue culture research communications. 21 (4), 109-119.
  98. Ji, L., de Pablo, J.J., & Palecek, S.P. (2004). Cryopreservation of adherent human embryonic stem cells. Biotechnology and bioengineering. 88 (3), 299-312. https://doi.org/10.1002/bit.20243
  99. Jin, B., & Mazur, P. (2015). High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Scientific reports. 5. Article number: 9271. Retrieved from https://doi.org/10.1038/srep09271
  100. Jin, G., Zhou, Y., Chai, Q., et al. (2013). VP22 and cytosine deaminase fusion gene modified tissue-engineered neural stem cells for glioma therapy. Journal of Cancer Research and Clinical Oncology. 139 (3), 475-483. https://doi.org/10.1007/s00432-012-1347-3
  101. Johann, V., Schiefer, J., Sass, C., et al. (2007). Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease. Experimental Brain Research. 177, 458-470. https://doi.org/10.1007/s00221-006-0689-y
  102. Jomha, N.M., Elliott, J.A., Law, G.K., et al. (2012). Vitrification of intact human articular cartilage. Biomaterials. 33, 6061-6068. https://doi.org/10.1016/j.biomaterials.2012.05.007
  103. Jones, M.K., Lu, B., Saghizadeh, M., & Wang, S. (2016). Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration. Molecular Vision. 22, 472-490.
  104. Kalladka, D., Sinden, J., Pollock, K., et al. (2016). Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. The Lancet. 388, 787-796. https://doi.org/10.1016/S0140-6736(16)30513-X
  105. Kameda, T., Imamura, T., & Nakashima, K. (2018). Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell and Tissue Research. 371 (1), 189-199. https://doi.org/10.1007/s00441-017-2656-2
  106. Kanias, T., & Acker, J.P. (2010). Biopreservation of red blood cells – the struggle with hemoglobin oxidation. The Federation of European Biochemical Societies Journal. 277 (2), 343-356. https://doi.org/10.1111/j.1742-4658.2009.07472.x
  107. Kaviani, M., Ezzatabadipour, M., Nematollahi-Mahani, S.N., et al. (2014). Evaluation of gametogenic potential of vitrified human umbilical cord Wharton’s jelly-derived mesenchymal cells. Cytotherapy. 16 (2), 203-212. https://doi.org/10.1016/j.jcyt.2013.10.015
  108. Keros, V., Rosenlund, B., Hultenby, K., Aghajanova, L., Levkov, L., & Hovatta, O. (2005). Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Human Reproduction. 20 (6), 1676-1687. https://doi.org/10.1093/humrep/deh797
  109. Kim, B., Choi, S.W., Shin, J., et al. (2018). Single‐factor SOX2 mediates direct neural reprogramming of human mesenchymal stem cells via transfection of in vitro transcribed mRNA. Cell Transplantation. 27, 1154-1167. https://doi.org/10.1177/0963689718771885
  110. Kim, J., Efe, J.A., Zhu, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America. 108, 7838-7843. https://doi.org/10.1073/pnas.1103113108
  111. Kim, K.M., Huh, J.Y., Hong, S.S., Kang, M.S. (2015). Assessment of cell viability, early apoptosis, and hematopoietic potential in umbilical cord blood units after storage. Transfusion. 55 (8), 2017-2022. https://doi.org/10.1111/trf.13120
  112. Kim, S.M., Kim, J.‐W., Kwak, T.H., et al. (2016). Generation of integration‐free induced neural stem cells from mouse fibroblasts. Journal of Biological Chemistry. 291, 14199-14212. https://doi.org/10.1074/jbc.M115.713578
  113. Kitamura, Y., Shimizu, K., & Nagahama, M. (1994). Cryopreservation of thyroid pieces-optimal freezing condition and recovery. Nippon Geka Gakkai Zasshi. 95 (1), 14-20.
  114. Koch, P., Opitz, T., Steinbeck, J.A., et al. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America. 106, 3225-3230. https://doi.org/10.1073/pnas.0808387106
  115. Koebe, H.G., Dunn, J.C., Toner, M., et al. (1990). A new approach to the cryopreservation of hepatocytes in a sandwich culture configuration. Cryobiology. 27 (5), 576-584. https://doi.org/10.1016/0011-2240(90)90045-6
  116. Kofanova, O.A., Zemlianskykh, N.G., Ivanova, L., & Bernhardt, I. (2008). Changes in the intracellular Ca2+ content human red blood cells in the presence of glycerol. Bioelectrochemistry. 73 (2), 151-154. https://doi.org/10.1016/j.bioelechem.2008.04.025
  117. Koutsoudaki, P.N., Papastefanaki, F., Stamatakis, A., et al. (2016). Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia. 64, 763-779. https://doi.org/10.1002/glia.22959
  118. Kozhich, O.A., Hamilton, R.S., & Mallon, B.S. (2013). Standardized generation and differentiation of neural precursor cells from human pluripotent stem cells. Stem Cell Reviews and Reports. 9, 531-536. https://doi.org/10.1007/s12015-012-9357-8
  119. Kriegstein, A, & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience. 32, 149-184. https://doi.org/10.1146/annurev.neuro.051508.135600
  120. Kucherenko, Y.V., & Bernhardt, I. (2006). The study of Ca2+ influx in human erythrocytes in isotonic polyethylene (glycol) 1500 (PEG-1500) and sucrose media. Ukrainian Biochemical Journal. 78 (6), 46-52.
  121. Kuleshova, L.L., MacFarlane, D.R., Trounson, A.O., et al. (1999). Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology. 38 (2), 119-130. https://doi.org/10.1006/cryo.1999.2153
  122. Landazuri, N., Levit, R.D., Joseph, G., et al. (2016). Alginate microencapsulation of human mesenchymal stem cells as a strategy to enhance paracrine mediated vascular recovery after hindlimb ischaemia. Journal of tissue engineering and regenerative medicine. 10 (3), 222-232. https://doi.org/10.1002/term.1680
  123. Lee, A., Kessler, J.D., Read, T.A., et al. (2005). Isolation of neural stem cells from the postnatal cerebellum. Nature Neuroscience. 8, 723-729. https://doi.org/10.1038/nn1473
  124. Lee, H., Kang, S., Park, S., et al. (2011). Cryopreservation of mesenchymal stem cells by vitrification. Journal of Veterinary Clinics. 28, 394-398.
  125. Lee, K.W., Park, J.B., Yoon, J.J., et al. (2004). The viability and function of cryopreserved hepatocyte spheroids with different cryopreservation solutions. Transplantation proceedings. 36 (8), 2462-2463. https://doi.org/10.1016/j.transproceed.2004.08.069
  126. Lendahl, U., Zimmerman, L.B., McKay, R.D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell. 60, 585-595. https://doi.org/10.1016/0092-8674(90)90662-X
  127. Li, J., Tang, Y., Wang, Y., et al. (2014). Neurovascular recovery via co-transplanted neural and vascular progenitors leads to improved functional restoration after ischemic stroke in rats. Stem Cell Reports. 3, 101-114. https://doi.org/10.1016/j.stemcr.2014.05.012
  128. Li, J.Y., Christophersen, N.S., Hall, V., et al. (2008). Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends in Neurosciences. 31 (3), 146-153. https://doi.org/10.1016/j.tins.2007.12.001
  129. Liao, W., Huang, N., Yu, J., et al. (2015). Direct conversion of cord blood CD34+ cells into neural stem cells by OCT4. Stem cells translational medicine. 4, 755-763. https://doi.org/10.5966/sctm.2014-0289
  130. Lige, L., & Zengmin, T. (2016). Transplantation of neural precursor cells in the treatment of parkinson disease: an efficacy and safety analysis. Turkish Neurosurgery. 26, 378-383.
  131. Lilja A.M., Malmsten L., Röjdner J., et al. (2015). Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic 7 nicotinic receptor drugs. Neural Plasticity. 2015. Article number: 370432. Retrieved from https://doi.org/10.1155/2015/370432
  132. Liu, B., McGrath, J., McCabe, L., & Baumann, M. (2010). Cellular response of murine osteoblasts to cryopreservation: the influence of attachment to hydroxyapatite (HA) scaffolds. African Journal of Biotechnology. 5 (21), 2014-2019.
  133. Liu, G., Zhou, H., Li, Y., et al. (2008). Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology. 57 (1), 18-24. https://doi.org/10.1016/j.cryobiol.2008.04.002
  134. Liu, K., Yang, Y., & Mansbridge, J. (2000). Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression. Tissue Engineering. 6 (5), 539-554. https://doi.org/10.1089/107632700750022189
  135. Loh, Y.P., Cheng, Y., & Mahata, S.K. (2012). Chromogranin A and derived peptides in health and disease. Journal of Molecular Neuroscience. 48 (2), 347-356. https://doi.org/10.1007/s12031-012-9728-2
  136. Lozinsky, V.I. (2020). Cryostructuring of polymeric systems. 55. Retrospective view on the more than 40 years of studies performed in the A.N.Nesmeyanov Institute of organoelement compounds with respect of the cryostructuring processes in polymeric systems. Gels. 6 (3). Article number:29. Retrieved from https://doi.org/10.3390/gels6030029
  137. Lu, J., Liu, H., Huang, C.T.L., et al. (2013). Generation of integration‐free and region‐specific neural progenitors from primate fibroblasts. Cell Reports. 3, 1580-1591. https://doi.org/10.1016/j.celrep.2013.04.004
  138. Luan, Z., Liu, W., Qu, S., et al. (2012). Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplantation. 21 (Suppl 1), S91-S98. https://doi.org/10.3727/096368912X633806
  139. Lugovoj, S.V., Bondarenko, T.P., Gubina, N.F., Olefirenko, A.I., & Olefirenko, A.A. (2003). Organ culture of newborn piglets thyroid gland as an object for cryopreservation. Problems of Cryobiology. (2), 98-103.
  140. Lunney, J.K. & Lunney, J.K. (2007). Advances in swine biomedical model genomics. International Journal of Biological Sciences. 3 (3), 179-184. https://doi.org/10.7150/ijbs.3.179
  141. Luzuriaga, J., Polo, Y., Pastor-Alonso, O., et al. (2021). Advances and perspectives in dental pulp stem cell based neuroregeneration therapies. International Journal of Molecular Sciences. 22 (7). Article number: 3546. Retrieved from https://doi.org/10.3390/ijms22073546
  142. MacKenzie, AP. (1977). Non-equilibrium freezing behavior of aqueous systems. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 278 (959), 167-189. https://doi.org/10.1098/rstb.1977.0036
  143. Makarevich, A.V., Spalekova, E., Olexikova, L., et al. (2014). Effect of insulin-like growth factor I on functional parameters of ram cooled-stored spermatozoa. Zygote. 22 (3), 305-313. https://doi.org/10.1017/S0967199412000500
  144. Malpique, R., Ehrhart, F., Katsen-Globa, A., Zimmermann, H., & Alves, P.M. (2009). Cryopreservation of adherent cells: strategies to improve cell viability and function after thawing. Tissue Engineering – Part C: Methods. 15 (3), 373-386. https://doi.org/10.1089/ten.tec.2008.0410
  145. Malpique, R., Osório, L.M., Ferreira, D.S., et al. (2010). Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Engineering Part C: Methods. 16 (5), 965-977. https://doi.org/10.1089/ten.tec.2009.0660
  146. Matros, A., Peshev, D., Peukert, M., Mock, H.P., & Van den Ende, W. (2015). Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant Journal. 82 (5), 822-839. https://doi.org/10.1111/tpj.12853
  147. Mazzini, L., Gelati, M., Profico, D.C., et al. (2015). Human neural stem cell transplantation in ALS: initial results from a phase I trial. Journal of Translational Medicine. 13. Article number: 17. Retrieved from https://doi.org/10.1186/s12967-014-0371-2
  148. Mirakhori, F., Zeynali, B., Rassouli, H., et al. (2015). Induction of neural progenitor‐like cells from human fibroblasts via a genetic material‐free approach. PLoS ONE. 10. Article number: e0135479. Retrieved from https://doi.org/10.1371/journal.pone.0135479
  149. Miyamoto, Y., Enosawa, S., Takeuchi, T., et al. (2009). Cryopreservation in situ of cell monolayers on collagen vitrigel membrane culture substrata: ready-to-use preparation of primary hepatocytes and ES cells. Cell Transplantation. 18 (5), 619-626. https://doi.org/10.1177/096368970901805-618
  150. Miyoshi, H., Ehashi, T., Ohshima, N., & Jagawa, A. (2010). Cryopreservation of fibroblasts immobilized within a porous scaffold: effects of preculture and collagen coating of scaffold on performance of three-dimensional cryopreservation. Artificial Organs. 34 (7), 609-614. https://doi.org/10.1111/j.1525-1594.2009.00933.x
  151. Mohaqiq, M., Movahedin, M., Mazaheri, Z., et al. (2019). In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biological research. 52 (1), 1-9. https://doi.org/10.1186/s40659-019-0223-x
  152. Moon, J.H., Lee, J.R., Jee, B., et al. (2008). Successful vitrification of human amnion-derived mesenchymal stem cells. Human reproduction. 23, 1760-1770. https://doi.org/10.1093/humrep/den202
  153. Morris, C., de Wreede, L., Scholten, M., et al. (2014). Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion. 54 (10), 2514-2522. https://doi.org/10.1111/trf.12759
  154. Mukherjee, N., Chen, Z., Sambanis, A., et al. (2005). Effects of cryopreservation on cell viability and insulin secretion in a model tissue-engineered pancreatic substitute (TEPS). Cell Transplantation. 14, 449-456. https://doi.org/10.3727/000000005783982882
  155. Mukherjee, T.K., Mishra, A.K., Mukhopadhyay, S., & Hoidal, J.R. (2007). High concentration of antioxidants N-acetylcysteine and mitoquinone-Q induces intercellular adhesion molecule 1 and oxidative stress by increasing intracellular glutathione. Journal of Immunology. 178 (3), 1835−1844. https://doi.org/10.4049/jimmunol.178.3.1835
  156. Mungenast, A.E., Siegert, S., Tsai, L.-H. (2016). Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Molecular and Cellular Neuroscience. 73, 13-31. https://doi.org/10.1016/j.mcn.2015.11.010
  157. Nagano, M.C. (2011). Techniques for culturing spermatogonial stem cells continue to improve. Biology of reproduction. 84 (1), 5-6. https://doi.org/10.1095/biolreprod.110.088864
  158. Nemati, S.N., Jabbari, R., Hajinasrollah, M., et al. (2014). Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys. Cell. 16, 117-130.
  159. Nishiyama, K., Okudera, T., Watanabe, T., et al. (2016). Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects. Clinical and experimental dental research. 2 (2), 96-103. https://doi.org/10.1002/cre2.26
  160. Nizzardo, M., Simone, C., Rizzo, F., et al. (2014). Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Human Molecular Genetics. 23, 342-354. https://doi.org/10.1093/hmg/ddt425
  161. Petrenko, Y., Syková, E., & Kubinová, Š. (2017). The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research & Therapy. 8. Article number: 94. Retrieved from https://doi.org/10.1186/s13287-017-0558-6
  162. Petrenko, Y.A., Petrenko, A.Y., Martin, I., & Wendt, D. (2017). Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts. Cryobiology. 76, 150-153. https://doi.org/10.1016/j.cryobiol.2017.04.001
  163. Petrenko, Y.A., Rogulska, O.Y., Mutsenko, V.V., & Petrenko, A.Y. (2014). A sugar pretreatment as a new approach to the Me2SO- and xeno-free cryopreservation of human mesenchymal stromal cells. Cryo Letters. 35 (3), 239-246.
  164. Picton, H.M., Wyns, C., Anderson, R.A., et al. (2015). ESHRE task force on fertility preservation in severe diseases. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Human Reproduction. 30 (11), 2463-2475. https://doi.org/10.1093/humrep/dev190
  165. Pravdyuk, A.I., Petrenko, Y.A., Fuller, B.J., Petrenko, A.Y. (2013). Cryopreservation of alginate encapsulated mesenchymal stromal cells. Cryobiology. 66 (3), 215-222. https://doi.org/10.1016/j.cryobiol.2013.02.002
  166. Ray, J., & Gage, F.H. (2006). Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Molecular and Cellular Neuroscience.31 (3), 560-573. https://doi.org/10.1016/j.mcn.2005.11.010
  167. Rendtorff, R., Hohmann, C., Reinmuth, S., et al. (2010). Hormone and sperm analyses after chemo- and radiotherapy in childhood and adolescence. Klinische Padiatrie. 222 (3), 145-149. https://doi.org/10.1055/s-0030-1249658
  168. Reynolds, B.A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255 (5052), 1707-1710. https://doi.org/10.1126/science.1553558
  169. Riley, J., Glass, J., Feldman, E.L., et al. (2014). Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery. 74, 77-87. https://doi.org/10.1227/NEU.0000000000000156
  170. Ring, K.L., Tong, L.M., Balestra, M.E., et al. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 11, 100-109. https://doi.org/10.1016/j.stem.2012.05.018
  171. Rogulska, O., Petrenko, Y., & Petrenko, A. (2017). DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology. 69 (2), 265-276. https://doi.org/10.1007/s10616-016-0055-2
  172. Rubinstein, P. (2009). Cord blood banking for clinical transplantation. Bone marrow transplantation. 44 (10), 635-642. https://doi.org/10.1038/bmt.2009.281
  173. Saeednia, S., Shabani Nashtaei, M., Bahadoran, H., et al. (2016). Effect of nerve growth factor on sperm quality in asthenozoosprmic men during cryopreservation. Reproductive Biology and Endocrinology. 14 (1), 1-8. https://doi.org/10.1186/s12958-016-0163-z
  174. Sakai, S., Inamoto, K., Liu, Y., et al. (2012). Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity. Cancer science. 103 (3), 549-554. https://doi.org/10.1111/j.1349-7006.2011.02187.x
  175. Sakthiswary, R., & Raymond, A.A. (2012). Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regeneration Research. 7 (23), 1822-1831.
  176. Salazar, D.L., Uchida, N., Hamers, F.P., et al. (2010). Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS ONE. 5. Article number: e12272. Retrieved from https://doi.org/10.1371/journal.pone.0012272
  177. Sanmartín-Suárez, C., Soto-Otero, R., Sánchez-Sellero, I., Méndez-Álvarez, E. (2011). Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. Journal of Pharmacological and Toxicological Methods. 63 (2), 209-215. https://doi.org/10.1016/j.vascn.2010.10.004
  178. Santiago, J.A., Bottero, V., & Potashkin, J.A. (2017). Dissecting the molecular mechanisms of neurodegenerative diseases through network biology. Frontiers In Aging Neuroscience. 9. Article number: 166. Retrieved from https://doi.org/10.3389/fnagi.2017.00166
  179. Scheffler, B., Edenhofer, F., & Brustle, O. (2006). Merging fields: stem cells in neurogenesis, transplantation, and disease modeling. Brain Pathology. 16, 155-168. https://doi.org/10.1111/j.1750-3639.2006.00010.x
  180. Schlatt, S., Honaramooz, A., Boiani, M., Schöler, H.R., & Dobrinski, I. (2003). Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biology of Reproduction. 68 (6), 2331-2335. https://doi.org/10.1095/biolreprod.102.014894
  181. Shahbazi, E., Moradi, S., Nemati, S., et al. (2016). Conversion of human fibroblasts to stably self-renewing neural stem cells with a single zinc-finger transcription factor. Stem Cell Reports. 6, 539-551. https://doi.org/10.1016/j.stemcr.2016.02.013
  182. Sharma, A., Rao, J.S., Han, Z., et al. (2021). Vitrification and nanowarming of kidneys. Advanced Science. 8 (19). Article number: 2101691. Retrieved from https://doi.org/10.1002/advs.202101691
  183. Sheng, C., Zheng, Q., Wu, J., et al. (2012). Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Research. 22, 208-218. https://doi.org/10.1038/cr.2011.175
  184. Shetty, A.K. (2012). Neural stem cell therapy for temporal lobe epilepsy. In: Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V. (Eds.) Jasper’s Basic Mechanisms of the Epilepsies. (pp. 1098-1110). New York: Oxford University Press.
  185. Shin, J.C., Kim, K.N., Yoo, J., et al. (2015). Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plasticity. 2015. Article number: 630932. Retrieved from https://doi.org/10.1155/2015/630932
  186. Shojaati, G., Khandaker, I., Sylakowski, K., et al. (2018). Compressed collagen enhances stem cell therapy for corneal scarring. Stem cells translational medicine. 7 (6), 487-494. https://doi.org/10.1002/sctm.17-0258
  187. Sieber-Blum, M. (2014). Human epidermal neural crest stem cells as candidates for cell-based therapies, disease modeling, and drug discovery. Birth Defects Research. Part C, Embryo Today. 102, 221-226. https://doi.org/10.1002/bdrc.21073
  188. Silbereis, J.C., Pochareddy, S., Zhu, Y., et al. (2016). The cellular and molecular landscapes of the developing human central nervous system. Neuron. 89 (2), 248-268. https://doi.org/10.1016/j.neuron.2015.12.008
  189. Smith, J.F., Yango, P., Altman, E., et al. (2014). Testicular niche required for human spermatogonial stem cell expansion. Stem cells translational medicine. 3 (9), 1043-1054. https://doi.org/10.5966/sctm.2014-0045
  190. Solocinski, J., Osgood, Q., Wang, M., Connolly, A., Menze, M.A., & Chakraborty, N. (2017). Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism. Cryobiology. 75, 134-143. https://doi.org/10.1016/j.cryobiol.2017.01.001
  191. Song, H.W., Wilkinson, M.F. (2012). In vitro spermatogenesis: A long journey to get tails. Spermatogenesis. 2 (4), 238-244. https://doi.org/10.4161/spmg.22069
  192. Sproul, A.A., Jacob, S., Pre, D., et al. (2014). Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS ONE. 9. Article number: e84547. Retrieved from https://doi.org/10.1371/journal.pone.0084547
  193. Staff, N.P., Grisold, A., Grisold, W., & Windebank, A. (2017). Chemotherapy‐induced peripheral neurophaty: a current review. Annals of Neurology. 118, 6072-6078.
  194. Steif, P.S., Palastro, M., Wen, C.R., et al. (2005). Cryomacroscopy of vitrification, Part II: Experimental observations and analysis of fracture formation in vitrified VS55 and DP6. Cell preservation technology. 3 (3), 184-200. https://doi.org/10.1089/cpt.2005.3.184
  195. Studer, L. (2017). Strategies for bringing stem cell-derived dopamine neurons to the clinic-The NYSTEM trial. Progress in Brain Research. 230, 191-212. https://doi.org/10.1016/bs.pbr.2017.02.008
  196. Su, G., Zhao, Y., Wei, J., et al. ( 2013). Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials. 34, 5897-5906. https://doi.org/10.1016/j.biomaterials.2013.04.040
  197. Suhag, V., Sunita, B.S., Sarin, A., Singh, A.K., & Dashottar, S. (2015). Fertility preservation in young patients with cancer. South Asian Journal of Cancer. 4 (3), 134-139. https://doi.org/10.4103/2278-330X.173175
  198. Sukach, A.N., & Lyashenko, T.D. (2011). Role of forming aggregates in post-thaw survival of isolated neural cells from newborn rats. Problems of Cryobiology. 21 (4), 395-406.
  199. Sun, S.Y. (2010). N-acetylcysteine, reactive oxygen species and beyond. Cancer Biology and Therapy. 9 (2), 109-110. https://doi.org/10.4161/cbt.9.2.10583
  200. Svendsen, C.N., Skepper, J., Rosser, A.E., et al. (1997). Restricted growth potential of rat neural precursors as compared to mouse. Brain research. Developmental brain research . 99 (2), 253-258. https://doi.org/10.1016/S0165-3806(97)00002-3
  201. Swioklo, S., Constantinescu, A., & Connon, C.J. (2016). Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem cells translational medicine. 5 (3), 339-349. https://doi.org/10.5966/sctm.2015-0131
  202. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872. https://doi.org/10.1016/j.cell.2007.11.019
  203. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  204. Takahashi, T., Hirsh, A., Erbe, E., et al. (1988). Mechanism of cryoprotection by extracellular polymeric solutes. Biophysical journal. 54 (3), 509-518. https://doi.org/10.1016/S0006-3495(88)82983-7
  205. Takayama, Y., Wakabayashi, T., Kushige, H., et al. (2017). Brief exposure to small molecules allows induction of mouse embryonic fibroblasts into neural crest-like precursors. FEBS Letters. 591, 590-602. https://doi.org/10.1002/1873-3468.12572
  206. Takezawa, T., Takeuchi, T., Nitani, A., et al. (2007). Collagen vitrigel membrane useful for paracrine assays in vitro and drug delivery systems in vivo. Journal of biotechnology. 131 (1), 76-83. https://doi.org/10.1016/j.jbiotec.2007.05.033
  207. Their, M., Worsdorfer, P., Lakes, Y.B., et al. (2012). Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 10 (4), 473-479. https://doi.org/10.1016/j.stem.2012.03.003
  208. Their, M.C., Hommerding, O., Panten, J., et al. (2019). Identification of embryonic neural plate border stem cells and their generation by direct reprogramming from adult human blood cells. Cell Stem Cell. 24 (1), 166-182.e13. https://doi.org/10.1016/j.stem.2018.11.015
  209. Volkova, N.O., Yukhta, M.S., & Goltsev, A.M. (2020). Vitrification of rat testicular tissue using biopolymers. Biopolymers and Cell. 36(2), 122-132. https://doi.org/10.7124/bc.000A26
  210. Volkova, N., Yukhta, M., Chernyschenko, L., et al. (2019). The effectiveness of biopolymers application for cryopreservation of the fragments of convoluted seminiferous tubules of prepubertal rat’s testis. Cell and Organ Transplantology. 7 (1), 12-17. https://doi.org/10.22494/cot.v7i1.92
  211. Volkova, N., Yukhta, M., & Goltsev, A. (2018). Biopolymer gels as a basis of cryoprotective medium for testicular tissue of rats. Cell and tissue banking. 19 (4), 819-826. https://doi.org/10.1007/s10561-018-9740-z
  212. Volkova, N., Yukhta, M., Sokil, L., et al. (2021). Cryopreserved fragments of testicular seminiferous tubules of rats as a source of spermatogonial stem cells. Cell and Organ Transplantology. 9 (1), 36-42.
  213. Volkova, N.O., Yukhta, M.S., Chernyshenko, L.G., et al. (2018). Cryopreservation of rat seminiferous tubules using biopolymers and slow non-controlled rate cooling. Problems of Cryobiology and Cryomedicine. 28 (4), 278-292. https://doi.org/10.15407/cryo28.04.278
  214. Volkova, N.O., Yukhta, M.S., Chernyshenko, L.G., et al. (2017). Exposure of seminiferous tubules of immature rats to cryoprotective media of various compositions. Problems of Cryobiology and Cryomedicine. 27 (3), 203-218. https://doi.org/10.15407/cryo27.03.203
  215. Waldau, B., Hattiangady, B., Kuruba, R., & Shetty, A.K. (2010). Medial ganglionic eminence-derived neural stem cell grafts ease spontaneous seizures and restore GDNF expression in a rat model of chronic temporal lobe epilepsy. Stem Cells. 28, 1153-1164. https://doi.org/10.1002/stem.446
  216. Wang, H.Y., Lun, Z.R., & Lu, S.S. (2011). Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide. Cryo Letters. 32 (1), 81-88.
  217. Wen, Y., & Jin, S. (2014). Production of neural stem cells from human pluripotent stem cells. Journal of Biotechnology. 188, 122-129. https://doi.org/10.1016/j.jbiotec.2014.07.453
  218. Willerth, S.M., & Sakiyama-Elbert, S.E. (2019). Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemJournal. 1 (1), 1-25. https://doi.org/10.3233/STJ-180001
  219. Williams, R.J. (1983). The surface activity of PVP and other polymers and their antihemolytic capacity. Cryobiology. 20 (5), 521-526. https://doi.org/10.1016/0011-2240(83)90040-8
  220. Wilson, P.G., & Stice, S.S. (2006). Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Reviews and Reports. 2, 67-77. https://doi.org/10.1007/s12015-006-0011-1
  221. Woelders, H., Windig, J., & Hiemstra, S.J. (2012). How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals. Reproduction in Domestic Animals. 47 (4), 264-273. https://doi.org/10.1111/j.1439-0531.2012.02085.x
  222. Woods, E.J., Liu, J., Pollok, K., et al. (2003). A theoretically optimized method for cord blood stem cell cryopreservation. Journal of Hematotherapy and Stem Cell Research. 12 (3), 341-350. https://doi.org/10.1089/152581603322023070
  223. Wowk, B. (2010). Thermodynamic aspects of vitrification. Cryobiology. 60, 11-22. https://doi.org/10.1016/j.cryobiol.2009.05.007
  224. Wragg, N.M., Tampakis, D., & Stolzing, A. (2020). Cryopreservation of mesenchymal stem cells using medical grade ice nucleation inducer. International Journal of Molecular Sciences. 21 (22). Article number: 8579. Retrieved from https://doi.org/10.3390/ijms21228579
  225. Wu, J., & Belmonte, J.C.I. (2016). Stem cells: A renaissance in human biology research. Cell. 165, 1572-1585. https://doi.org/10.1016/j.cell.2016.05.043
  226. Wu, J., Sheng, C., Liu, Z., et al. (2015). Lmx1a enhances the effect of iNSCs in a PD model. Stem Cell Reviews and Reports. 14 (1), 1-9. https://doi.org/10.1016/j.scr.2014.10.004
  227. Wusteman, M., Pegg, D., Wang, L., et al. (2003).Vitrification of ECV304 cell suspensions using solutions containing propane-1,2-diol and tregalose. Cryobiology. 46, 135-145. https://doi.org/10.1016/S0011-2240(03)00019-1
  228. Xiao, X., Putatunda, R., Zhang, Y., et al. (2018). Lymphotoxin beta receptor-mediated NFkappaB signaling promotes glial lineage differentiation and inhibits neuronal lineage differentiation in mouse brain neural stem/progenitor cells. Journal of Neuroinflammation. 15. Article number: 49. Retrieved from https://doi.org/10.1186/s12974-018-1074-z
  229. Xu, X., Liu, Y., Cui, Z., Wei, Y., & Zhang, L. (2012). Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. Journal of Biotechnology. 162 (2-3), 224-231. https://doi.org/10.1016/j.jbiotec.2012.09.004
  230. Yamanaka, S. (2009). A fresh look at iPS cells. Cell. 137 (1), 13-17. https://doi.org/10.1016/j.cell.2009.03.034
  231. Yang, C.R., & Yu, R.K. (2009). Intracerebral transplantation of neural stem cells combined with trehalose ingestion alleviates pathology in a mouse model of Huntington’s disease. Journal of Neuroscience Research. 87, 26-33. https://doi.org/10.1002/jnr.21817
  232. Yin, H., Cui, L., Liu, G., et al. (2009). Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology. 59, 180-187. https://doi.org/10.1016/j.cryobiol.2009.06.011
  233. Yokonishi, T., Sato, T., Katagiri, K., Ogawa, T. (2013). In Vitro Spermatogenesis Using an Organ Culture Technique. In: Carrell, D., Aston, K. (eds) Spermatogenesis. Methods in Molecular Biology, vol 927. (pp. 479-488). Totowa: Humana Press. https://doi.org/10.1007/978-1-62703-038-0_41
  234. Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: Past, present, and future. Stem cell research and therapy. 10. Article number: 68. Retrieved from https://doi.org/10.1186/s13287-019-1165-5
  235. Zarbin, M., & Szirth, B. (2007). Current treatment of age-related macular degeneration. Optometry and Vision Science. 84, 559-572. https://doi.org/10.1097/OPX.0b013e3180de4dd7
  236. Zemlianskykh, N.G., Babiychuk, L.A. (2017). The changes in erythrocyte Ca2+-ATPase activity induced by PEG-1500 and low temperatures. Cell and Tissue Biology. 11 (2), 104-110. https://doi.org/10.1134/S1990519X17020109
  237. Zemlianskykh, N.G., Babiychuk, L.A. (2019).The production of reactive oxygen species in human erythrocytes during cryopreservation with glycerol and polyethylene glycol. Biophysics. 64 (4), 560-567. https://doi.org/10.1134/S0006350919040237
  238. Zhang, S.C., Wernig, M., Duncan, I.D., et al. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology. 19, 1129-1133. https://doi.org/10.1038/nbt1201-1129
  239. Zhang, W., Gu, G.J., Shen, X., et al. (2015). Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiology of Aging. 36, 1282-1292. https://doi.org/10.1016/j.neurobiolaging.2014.10.040
  240. Zheng, J., Choi, K.A., Kang, P.J., et al. (2016). A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochemical and Biophysical Research Communications. 476, 42-48. https://doi.org/10.1016/j.bbrc.2016.05.080
  241. Zhou, H., Yang, H., Lu, L., et al. (2020). A modified protocol for the isolation, culture, and cryopreservation of rat embryonic neural stem cells. Experimental and therapeutic medicine. 20 (6). Article number: 156. Retrieved from https://doi.org/10.3892/etm.2020.9285
  242. Zimmermann, H., Shirley, S.G., & Zimmerman, U. (2007). Alginate-based encapsulation of cells: past, present and future. Current Diabetes Reports. 7 (4), 314-320. https://doi.org/10.1007/s11892-007-0051-1
  243. Zolotko, K.M., & Sukach, O.M. (2018). Study of therapeutic potential of cryopreserved newborn rat neural cells in rat model of intracerebral hemorrhage. Problems of Cryobiology and Cryomedicine. 28 (1), 54-58. https://doi.org/10.15407/cryo28.01.054

For Part 5

  1. Agadzhanyan, N.A., & Medalieva, R.H. (2008). Teoreticheskie osnovy i prakticheskoe primenenie obshej vozdushnoj krioterapii v vosstanovitelnoj medicine. Vestnik vosstanovitelnoj mediciny. (4), 4-7. [in Russian].
  2. Altman, D.Sh., & Davydova, E.V. (2012). Mukozalnye effekty obshej aerokrioterapii pri rannih formah hronicheskoj ishemii mozga u veteranov sovremennyh voennyh konfliktov. Vestnik uralskoj medicinskoj akademicheskoj nauki. (2), 78–79. [in Russian].
  3. Anisimov, V.N. (2008). Molekulyarnye i fiziologicheskie mehanizmy stareniya. 1. S-Peterburg: Nauka [in Russian].
  4. Babiychuk V.G. (2010). Mehanizmy dejstviya ekstremalno nizkih temperatur na strukturnofunkcionalnoe sostoyanie centralnoj nervnoj i serdechnososudistoj sistem u zhivotnyh razlichnyh vozrastnyh grupp (Doctor of Science`s thesis). Kharkiv: Institute fo Problems of Cryobiology and Cryomedicine of the National Academy of Science of Ukraine. [in Russian].
  5. Babiychuk, G.A., Babiychuk, V.G., & Mamontov, V.V. (2009). Vliyanie ritmicheskih ekstremalnyh holodovyh vozdejstvij na pokazateli vegetativnoj regulyacii serdechnogo ritma i soderzhanie citokinov v syvorotke krovi u lyudej pozhilogo vozrasta. Bukovynskyi medychnyi visnyk. 13 (4), 17–20. [in Russian].
  6. Bronnikov, G.E., Kolaeva, S.G., Dolgacheva, L.P., et al. (2006). Kyotorphin suppresses proliferation and Ca2+ signaling in brown preadipocytes. Bulletin of Experimental Biology and Medicine. 141, 223–225. https://doi.org/10.1007/s10517-006-0133-0
  7. Verin, V.K., & Ivanov, V.V. (2012). Gormony i ih effekty: spravochnik. S-Peterburg: Foliant [in Russian].
  8. Garkavi, L.H., Kvakina, E.B., & Ukolova, M.A. (1990) Adaptacionnye reakcii i rezistentnost organizma. Rostov-na-Donu: Izdatelstvo Rostovskogo universiteta [in Russian].
  9. Gein, V., Baeva, T.A., Gein, O.N., & Chereshnev, V.A. (2006). Rol monocitov v realizacii effektov b-endorfina i selektivnyh agonistov m- i d-opiatnyh receptorov na proliferativnuyu aktivnost limfocitov perifericheskoj krovi. Fiziologiia Cheloveka. 32(3), 111-116. [in Russian].
  10. Gein, S.V., & Sharavieva, I.L. (2016). Effect of Opiate Receptors Blockade on Microbicidal Potential and Production of IL-1β, TNFα, and IL-10 by Peritoneal Macrophages under Stress Conditions. Bulletin of Experimental Biology and Medicine. 161(3), 339-343. https://doi.org/10.1007/s10517-016-3409-z
  11. Gerasimov, I.G. (2012). Vozrastnaya dinamika kachestva funkcionirovaniya organizma cheloveka (anatomo-morfologicheskie pokazateli). Problemy stareniya i dolgoletiya. 21 (1), 3–13. [in Russian].
  12. Gubin, D.G. (2013). Molekulyarnye mehanizmy cirkadnyh ritmov i principy razvitiya desinhronoza. Uspehi fiziologicheskih nauk. 44 (4), 65–87. [in Russian].
  13. Деев А.И., Бухарова Е.В. Проблемы определения темпа старения человека. Проблемы старения и долголетия. 2009. Т. 18, № 1. С. 8–19. (5.1-11) Deev, A.I., & Buharova, E.V. (2009). Problemy opredeleniya tempa stareniya cheloveka. Problemy stareniya i dolgoletiya. 18 (1), 8–19. [in Russian].
  14. Yershova, N.A., Shpakova, N.M., Orlova, N.V., & Yershov, S.S. (2014). Amfifily yak instrument dlia vyvchennia hipertonichnoho kriohemolizu erytrotsytiv ssavtsiv. Biologiia tvaryn. 16 (2), 26-34. [in Ukrainian].
  15. Korkushko, O.B., & Shatilo, B.B. (2009). Uskorennoe starenie i puti ego profilaktiki. Bukovynskyi medychnyi 13 (4), 153–158. [in Russian].
  16. Korkushko, O.V., Pisaruk, A.V., & Lishnevskaya, V.Yu. (1999). Vozrastnye i patologicheskie izmeneniya sutochnoj variabelnosti serdechnogo ritma. Vestnik aritmologii. (14), 30–33. [in Russian].
  17. Krutko, V.N. (2006). Profilaktika stareniya kak sistemnaya tehnologiya. Vestnik RAN. 76 (9), 790–797. [in Russian].
  18. Krutko, V.N., Doncov, V.I., & Zaharyasheva, O.V. (2009). Sistemnaya teoriya stareniya: metodologicheskie osnovy, glavnye polozheniya i prilozheniya. Aviakosmicheskaya i ekologicheskaya medicina. 43 (1), 12–19. [in Russian].
  19. Kulchitskiy, O.K., Potapenko, R.I., Novikova, S.N., et al. (2009). Vozrastnye osobennosti vliyaniya immobilizacionnogo stressa na sostoyanie sistemy monooksida azota u krys. Problemy stareniya i dolgoletiya. 18 (1), 51–59. [in Russian].
  20. Kuryanova, E.V. (2008). K voprosu o metodah analiza serdechnogo ritma tipah ego regulyacii na rannih etapah ontogeneza belyh krys. Estestvennye nauki. (4), 77–84. [in Russian].
  21. Lishmanov, Yu.B., Maslov, L.N., Naryzhnaya, N.V., et al. (2012). Endogennaya opioidnaya sistema kak zveno srochnoj i dolgovremennoj adaptacii organizma k ekstremalnym vozdejstviyam. Perspektivy klinicheskogo primeneniya opioidnyh peptidov. Vestnik RAMN. 6, 73-82. [in Russian].
  22. Lomakin, I.I., Kudokotseva, O.V., & Purysheva, V.Yu. (2012). Terapevticheskiy effekt preparatov kordovoy krovi na primere strukturnyh izmeneniy dermy pri eksperimentalnom hipotireoze i ego potentsirovanie aerokrioterapiey. In Krioterapiya: bezopasnye tehnologii primeneniya. (pp. 49-57). Kyiv: KVIC [in Russian].
  23. Mihajlov, V.M. (2002). Variabelnost ritma serdca: opyt prakticheskogo primeneniya metoda. Ivanovo: Ivanovskaya gosudarstvennaya medicinskaya akademiya [in Russian].
  24. Muravlyova, L.E., Molotov-Luchanskij, V.B., Klyuev, D.A., et al. (2013). Belki eritrocitov. Uspehi sovremennogo estestvoznaniya. (4), 28-31. [in Russian].
  25. Nikitin, B.C., Azin, A.L., Azev, A.L., & Smirnov, A.V. (2007). Disfunkciya vegetativnoj nervnoj sistemy pri prezhdevremennom starenii organizma. Uspehi gerontologii. 20 (2), 66–69. [in Russian].
  26. Palcev, M.A., Kvetnoj, I.M., Polyakova, V.O., et al. (2009). Nejroimmunoendokrinnye mehanizmy stareniya. Uspehi gerontologii. 22 (1), 24–36. [in Russian].
  27. Babiychuk, G.O., Kozlov, O.V., Lomakin, I.I., Babiychuk, V.G. (2009). Kriokamera dlia ekstremalnoho okholodzhennia laboratornykh tvaryn. [Cryochamber for extreme cooling of laboratory animals.] (Patent of Ukraine № 40168). [in Ukrainian].
  28. Portnov,V., Grigoreva, V.D., Dashina, T.A., et al. (2004). Vozdushnaya krioterapiya. In Novye tehnologii v medicine: sbornik dokladov 1 mezhdunarodnoj. distancionnoj. nauchno-prakticheskoj konferencii. (pp. 44–45). S-Peterburg. [in Russian].
  29. Slepko, N.G., Kozlova, M.V. (1992). Issledovanie vliyaniya sinteticheskogo analoga lej-enkefalina dalargina na proliferativnuyu aktivnost kletok gliomy S6 i intensivnost sinteza v nih DNK. Tsitologiia. 34 (1), 66–73. [in Russian].
  30. Speranskyi, I.I., Samoylenko, G.E., & Lobacheva, M.V. (2009). Obshiy analiz krovi – vse li ego vozmozhnosti ischerpany? Integralnye indeksy intoksikacii kak kriterii ocenki tyazhesti techeniya endogennoj intoksikacii, ee oslozhnenij i effektivnosti provodimogo lecheniya. Zdorov`e Ukrainy. 19 (6), 51–57. [in Russian].
  31. Sukhova, G.S., Ignat’ev, D.A., Akhremenko, A.K., Levashova, V.G., Mikhaleva, I.I., Sviriaev, V.I., Anufriev, A.I., Ziganshin, R.Kh., Kramarova, L.I., Gnutov, D.Iu., et al. (1990). Kardiotropnaia, gipometabolicheskaia i gipotermicheskaia aktivnost’ peptidnykh fraktsii iz tkanei zimospiashchikh kholodoadaptirovannykh zhivotnykh. Zhurnal evoliutsionnoi biokhimii i fiziologii. 26(5), 623-629. [in Russian].
  32. Shapkina, O.O., Semionova, K.A., Orlova, N.V., et al. (2015). Vplyv hliukozy i chastkovoho znevodnennia na stiikist erytrotsytiv ssavtsiv do hipertonichnoho shoku. Biologiia tvaryn. 17 (3), 132-138. [in Ukrainian].
  33. Shpakova, N.M., Orlova, N.V., Nipot, E.E., & Aleksandrova, D.I. (2015). Porivnialne vyvchennia dii mekhanichnoho stresu na erytrotsyty liudyny i tvaryn. Fiziolohichnyi zhurnal, 61(3), 75–80. [ in Ukrainian]. https://doi.org/15407/fz61.03.075
  34. Yashin, A.I., Romanyuha, A.A., Mihalskij, A.I., et al. (2007). Gerontologiya in silico: stanovlenie novoj discipliny. Uspehi gerontologii. 20 (1), 7–19. [in Russian].
  35. Ahima, R.S., & Osei, S.Y. (2008). Adipokines in obesity. Frontiers of Hormone Research. 36, 182-197. https://doi.org/10.1159/000115365
  36. Allard, J.B., & Duan, C. (2011). Comparative endocrinology of aging and longevity regulation. Frontiers in Endocrinology. 2. Article number: 75. Retrieved from https://doi.org/10.3389/fendo.2011.00075
  37. Anisimov, V.N. (2001). Experimental research on ageing in Russia. Experimental Gerontology. 36, 935-945. https://doi.org/10.1016/S0531-5565(00)00262-X
  38. Arima, T., Kitamura, Y., Nishiya, T., et al. (1997). Effects of kyotorphin (L-tyrosyl-L-arginine) ON[3H]NG-nitro-L-arginine binding to neuronal nitric oxide synthase in rat brain. Neurochemistry International. 30, 605-611. https://doi.org/10.1016/S0197-0186(96)00098-8
  39. Attwood, D., Mosquera, V., & Pérez-Villar, V. (1989). Thermodynamic properties of amphiphilic drugs in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 85 (9), 3011-3017. https://doi.org/10.1039/f19898503011
  40. Bernhardt, I., Seidler, G., Ihrig, I., & Erdmann, A. (1992). Species-dependent differences in the effect of ionic strength on potassium transport of erythrocytes: the role of lipid composition. General Physiology and Biophysics. 11 (3), 287-299.
  41. Borlongan, C.V., Wang, Y., & Su, T.P. (2004). Delta opioid peptide (d-ala 2, d-Leu 5) enkephalin: linking hibernation and neuroprotection. Frontiers in bioscience. 9, 3392-3398. https://doi.org/10.2741/1490
  42. Bronnikov, G., Dolgacheva, L., Zhang, S.-J., et al. (1997). The effect of neuropeptides kyotorphin and neokyotorphin on proliferation of cultured brown preadipocytes. FEBS letters. 407 (1), 73-77. https://doi.org/10.1016/S0014-5793(97)00298-6
  43. Carro, A., & Kaski, J.C. (2011). Myocardial infarction in the elderly. Aging and disease. 2 (2), 116-137.
  44. Castro, E., Taboada, P., Barbosa, S., & Mosquera, V. (2005). Size control of styrene oxide- ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study. Biomacromolecules. 6 (3), 1438-1447. https://doi.org/10.1021/bm049262+
  45. Cui, Y., Lee, T.F., Kramarova, L.I., & Wang, L.C. (1993). The modulatory effects of mu and kappa opioid agonists on 5-HT release from hippocampal and hypothalamic slices of euthermic and hibernating ground squirrels. Life Sciences. 53 (26), 1957-1965. https://doi.org/10.1016/0024-3205(93)90017-W
  46. Feldman, H.A., Longcope, C., Derby, C.A., et al. (2002). Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. Journal of Clinical Endocrinology & Metabolism. 87, 589-598. https://doi.org/10.1210/jcem.87.2.8201
  47. Fransen, J.H., Dieker, J.W., Hilbrands, L.B., et al. (2011). Synchronized turbo apoptosis induced by cold-shock. Apoptosis. 16 (1), 86-93. https://doi.org/10.1007/s10495-010-0546-0
  48. Goldstein, J.C., Waterhouse, N.J., Juin, P., et al. (2000). The coordinate release of cytochrome C during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology. 2 (3), 156-162. https://doi.org/10.1038/35004029
  49. Gordiyenko, O.I., Gordiyenko, Yu.E., & Makedonska, V.O. (2004). Estimation of erythrocyte population state by the spherical index distribution. Bioelectrochemistry. 62 (2), 119-122. https://doi.org/10.1016/j.bioelechem.2003.08.004
  50. Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell. 121 (5), 671-674. https://doi.org/10.1016/j.cell.2005.05.019
  51. Gulevsky, A.K., Akhatova, Yu.S., & Shchenyavsky, I.I. (2017). Features of apoptosis, induced by temperature reduction. Problems of Cryobiology and Cryomedicine. 27 (2), 97-109. https://doi.org/10.15407/cryo27.02.097
  52. Gulevsky, A.K., Grischenko, V.I., Tereschenko, O.S., & Shchenyavcky, I.J. (2005). The influence of 1-10 kD fraction from brains of the hibernating ground squirrel and the Yakut horse on proliferation and protein synthesizing system of Ehrlich ascitic carcinoma cells. CryoLetters. 26 (5), 279-288.
  53. Hauton, D., May, S., Sabharwal, R., et al. (2011). Cold-impaired cardiac performance in rats is only partially overcome by cold acclimation. Journal of Experimental Biology. 214 (Pt. 18), 3021-3031. https://doi.org/10.1242/jeb.053587
  54. Hendrich, A.B., Wesolowska, O., & Michalak, K. (2001). Trifluoperazine induces domain formation in zwitterionic phosphatidylcholine but not in charged phosphatidylglycerol bilayers. Biochimica et Biophysica Acta. 1510 (1-2), 414-425. https://doi.org/10.1016/S0005-2736(00)00373-4
  55. Henkelman, S., Lagerberg, J.W.M., Graaff, R., et al. (2010). The effects of cryopreservation on red blood cell rheologic properties. Transfusion. 50 (11), 2393-2401. https://doi.org/10.1111/j.1537-2995.2010.02730.x
  56. Hiramatsu, M., & Kameyama, T. (1998). Roles of kappa-opioid receptor agonists in learning and memory impairment in animal models. Methods and findings in experimental and clinical pharmacology. 20, 595-599. https://doi.org/10.1358/mf.1998.20.7.485724
  57. Ignat’ev, D.A., Vorob’ev, V.V., & Ziganshin, R. (1998). Effects of a number of short peptides isolated from the brain of the hibernating ground squirrel on the EEG and behavior in rats. Neuroscience and Behavioral Physiology. 28 (2), 158-166. https://doi.org/10.1007/BF02461962
  58. Karim, N., Hasan, J.A., & Ali, S.S. (2011). Heart rate variability – a review. Journal of Basic & Applied Sciences. 7 (1), 71-77.
  59. Kawabata, A. (1993). L-arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotophin-Met-enkephalin pathway and NOcyclic GMP pathway. British journal of pharmacology. 109 (1), 73-79. https://doi.org/10.1111/j.1476-5381.1993.tb13533.x
  60. Kawabata, A., Muguruma, H., Tanaka, M., & Takagi, H. (1996). Kyotorphin synthetase activity in rat adrenal glands and spinal cord. Peptides. 17, 407-411. https://doi.org/10.1016/0196-9781(96)00026-5
  61. Kiso, Y, Kitagawa, K, Kawai, N, et al. (1983). Neo-kyotorphin (Thr-Ser-Lys-Tyr-Arg), a new analgesic peptide. FEBS letters. 155, 281-284. https://doi.org/10.1016/0014-5793(82)80621-2
  62. Kokoz, Y.M., Zenchenko, K.I., Alekseev, A.E., et al. (1997). The effect of some peptides from the hibernating brain on Ca2+ current in cardiac cells and on the activity of septal neurons. FEBS letters. 411 (1), 71-76. https://doi.org/10.1016/S0014-5793(97)00607-8
  63. Kuwahara, M., Yayou, K., Ishii, K., et al. (1994). Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. Journal of Electrocardiology, 27 (4), 333-337. https://doi.org/10.1016/S0022-0736(05)80272-9
  64. López-Revuelta, A., Sánchez-Gallego, J.I., Hernández-Hernández, A., Sánchez-Yagüe, J., & Llanillo, M. (2005). Increase in vulnerability to oxidative damage in cholesterol-modified erythrocytes exposed to t-BuOOH. Biochimica et Biophysica Acta. 1734 (1), 74-85. https://doi.org/10.1016/j.bbalip.2005.02.004
  65. Machuqueiro, M., & Baptista, A.M. (2007). The pH-dependent conformational states of kyotorphin: a constant-pH molecular dynamics study. Biophysical journal. 92, 1836-1845. https://doi.org/10.1529/biophysj.106.092445
  66. Malheiros, S.V.P., Meirelles, N.C., & de Paula, E. (2000). Pathway involved in trifluoperazine-, dibucaine- and praziquantel-induced hemolysis. Biophysical Chemistry. 83 (2), 89-100. https://doi.org/10.1016/S0301-4622(99)00125-8
  67. Manaargadoo-Catin, M., Ali-Cherif, A., Pougnas, J.-L., & Perrin, C. (2015). Hemolysis by surfactant – a review. Advances in Colloid and Interface Science. 228, 1-16. https://doi.org/10.1016/j.cis.2015.10.011
  68. Markova, P., Iliev, B., Popov, D., & Girchev, R. (2010). Heart rate variability during nNOS inhibition in spontaneously hypertensive rats. Trakia Journal of Sciences. 8 (Suppl. 2.), 114-118.
  69. Matei, H., Frentescu, L., & Benga, G. (2000). Comparative studies of the protein composition of red blood cell membranes from eight mammalian species. Journal of Cellular and Molecular Medicine. 4 (4), 270-276. https://doi.org/10.1111/j.1582-4934.2000.tb00126.x
  70. Mineo, H., & Moriyoshi, M. (2019). Carboxylic acids with certain molecular structures decrease osmotic fragility against osmotic pressure in cattle erythrocytes in vitro: appearance of a wedge-like effect similar to RBCs in other animal species. Biochemical Pharmacology. 8 (1). Article number: 264. Retrieved from https://doi.org/10.35248/2167-0501.19.8.264
  71. Mondal, M., Mesmin, B., Mukherjee, S., & Maxfield, F.R. (2009). Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Molecular Biology of the Cell. 20 (2), 581-588. https://doi.org/10.1091/mbc.e08-07-0785
  72. Muldrew, K. (2008). The salting-in hypothesis of post-hypertonic lysis. Cryobiology. 57 (3), 251-256. https://doi.org/10.1016/j.cryobiol.2008.09.007
  73. Nelson, G.J. (1967). Composition of neutral lipids from erythrocytes of common mammals. Journal of Lipid Research. 8 (4), 374-379. https://doi.org/10.1016/S0022-2275(20)39569-9
  74. Neutelings, T., Lambert, C.A., Nusgens, B.V., & Colige, A.C. (2013). Effects of mild cold shock (25°C) followed by warming up at 37°C on the cellular stress response. PLOS one. 8 (7). Article number: e69687. Retrieved from https://doi.org/10.1371/journal.pone.0069687
  75. Oeltgen, P.R., Nilekani, S.P., Nuchols, P.A., et al. (1988). Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sciences. 43 (19), 1565-1574. https://doi.org/10.1016/0024-3205(88)90406-7
  76. Okubo, K., Yokoyama, N., Takabatake, N., et al. (2007). Amount of cholesterol in host membrane affects erythrocyte invasion and replication by Babesia bovis. Parasitology. 134 (5), 625-630. https://doi.org/10.1017/S0031182006001910
  77. Olejnik, O.A., Ramazanov, V.V., & Bondarenko, V.A. (2003). Posthypertonic lysis of modified erythrocytes in citrate medium. Problems of Сryobiology. (3), 21-29.
  78. Perazzo, J., Castanho, M.A., & Sá Santos, S. (2017). Pharmacological potential of the endogenous dipeptide kyotorphin and selected derivatives. Frontiers in pharmacology. 7. Article number: 530. Retrieved from https://doi.org/10.3389/fphar.2016.00530
  79. Raghuraman, H., Chattopadhyay, A. (2005). Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chemistry and Physics of Lipids. 134 (2), 183-189. https://doi.org/10.1016/j.chemphyslip.2004.12.011
  80. Rauen, U., Polzar, B., Stephan, H., et al. (1999). Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB journal. 13 (1), 155-168. https://doi.org/10.1096/fasebj.13.1.155
  81. Rymaszewska, J., Tulczynski, A., Zagrobelny, Z., et al. (2003). Influence of whole body cryotherapy on depressive symptoms – preliminary report. Acta Neuropyschiatrica. 15, 122-128. https://doi.org/10.1034/j.1601-5215.2003.00023.x
  82. Santos, S.M., Garcia-Nimo, L., Sá Santos, S., et al. (2013). Neuropeptide kyotorphin (Tyrosyl-Arginine) has decreased levels in the cerebro-spinal fluid of Alzheimer’s disease patients: potential diagnostic and pharmacological implications. Frontiers in aging neuroscience. 5. Article number: 68. Retrieved from https://doi.org/10.3389/fnagi.2013.00068
  83. Saul, J.P. (1990). Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. News in Physiological Sciences. 5, 32-37. https://doi.org/10.1152/physiologyonline.1990.5.1.32
  84. Sazonova, O.V., Blishchenko, E.Y., Kalinina, O.A., et al. (2003). Proliferative activity of neokyotorphin-related hemoglobin fragments in cell cultures. Protein and peptide letters. 10, 386-395. https://doi.org/10.2174/0929866033478780
  85. Sazonova, O.V., Blishchenko, E.Y., Tolmazova, A.G., et al. (2007). Stimulation of fibroblast proliferation by neokyotorphin requires Ca influx and activation of PKA, CaMK II and MAPK/ERK. FASEB journal. 274, 474-484. https://doi.org/10.1111/j.1742-4658.2006.05594.x
  86. Schenyavsky, I.I., & Gulevsky, O.K. (2019). Study of protective effect of synthetic neuropeptide dalargin under cold stress. Problems of Cryobiology and Cryomedicine. 29 (3), 246-254. https://doi.org/10.15407/cryo29.03.246
  87. Seibert, C.S., Shinohara, E.M.G., & Sano-Martins, I.S. (2003). In vitro hemolytic activity of Lonomia oblique caterpillar bristle extract on human and Wistar rat erythrocytes. Toxicon. 41, 831-839. https://doi.org/10.1016/S0041-0101(03)00040-0
  88. Semionova, E.A., Chabanenko, E.A., Orlova, N.V., et al. (2017). About mechanism of antihemolitic action of chlorpromazine under posthypertonic stress in erythrocytes. Problems of Cryobiology and Cryomedicine. 27 (3), 219-229. https://doi.org/10.15407/cryo27.03.219
  89. Shcheniavsky, I.I. (2021). Anti-apoptotic effect of synthetic leu-enkephalin dalargin on rat leukocytes in cold stress model in vivo. Problems of Cryobiology and Cryomedicine. 31 (1), 3-13. https://doi.org/10.15407/cryo31.01.003
  90. Shilo, A.V., Ventskovskaya, E.A., & Babiychuk, G.A. (2012). Sleep in adaptive response structure of organism to cold effects. Problems of Cryobiology. 22 (3), 296.
  91. Shpakova, N.M., Iershova, N.A., Orlova, N.V., et al. (2015). Application of alkyl sulfates and heat treated erythrocytes in hypertonic cryohemolysis. Biotechologia Acta. 8 (3), 126-136. https://doi.org/10.15407/biotech8.03.129
  92. Shpakova, N.M., & Orlova, N.V. (2020). About the mechanism of mammalian erythrocytes osmotic stability. Problems of Cryobiology and Cryomedicine. 30 (4), 331-342. https://doi.org/10.15407/cryo30.04.331
  93. Shpakova, N.M., Orlova, N.V., & Yershov, S.S. (2019). Correction of cold damage to mammalian erythrocytes by chlorpromazine to influence the dynamic structure of a membrane. Biophysics. 64 (3), 367-373. https://doi.org/10.1134/S0006350919030205
  94. Sudo, A., & Miki, K. (1995). Circadian rhythm of catecholamine excretion in rats after phase shift of light-dark cycle. Industrial Health. 33 (2), 57-66. https://doi.org/10.2486/indhealth.33.57
  95. Tadzhibova, L.T., Astaeva, M.D., Ismailova, J.G., et al. (2011). Effects of dalargin on free radical processes in the blood of rats exposed to moderate hypothermia. Bulletin of experimental biology and medicine. 150 (3), 304-306. https://doi.org/10.1007/s10517-011-1128-z
  96. Takagi, H., Shiomi, H., Kuraishi, Y., & Ueda, H. (1982). Analgesic dipeptide, L-Tyr-D-Arg (D-kyotorphin) induces Met-enkephalin release from guinea-pig striatal slices. Experientia. 38, 1344-1345. https://doi.org/10.1007/BF01954941
  97. Takagi, H., Shiomi, H., Ueda, H., & Amano, H. (1979). Morphine-like analgesia by a new dipeptide, L-tyrosyl-L-arginine (Kyotorphin) and its analogue. European journal of pharmacology. 55 (1), 109-111. https://doi.org/10.1016/0014-2999(79)90154-7
  98. Tan, Y., Sun, D., Wang, J., & Huang, W. (2010). Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Transactions on Biomedical Engineering. 57 (7), 1816-1825. https://doi.org/10.1109/TBME.2010.2042448
  99. Thorner, M.O. (2010). Endocrinology of aging: the convergence of reductionist science with systems biology and integrative medicine. Frontiers in Endocrinology. 1. Article number: 2. Retrieved from https://doi.org/10.3389/fendo.2010.00002
  100. Virtanen, J.A., Cheng, K.H., & Somerharju, P. (1998). Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proceedings of the National Academy of Sciences of the USA. 95, 4964-4969. https://doi.org/10.1073/pnas.95.9.4964
  101. Wessels, J.M.C., & Veerkamp, J.H. (1973). Some aspects of the osmotic lysis of erythrocytes III. Comparison of glycerol permeability and lipid composition of red blood cell membranes from eight mammalian species. Biochimica et Biophysica Acta. 291,190-196. https://doi.org/10.1016/0005-2736(73)90411-2
  102. Yershova, N.A., Nipot, E.E., Shpakova, N.M., et al. (2014). Effect of trifluoperazine and dodecyl-β,d-maltoside on hypertonic stress of mammalian erythrocytes. Problems of Cryobiology and Cryomedicine. 24 (3), 231-237. https://doi.org/10.15407/cryo24.03.231
  103. Zou, L., Ding, W., Sun, S., et al. (2015). Fatigue damage to pig erythrocytes during repeated swelling and shrinkage. Cryobiology. 71 (2), 210-215. https://doi.org/10.1016/j.cryobiol.2015.07.001

For Part 6 

  1. Abdulkadyrov, K.M., Romanenko, N.A., & Selivanov, E.A. (2006). Nash opyt po zagotovke, testirovaniyu i hraneniyu gemopoeticheskih kletok pupovinnoj krovi. Kletochnaya transplantologiya i tkanevaya inzheneriya. 3 (1), 63—65. [in Russian].
  2. Alekseeva, N.T. (2014). Uchastie kletochnogo komponenta v regeneracii rany. Zhurnal anatomii i gistopatologii. 3 (1), 9–15. [in Russian].
  3. Alekseeva, N.T., Gluhov, A.A., & Ostroushko,P. (2012). Rol kletok fibroblasticheskogo differona v processe zazhivleniya ran. Vestnik eksperimentalnoj i klinicheskoj hirurgii. 5 (3), 601–608. [in Russian].
  4. Bezrukov,, V.V., Kupras, L.P., Kuprash, Ye.V., & Gudarenko S.A. (2010). Optimizatsiya medikamentoznoy terapii v geriatricheskoy klinike. Ratsionalna farmakoterapiya. 3 (16), 11-18. [in Russian].
  5. Butenko, G.M., & Kirik, V.M. (2011). Regenerativnaya meditsina i stvolovye kletki – problemy i resheniya. Zhurnal AMN Ukrayini. 17 (1), 62-66. [in Russian].
  6. Bykova, E.Ya., Hemiy, L.R., Charskaya, N.L., et al. (2011). Rezultaty doklinicheskih issledovanij immunotropnoj i protivoopuholevoj aktivnosti placentarnogo preparata Rimolans. Vetpharma. (3–4), 57–67. [in Russian].
  7. Vasyliuk, M.D., Popovych, Ya.O., & Shevchuk, A.H. (2005). Kompleksne khirurhichne likuvannia khvorykh iz syndromom diabetychnoi stupni metodom zastosuvannia transplantatsii kriokonservovanykh tkanyn platsenty ta preparativ kordovoi krovi. Transplantologiia. 8 (1), 82-84. [in Ukrainian].
  8. Vvedenskiy, B.P., Kovalev, G.A., Tynynyka, L.N., et al. (2012). Kriokonservirovannaya syvorotka kordovoy krovi pri lechenii destruktivno-distroficheskih processov v sustavah. Vestnik neotlozhnoy i vosstanovitelnoy mediciny. 13 (1), 41–43. [in Russian].
  9. Venger, L.V. (2009). Efektyvnist zastosuvannia preparativ «Hemokord» ta «Kriokord» pry eksperymentalnii travmi rohivky. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu. 13 (1), 25–27. [in Ukrainian].
  10. Goldstein, J., & Newbery, D. (1984). Rastrovaya elektronnaya mikroskopiya i rentgenovskij mikroanaliz. Moskow: Mir [in Russian].
  11. Goltsev, A.M., Dubrava, T.G., Yampolska, K.Ye., et al. (2019). The substantiation of adoptive transfer of tolerogenic dendritic cells for treatment of rheumatoid arthritis in mice. Cell and Organ Transplantology. 7 (2), 125–131. https://doi.org/10.22494/cot.v7i2.99
  12. Goltsev, A.M., Dubrava, T.G., Yampolska, K.Ye., et al. (2018). Optymizatsiia metodu oderzhannia nezrilykh dendrytnykh klityn dlia terapevtychnoho zastosuvannia. Fiziolohichnyi zhurnal. 64(6), 32-39. [in Ukrainian]. https://doi.org/10.15407/fz06.032
  13. Goltsev, A., & Kalynychenko, T. (2020). Umbilical cord blood stem cells: clinical application of allogeneic material, problems and perspectives of banking. Problems of Cryobiology and Cryomedicine, 30(3), 213–235. https://doi.org/10.15407/cryo30.03.213
  14. Hol’tsev, A.M., Safranchuk, O.V., Bondarovych, M.O., & Ostankov, M.V. (2011). Zmina kriolabilnosti stovburovykh rakovykh klityn u protsesi kultyvuvannia adenokartsynomy Erlikha in vivo. Fiziolohichnyi zhurnal. 57(4), 68-76. [in Ukrainian]. https://doi.org/10.15407/fz57.04.068
  15. Goltsev, A.M., Safranchuk, O.V., Bondarovych, M.O., et al. (2012). Metodychni pidkhody do stabilizatsii strukturnoho i funktsionalnoho staniv kriokonservovanykh klityn adenokartsynomy Erlikha. Dopovidi NAN Ukrainy. (8), 115−122. [in Ukrainian].
  16. Goltsev, A. N., Lutsenko, E. D., & Ostankov, M. V. (2008). Effect of Different Cryopreservation Regimens on Manifestation of Immune Modulating Activity of Placenta at Development of Adjuvant Artritis. Problems of Cryobiology, 18(4), 456–458.
  17. Goltsev A.N., Ostankova L.V., Dubrava T.H., et al. (2012). Kriokonservirovanie kak faktor modifikatsii strukturno-funktsionalnogo sostoyaniya i mehanizma realizatsii lechebnogo effekta kletok stvolovogo kompartmenta v usloviyah razvitiya patologij autoimmunnogo geneza. In Goltsev A.N. (Eds.) Aktualnye problemy kriobiologii i kriomediciny. (pp. 501–612). Kharkiv: IPKiK NANU [in Russian]
  18. Grameneckij E.M. (1963). Prizhiznennaya okraska kletok i tkanej. Leningrad: Medgiz [in Russian].
  19. Grishenko, V.I., Prokopyuk, O.S., Pribylova, O.V., & Strona, V.I. (2000). Terapiya kriokonservirovannoj placentarnoj tkanyu i medikamentami rannego i patologicheskogo klimaksa u zhenshin. Mezhdunarodnyj medicinskij (1), 54-57. [in Russian].
  20. Gryshchenko, V.I., Prokopiuk, O.S., Kuzmina, I.Iu., Yurchenko, T.M., Strona, V.I., & Yukhymuk, L.M. (1996). Zahotivlia, kriokonservuvannia platsentarnoi tkanyny ta yii klinichne zastosuvannia: metodychni rekomendatsii. Kharkiv: NAN Ukrainy IPKiK NANU, MOZ Ukrainy, Kharkivskyi derzhavnyi medychnyi universytet, Koordynatsiinyi tsentr transplantatsii orhaniv, tkanyn ta klityn. [in Ukrainian].
  21. Grishchenko, N.G., Grishchenko, V.I., Gerodes, A.G., et al. (2007). Ispolzovanie kriokonservirovannoj placentarnoj tkani pri narusheniyah spermatogeneza u muzhchin. Zdorove muzhchiny. (2), 168–172. [in Russian].
  22. Danilova, L.A. (2019). Analizy krovi, mochi i drugih biologicheskih zhidkostej cheloveka v razlichnye vozrastnye periody. 3th Ed. Sankt Peterburg: Spec-Lit [in Russian].
  23. Demin, Yu.A. (2001). Lechenie zabolevanij i povrezhdenij rogovicy metodom kletochnoj terapii. Oftalmologicheskij zhurnal. (3), 48-51. [in Russian].
  24. Ievdokymova, N.Iu. (2008). Hialuronova kyslota, retseptor CD44 ta yikhnia rol v uskladnenniakh tsukrovoho diabetu. Ukrainskii biokhimicheskii zhurnal. (5), 5–44. [in Ukrainian].
  25. Zamorskii, I.I., Shchudrova, T.S., Zeleniuk, V.G. et al. (2019). The Influence of Peptides on the Morphofunctional State of Kidneys in Old Rats. Advances in Gerontology 9, 75–80. https://doi.org/10.1134/S207905701901017X
  26. Zemlianskykh,G., & Babijchuk, L.A. (2016). Changes in erythrocyte surface marker cd44 during hypothermic and low temperature storage. Fiziolohichnyi zhurnal  62(2), 94-102. https://doi.org/10.15407/fz62.02.094
  27. Zotina A.I., & Presnova E.V. (1982). Matematicheskaya biologiia razvitiia. Moskow: Nauka [in Russian].
  28. Ivanov, V.A., Mihajlichenko, M.I., Sizonenko, V.A., et al. (2008). Immunokorrigiruyushaya terapiya pri lechenii bolnyh s mestnoj holodovoj travmoj. Allergologiia i immunologiia. 9 (1), 119–120. [in Russian].
  29. Imasheva, A.K., & Lazko, M.V. (2009). Osobennosti regeneratornyh processov kozhi pri termicheskih ozhogah. Fundamentalnye issledovaniia. (5), 22–24. [in Russian].
  30. Kaplunova O.A. (2015). Yukstamedullyarnyj put krovotoka v pochke (sravnitelno-anatomicheskij i vozrastnoj aspekty). Morfologiia. 147(1), 53-8. [in Russian].
  31. Karyakin, N.N., & Martusevich, A.K. (2014). Tehnologii lecheniya ozhogov i ran v vodnoj srede: istoricheskie, patofiziologicheskie i klinicheskie aspekty. Trudnyj pacient. 12 (6), 38–46. [in Russian].
  32. Kirpatovskij, V.I., Kazachenko, A.V., Plotnikov, E.Yu., et al. (2006). Funkcionalnye posledstviya intraparenhimatoznogo vvedeniya fetalnyh stvolovyh i progenitornyh kletok cheloveka pri hronicheskoj i ostroj pochechnoj nedostatochnosti u krys. Kletochnye tehnologii v biologii i medicine. (2), 70–76. [in Russian].
  33. Kirpatovskij, V.I., Kazachenko, A.V., Plotnikov, E.Yu., et al. (2010). Eksperimentalnaya ocenka novyh tehnologij profilaktiki i lecheniya pochechnoj nedostatochnosti. Eksperimentalnaya i klinicheskaya urologiia. (1), 30–36. [in Russian].
  34. Saveliev, B.C., Kirienko, A.I. (eds.) (2008). Klinicheskaya hirurgiya: nacionalnoe rukovodstvo. Moskow: GEOTAR-Media. [in Russian].
  35. Kovtun, T.I. (1982). Izmeneniya pochechnyh kanalcev pri raznyh formah glomerulonefrita. Arhiv patologii. 44 (6), 49–56. [in Russian].
  36. Kondakov, I.K., Yakovtsova, A.F., & Havrysh, A.S. (2000). Sposoby otsinky morfofunktsionalnoho stanu endoteliiu. Metodychni rekomendatsii. Kharkiv-Kyiv [in Ukrainian].
  37. Kupriyanov, V.V., Bobrik, I.I., & Karaganov, Ya.L. (1986). Sosudistyi endotelii. Kyiv: Zdorovya [in Russian].
  38. Kutyrina, I.M., Livshic, N.L., Rogov, V.A., et al. (2002). Primenenie ingibitorov angiotenzinprevrashayushego fermenta pri hronicheskoj pochechnoj nedostatochnosti. Terapevticheskij arhiv. 74 (6), 34–39. [in Russian].
  39. Kutsenko, S.A. (2004). Osnovy toksikologii. Moskow: Foliant [in Russian].
  40. Lisitsyn, A.B., Ivankin, A.N., Vostrikova, N.L., & Stanovova, I.A. (2014). Izuchenie frakcionnogo sostava belkov myasa v processe dlitelnogo holodilnogo hraneniya. Vse o miase. (2), 36–40. [in Russian].
  41. Lihtenshtein, G.I. (1974). Metod spinovyh metok v molekulyarnoj biologii. Moskow: Nauka [in Russian].
  42. Merkulov, G.A. (1961). Kurs patologogistologicheskoj tehniki. Leningrad: Medgiz [in Russian].
  43. Mihnyuk, O.V. (2006). K voprosu ob izmenenii koncentracii azotsoderzhashih soedinenij v myshechnoj tkani foreli v processe dlitelnogo nizkotemperaturnogo hraneniya. Vestnik MGTU. 9 (5), 825–827. [in Russian].
  44. Moiseev, S.V., Arutyunov, G.P., & Fomin, V.V. (2009). Ingibitory APF i nefroprotekciya pri hronicheskih zabolevaniyah pochek s proteinuriej. Klinicheskaya (2), 31–36. [in Russian].
  45. Nikolaev, A.Yu., Nikolaeva, A.A., & Popova, L.V. (2015). Patogenez hronicheskoj pochechnoj nedostatochnosti u pacientov s gipertenziej. Kazanskij medicinskij zhurnal. 96 (4), 659–665. [in Russian].
  46. Nikolaevskij, V.A., Fedosov, P.A., & Slivkin, A.I. (2013). Izuchenie vliyaniya acetilsalicilovoj kisloty v shirokom diapazone doz na kislotnuyu rezistentnost kletochnoj membrany eritrocitov v eksperimentah in vivo i in vitro. Vestnik VGU, seriya: Himiya. Biologiya. Farmaciya. (2), 206–209. [in Russian].
  47. Osikov, M.V., Gizinger, O.A., & Cherepanov, D.A. (2016). Patogenez izmenenij immunnogo statusa i rol amlodipina v ih korrekcii pri eksperimentalnoj hronicheskoj pochechnoj nedostatochnosti. Medicinskaya immunologiya.  18(3), 231–238. [in Russian].
  48. Ostankov, M. V. (2007). Effect of Rapid Two-Step Freezing on Bone Marrow Cell Integrity. Problems of Cryobiology. 17(3), 283–289.
  49. Goltsev, A.M., Gryshchenko, O.V., Dubrava, T.G., et al. (2000). Sposib likuvannia autoimunnykh zakhvoriuvan. [Method of treatment of autoimmune diseases.] (Patent of Ukraine № 30723A). [in Ukrainian].
  50. Malova, T.H., Yurchenko, T.M., Bozhko, T.S., Komarova, I.V., Strona, V.I., Brechka, N.M., Solonets, Yu.M., Sirotenko, L.A., & Chuikova, V.I. (2008). Sposib korektsii hipotyreozu. [Method of correction of hypothyroidism.] (Patent of Ukraine № 31046). [in Ukrainian].
  51. Gryshchenko, V.I., Prokopiuk, O.S., Chyzhevskyi, V.V., & Prokopiuk, V.Yu. (2001). Sposib korektsii funktsionalnoho stanu miokarda u laboratornykh tvaryn piznoho ontohenezu. [ The method of correcting the functional state of the myocardium in laboratory animals of late ontogenesis]. (Patent of Ukraine № 39614A). [in Ukrainian].
  52. Gryshchenko, V.I., Prokopiuk, O.S., Perchyk, O.A., & Strona, V.I. (2004). Sposib likuvannia urohenitalnykh rozladiv v klimakterychnomu periodi. [The method of treatment of urogenital disorders in the menopause period.] (Patent of Ukraine № 70686A). [in Ukrainian].
  53. Popovych, Ya.O., Shevchuk, A.G., Prokopiuk, O.S., Lipina, O.V., Musatova, I.B., & Prokopiuk, V.Yu. (2005). Sposib likuvannia tsukrovoho diabetu, uskladnenoho diabetychnoiu mikroanhiopatiieiu. [Method of treatment of diabetes complicated by diabetic microangiopathy.] (Patent of Ukraine № 7937). [in Ukrainian].
  54. Markovskyi, V.D., Tumanskyi, V.O. (eds.) (2015). Patomorfolohiia. Kyiv: Medytsyna  [in Ukrainian].
  55. Goltsev, A.N., Yurchenko, T.N. (eds.) (2013). Platsenta: kriokonservirovanie, klinicheskoe primenenie. Kharkiv [in Russian].
  56. Grishenko, V.I., Yurchenko, T.N. (eds.) (2011). Platsenta: kriokonservirovanie, struktura, svojstva, perspektivy klinicheskogo primeneniya. Kharkiv [in Russian].
  57. Popovych, Y. O. (2005). Cryopreserved Cord Blood Serum Preparation Cryocord-C in Treatment of Diabetic Foot Syndrome. Problems of Cryobiology. 15(1), 63–70.
  58. Pribylova, O.V. (1999). Izmenenie gormonalnogo profilya zhenshin s klimaktericheskim sindromom pod vozdejstviem geterotopicheskoj transplantacii kriokonservirovannoj placentarnoj tkani. Eksperimentalnaya i klinicheskaya medicina. (4), 100–101. [in Russian].
  59. Pribylova, O.V. (1999). Korrekciya vazomotornyh i emocionalno-psihicheskih narushenij u zhenshin s patologicheskim klimaksom pri pomoshi GTKPT. Medicina segodnya i zavtra. (2), 62–63. [in Russian].
  60. Prokopiuk, V.Yu., Goltsev, A.M., Prokopiuk, O.V., et al. (2018). Vplyv kriokonservovanykh mezenkhimalno stromalnykh klityn ta eksplantiv platsenty na izolovani tkanyny ta in vitro klityny zhinochoi reproduktyvnoi systemy. In Materialy naukovopraktychnoi konferentsii z mizhnarodnoiu uchastiu «Dosiahnennia ta perspektyvy eksperymentalnoi ta klinichnoi endokrynolohii» (1–2.03 2018 r, Kharkiv). (p. 115). Kharkiv [in Ukrainian].
  61. Prokopyuk, V.Yu., Prokopyuk, O.S., Musatova, I.B., Sorokina, I.V., Loginova, O.O., & Somova K.V. (2018). Korektsiia involiutyvnykh zmin reproduktyvnoi systemy samyts starykh shchuriv implantatsiieiu kriokonservovanykh frahmentiv platsenty Fiziolohichnyi zhurnal. 64(4), 74-81. [in Ukrainian]. https://doi.org/10.15407/fz04.074
  62. Prokopyuk, O.S., Karpenko, V.G., & Prokopyuk, V.Yu. (2012). Eksperimentalnoe obosnovanie korrekcii narushenij reproduktivnoj funkcii v gerontologii. In Materialy naukovo-praktychnoi konferentsii z mizhnarodnoiu uchastiu «Innovatsiini aspekty tekhnolohii v urolohii». (22-23.03. 2012 r., Kyiv). (pp. 74-75). Kyiv. [in Russian].
  63. Prokopiuk, O.S., Chyzhevskyi, V.V., & Musatova, I.B. (2008). Pro mozhlyvist korektsii heriatrychnykh zmin za dopomohoiu kriokonservovanykh platsentarnykh biopreparativ. Praktychna medytsyna. 14 (3), [in Ukrainian].
  64. Prokopiuk, O.S., Chyzhevskyi, V.V., & Prokopiuk, V.Yu. (2011). Vplyv implantatsii kriokonservovanoi khorialnoi tkanyny na morfo-funktsionalnyi stan miokarda starykh shchuriv. Medytsyna siohodni i zavtra. (1-2), 242-245. [in Ukrainian].
  65. Prokopiuk, O., Shevchenko, M., Prokopiuk, V., Musatova, I., Safonov, R., & Prokopiuk, O. (2021). Isolation and Cryopreservation of Placental Cells: Search for Optimal Biotechniques in Experimental and Regenerative Medicine. Problems of Cryobiology and Cryomedicine, 31(1), 82–88. https://doi.org/10.15407/cryo31.01.082
  66. Repin, N.V., Chizh, Yu.A., Marchenko, L.N., & Govoruha, T.P. (2020). Morfologicheskaya harakteristika endoteliya aorty krys s pochechnoy nedostatochnostyu posle korrektsii allogennym krioekstraktom plac Ukrainian Journal of Medicine, Biology and Sport. 5 (4), 379–385. [in Russian]. https://doi.org/10.26693/jmbs05.04.379
  67. Repin, M.V., Marchenko, L.M., Hovorukha T.P., Strona, V. I., & Chizh, Yu. A. (2019). Ultrastruktura nadnyrnykiv shchuriv z khronichnoiu nyrkovoiu nedostatnistiu pislia terapii krioekstraktom platsenty na tli medykamentoznoi blokady RAAS.  Ukrainian Journal of Medicine, Biology and Sport. 4 (6), 349–355. [in Ukrainian]. https://doi.org/10.26693/jmbs04.06.349
  68. Rojtman, E.V., Kolesnikova, I.M., Karpova, O.V., et al. (2014). Izmeneniya gemostaticheskih svojstv sgustka pri hranenii trombocitnyh koncentratov, zagotovlennyh raznymi metodami. Gematologiia i transfuziologiia. 59 (3), 30–34. [in Russian].
  69. Romanenko, A.M., & Nepomniashchyi, V.M. (2004). Morfolohichna diahnostyka nefrolohichnykh khvorob. In Nefrolohiia. (pp. 38– 97). Kyiv: Zdorovia [in Ukrainian].
  70. Rybolovlev, Yu.R., & Rybolovlev, R.S. (1979). Dozirovanie veshestv dlya mlekopitayushih po konstantam biologicheskoj aktivnosti. Doklady AN SSSR. 247 (6), 1513–1516. [in Russian].
  71. Sennikov, S.V., Kulikova, E.V., Knauer, N.Yu., & Hantakova, Yu.N. (2017). Molekuliarno-kletochnye mehanizmy, oposreduemye dendritnymi kletkami, uchastvuyushimi v indukcii tolerantnosti. Medicinskaya immunologiya. 19 (4), 359–374. [in Russian].
  72. Serov,V., & Shehter, A.B. (1981). Soedinitelnaya tkan (funkcionalnaya morfologiya i obshaya patologiya). Moskva: Medicina [in Russian].
  73. Tareeva, I.E. (2000). Nefrologiya: Rukovodstvo dlya vrachej. Moskow: Medicina [in Russian].
  74. Topchii, I.I., Kondakov, I.I., & Kiriienko, O.M. (2014). Vplyv krioekstraktu platsenty liudyny na strukturno-funktsionalnyi stan nyrok shchuriv pry modeliuvanni hostroi ta khronichnoi nyrkovoi nedostatnosti. Ukrainskyi zhurnal nefrolohii ta dializu. (3), 62–67. [in Ukrainian].
  75. Falko, O.V., Volina, V.V., Lipina, O.V., et al. (2009). Ekspres-diagnostika morfologicheskih osobennostey endoteliya aorty krolikov pri eksperimentalnom ateroskleroze. Svit medytsyny ta biologii. (3), 169–175. [in Russian].
  76. Fedets, O.I. (1987). Bioenergetika i proliferativnaya aktivnost kriokonservirovannyh kletok adenokarcinomy (Extended abstract of candidate’s thesis). Kharkiv. [in Russian].
  77. Fira L.S., Nikolaev V.G., Klish I.N., et al. (2011). Izuchenie effektivnosti preparata Enterosgel pri eksperimentalnoj pochechnoj nedostatochnosti. Medicina neotlozhnyh sostoyanij. (1-2), 91-94. [in Russian].
  78. Havinson, V.H., & Kvetnaya, T.V. (2005). Regulyatornye peptidy i gomeostaz. Zhurnal Rossijskogo himicheskogo obshestva imeni D.I. Mendeleeva. 49 (1), 112–117. [in Russian].
  79. Tsaturov,E., Talaev, V.Yu., Matveichev, A.V., et al. (2010). Tolerogennye dendritnye kletki – sozrevanie i funkcii v eksperimentah in vitro. Medicinskij almanah. 2 (11), 263–266.  [in Russian].
  80. Chereshnev, V.A., & Gusev, E.Yu. (2012). Immunologicheskie i patofiziologicheskie mehanizmy sistemnogo vospaleniya. Medicinskaya immunologiya. 14 (1-2), 9–20. [in Russian].
  81. Chuykova, V.I., & Strona, V.I. (2007). Effekt deystviya fetalnyh tkaney pri disfunktsii shitovidnoy zhelezy v eksperimente. Svit medytsyny ta biologiyi. (1), 81–86. [in Russian].
  82. Shabliy, V.A., Kuchma, M.D., Kyryk, V.M., et al. (2012). Vplyv mezenkhimalnykh stromalnykh klityn z natyvnoi ta kriokonservovanoi platsenty liudyny na deiaki morfofunktsionalni osoblyvosti miokardu u myshei z kardiomiopatiieiu Vestnyk neotlozhnoi i vostanovytelnoi medytsyny. 13 (1), 133-138. [in Ukrainian].
  83. Shevchenko, L.A., Grishchenko, V.I., Petrenko, A.Yu., & Prokopyuk, O.S. (2009). Ob effektivnosti sochetannogo primeneniya antioksidantnoy i kletochnoy terapii v reabilitatsii postinsultnyh bolnyh s sindromom «motor-neglect». NejroNEWS: psihonevrologiya ta neyropsihiatriya. 7 (18), 57-62. [in Russian].
  84. Shepitko, K. V. (2004). Effect of Cryopreserved Placenta Preparations on Peroxidative Indices in Patients with Stenocardia. Problems of Cryobiology, (1), 70–74.
  85. Shchetynskyi, M.I., Bobrova, O.M., Nardid, O.A., et al. (2021). Protyzapalna ta ranozahoiuvalna diia ekstraktiv z kriokonservovanoi platsenty liudyny. In Problemy ta dosiahnennia suchasnoi biotekhnolohii: materialy I mizhnarodnoi naukovo-praktbchnoi. internet-konferentsii (25.03.2021, Kharkiv). (pp. 351–352). Kharkiv: NFaU [in Ukrainian].
  86. Yurchenko, T.M., Hovorukha, T.P., Marchenko, L.M., et al. (2012). Ultrastruktura i funktsionalni osoblyvosti nyrok shchuriv pry modeliuvanni toksychnoi hostroi nyrkovoi nedostatnosti. Eksperymentalnaya i klinicheskaia medytsyna. (3), 49-53. [in Ukrainian].
  87. Yarygin, K.N., Semchenko, V..V, & Ereniev, S.I. (2015). Regenerativnaya biologiya i medicina. Kniga II. Kletochnye tehnologii v terapii boleznej nervnoj sistemy. Omsk [in Russian].
  88. Abramovits, W., Graham, G., Har-Shai, Y., & Strumia, R. (2016). Dermatological cryosurgery and cryotherapy. London: Springer-Verlag. https://doi.org/10.1007/978-1-4471-6765-5
  89. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 100 (7), 3983-3988. https://doi.org/10.1073/pnas.0530291100
  90. Alkadi, K.A.A., Adam, A., Muhammadtaha, M.H., et al. (2013). Antiplatelet aggregation activity of 5-hydroxyflavone, 2′-hydroxyflavanone, paeonol and bergenin isolated from stem bark of garcinia malaccensis in human whole blood. Oriental Journal of Chemistry. 29 (3), 871-875. https://doi.org/10.13005/ojc/290304
  91. Artur, K.K., Dinh, N., & Gabrielson, J.P. (2015). Technical decision making with higher order structure data: utilization of differential scanning calorimetry to elucidate critical protein structural changes resulting from oxidation. Journal of Pharmaceutical Sciences. 104, 1548-1554. https://doi.org/10.1002/jps.24313
  92. Ayroldi, E., Cannarile, L., Migliorati, G., Nocentini, G., et al. (2012). Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. The Federation of American Societies for Experimental Biology Journal. 26 (12), 4805-4820. https://doi.org/10.1096/fj.12-216382
  93. Banerjee, K.K., Bishayee, A., & Chatterjee, M. (1992). Anti-inflammatory effect of human placental extract: a biochemical mechanistic approach. European Review for Medical and Pharmacological Sciences. 14 (6), 361-366.
  94. Banerjee, K.K., Bishayee, A., & Chatterjee, M. (1994). Role of human placental extract on succinic dehydrogenase activity in carrageenin-induced edema in rats in vivo and its effect on erythrocyte lysis, platelet aggregation and trypsin activity in vitro. Indian Journal of Physiology and Pharmacology. 38 (2), 121-124.
  95. Baust, J.G., Snyder, K.K., Santucci, K.L., et al. (2019). Cryoablation: physical and molecular basis with putative immunological consequences. International Journal of Hyperthermia. 36 (1), 10-16. https://doi.org/10.1080/02656736.2019.1647355
  96. Bespalova, I.G., Rogoza, L.A., Galchenko, S.Y., & Sandomyrsky, B.P. (2015). Extracts of cryopreserved fragments of pig spleen and piglet skin affect the healing of cold wounds in rats. Problems of Cryobiology and Cryomedicine. 25 (2), 151-156. https://doi.org/10.15407/cryo25.02.151
  97. Bhadoriya, S.S., Mishra, V., Raut, S., et al. (2012). Anti-Inflammatory and antinociceptive activities of a hydroethanolic extract of tamarindus indica leaves. Scientia Pharmaceutica. 80 (3), 685-700. https://doi.org/10.3797/scipharm.1110-09
  98. Bischof, J.C., Smith, D.J., Pazhayannur, P.V., et al. (1997). Cryosurgery of Dunning AT-1 rat prostate tumor: Thermal, biophysical and viability response at the cellular and tissue level. Cryobiology. 34 (1), 42-69. https://doi.org/10.1006/cryo.1996.1978
  99. Blomgren, K., & Hagberg, H. (2006). Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radical Biology and Medicine. 40 (3), 388-397. https://doi.org/10.1016/j.freeradbiomed.2005.08.040
  100. Bogatyreva, O.O., Galchenko, S.Y.E., & Sandomirsky, B.P. (2012). Effect of extracts of pig spleen and piglet skin cryopreserved fragments on blood leukocyte profile of rats with cold injury of skin. Problems of Cryobiology. 22 (1), 97-103.
  101. Borges, T.J., Wieten, L., van Herwijnen, M.J.C., et al. (2012). The anti-inflammation mechanisms of Hsp70. Frontiers in Immunology. 3. Article number: 95. Retrieved from https://doi.org/10.3389/fimmu.2012.00095
  102. Bougandoura, A., D’Abrosca, B., Ameddah, S., et al. (2016). Chemical constituents and in vitro anti-inflammatory activity of Cistanche violacea Desf. (Orobanchaceae) extract. Fitoterapia. 109 (2), 248-253. https://doi.org/10.1016/j.fitote.2016.01.010
  103. Buhl, T., Legler, T.J., Rosenberger, A., et al. (2012). Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendrtic cell-based immunotherapy. Cancer Immunology, Immunotherapy. 61 (11), 2021-2031. https://doi.org/10.1007/s00262-012-1262-0
  104. Byoungjae, K., & Kim, T.H. (2018). Fundamental role of dendritic cells in inducing Th2 responses. Korean Journal of Internal Medicine. 33, 483-489. https://doi.org/10.3904/kjim.2016.227
  105. Cannarile, L., Delfino, D.V., Adorisio, S., et al. (2019). Implicating the role of GILZ in glucocorticoid modulation of T-cell activation. Frontiers in Immunology. 10. Article number: 1823. Retrieved from https://doi.org/10.3389/fimmu.2019.01823
  106. Cauwels, A., & Tavernier, J. (2020). Tolerizing strategies for the treatment of autoimmune diseases: from ex vivo to in vivo strategies. Frontiers in Immunology. Article number: 674. Retrieved from https://doi.org/10.3389/fimmu.2020.00674
  107. Chakraborty, P.D., & Bhattacharyya, D. (2005). Isolation of fibronectin type III like peptide from human placental extract used as wound healer. Journal of Chromatography. 818, 67-73. https://doi.org/10.1016/j.jchromb.2004.09.059
  108. Chakraborty, P.D., De, D., Bandyopadhyay, S., & Bhattacharyya, D. (2009). Human aqueous placental extract as a wound healer. Journal of Wound Care. 18 (11), 462-467. https://doi.org/10.12968/jowc.2009.18.11.44987
  109. Chizh, N.A. (2017). Endoscopic cryosurgery. Problems of Cryobiology and Cryomedicine. 27 (1), 3-18. https://doi.org/10.15407/cryo27.01.003
  110. Chub, O.V., Prokopiuk, V.Y., Musatova, I.B., & Prokopiuk, O.S. (2017). Effect of implantation of cryopreserved placental explants on life and health spans (experimental study). Problems of Cryobiology and Cryomedicine. 27 (2), 184. https://doi.org/10.15407/cryo27.02.184
  111. Chyzh, M.O., Belochkina, I.V., & Hladkykh, F.V. (2021). Cryosurgery and physical medicine in treatment of cancer. Ukrainian journal of radiology and oncology. 29 (2), 127-149. https://doi.org/10.46879/ukroj.2.2021.127-149
  112. Çimen, M.Y.B. (2008). Free radical metabolism in human erythrocytes. Clinica Chimica Acta. 390, 1-11. https://doi.org/10.1016/j.cca.2007.12.025
  113. Dai, C., Kiss, L.P., & Liu, Y. (2008). Animal models of kidney diseases. In Conn, P.M. (eds.) Sourcebook of models for biomedical research. (pp. 657-664). Totowa: Humana Press. https://doi.org/10.1007/978-1-59745-285-4_68
  114. De, D., Chakraborty, P.D., & Bhattacharyya, D. (2009). Analysis of free and bound NADPH in aqueous extract of human placenta used as wound healer. Journal of Chromatografy B: Analytical Technologies in the Biomedical and Life Sciences. 877 (24), 2435-2442. https://doi.org/10.1016/j.jchromb.2009.05.018
  115. De Francesco, E.M., Sotgia, F., & Lisanti, M.P. (2018). Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochemical Journal. 475 (9), 1611-1634. https://doi.org/10.1042/BCJ20170164
  116. De Witt Hamer, P.C., Van Tilborg, A.A., Eijk, P.P., et al. (2007). The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 27 (14), 2091-2096. https://doi.org/10.1038/sj.onc.1210850
  117. Deng, C., Ling, S., Liu, X., et al. (2015). Decreased expression of matrix metalloproteinase-1 in the maternal umbilical serum, trophoblasts and decidua leads to preeclampsia. Experimental and Therapeutic Medicine. 9 (3), 992-998. https://doi.org/10.3892/etm.2015.2194
  118. Dewhirst, M.W., Cao, Y., & Moeller, B. (2008). Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Reviews Cancer. 8 (6), 425-437. https://doi.org/10.1038/nrc2397
  119. Diabina, O.A., Ostankov, M.V., Bondarovich, N.A., & Goltsev, A.N. (2014). Freeze-thawing-cycle-dependent cryoability of Ehrlich carcinoma stemness-like cells. In Abstracts of 50th SLTB Annual Scientific Conference & AGM ‘Freezing biological time’ (Oct. 8-10 2014, London, UK). (pp. 73). London.
  120. Dong, W., & Yin, L. (2014). Expression of lipoxin A4, TNFα and IL-1β in maternal peripheral blood, umbilical cord blood and placenta, and their significance in preeclampsia. Hypertension in Pregnancy. 33 (4), 449-456. https://doi.org/10.3109/10641955.2014.931419
  121. Edwards, M.J., Broadwater, R., Tafra, L., et al. (2004). Progressive adoption of cryoablative therapy for breast fibroadenoma in community practice. American Journal of Surgery. 188 (3), 221-224. https://doi.org/10.1016/j.amjsurg.2004.07.002
  122. Fuller, B., Gonzalez-Molina, J., Erro, E., et al. (2017). Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Therapy Insights. 3 (5), 359-378. https://doi.org/10.18609/cgti.2017.038
  123. Galchenko, S.E. (2005). Extracts of cryopreserved fragments of xenoorgans: procurement and biological effect. Problems of Cryobiology. 15 (3), 403-406.
  124. García-González, P.A., Schinnerling, K., Sepúlveda-Gutiérrez, A., et al. (2017). Dexamethasone and monophosphoryl lipid a induce a distinctive profile on monocyte-derived dendritic cells through transcriptional modulation of genes associated with essential processes of the immune response. Frontiers in Immunology. 8. Article number 1350. Retrieved from https://doi.org/10.3389/fimmu.2017.01350
  125. Ghanekar, S.A., Bhatia, S., Ruitenberg, J.J., et al. (2007). Phenotype and in vitro function of mature MDDC generated from cryopreserved PBMC of cancer patients are equivalent to those from healthy donors. Journal of Immune Based Therapies and Vaccines. 5. Article number: 7. Retrieved from https://doi.org/10.1186/1476-8518-5-7
  126. Goltsev, A.N., Babenko, N.N., Dubrava, T.G., et al. (2006). Modification of the state of bone marrow hematopoietic cells after с International journal of refrigeration. 29 (3), 358-367. https://doi.org/10.1016/j.ijrefrig.2005.07.007
  127. Goltsev, A.N., Babenko, N.N., Gaevskaya, Yu.A., et al. (2017). Nanotechniques inactivate cancer stem cells. Nanoscale Research Letters. 12 (1). Article number: 415. Retrieved from https://doi.org/10.1186/s11671-017-2175-9
  128. Goltsev, A.N., Bondarovich, N.A., Babenko, N.N., et al. (2017). Contribution of Ehrlich carcinoma subpopulation composition in maintaining tumor growth. Experimental Oncology. 39 (3), 240.
  129. Goltsev, A.N., Bondarovich, N.A., Babenko, N.N., et al. (2018). Freezing conditions determine functional potential of tumor cells. Cryobiology. 85, 168. https://doi.org/10.1016/j.cryobiol.2018.10.188
  130. Goltsev, A.N., Grischenko, V.I., Rassokha, I.V., & Ostankov, M.V. (2003). Possibility of using the embryo fetoplacental complex products to correct apoptotic processes under autoimmune diseases. Problems of Cryobiology. (4), 41-48.
  131. Goltsev, A.N., Ostankova, L.V., Lutsenko, E.D., et al. (2000). Response of the lymphohemopoietic system of the organism on the injection of the products of the fetoplacental complex. Problems of Cryobiology. (2), 15-30.
  132. Goltsev, A.N., Porozhan, Ie.A., Babenko, N.N., & Ostankov, M.V. (2014). Cryopreservation of fetal neural cells. Refrigeration science and technology. (1), 201-206.
  133. Greenberg, D.K., & Jin, K. (2013). Vascular endothelial growth factors (VEGFs) and stroke. Cellular and Molecular Life Sciences. 70 (10), 1753-1761. https://doi.org/10.1007/s00018-013-1282-8
  134. Gueguen, C., Bouley, J., Moussu, H., et al. (2016).Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy. Journal of Allergy and Clinical Immunology. 137, 545-558. https://doi.org/10.1016/j.jaci.2015.09.015
  135. Gul, A., Lone, A., & Ahmad, А. (2013). Implications of umbilical cord blood serum in clinical applications. Health. 4 (4), 71-75.
  136. Haddock, R., Lin-Gibson, S., Lumelsky, N., et al. (2017). Manufacturing cell therapies: the paradigm shift in health care of this century. The National Academy of Medicine’s Perspectives. Discussion Paper. National Academy of Medicine, Washington, DC. June 23. Retrieved from https://doi.org/10.31478/201706c
  137. Hale, J.P., Winlove, C.P., & Petrov, P.G. (2011). Effect of hydroperoxides on red blood cell membrane mechanical properties. Biophysical Journal. 101, 1921-1929. https://doi.org/10.1016/j.bpj.2011.08.053
  138. Hao, L., Zhang, C., Chen, X., et al. (2009). Human umbilical cord blood-derived stromal cells suppress xenogeneic immune cell response in vitro. Croatian Medical Journal. 50 (4), 351-360. https://doi.org/10.3325/cmj.2009.50.351
  139. Hayashida, K., Bartlett, A.H., Chen, Y., & Park, P.W. (2010). Molecular and cellular mechanisms of ectodomain shedding. Anatomical Record. 293 (6), 925-937. https://doi.org/10.1002/ar.20757
  140. Hayden, H., Friedl, J., Dettke, M., et al. (2009). Cryopreservation of monocytes is superior to cryopreservation of immature or semi-mature dendritic cells for dendritic cell-based immunotherapy. Journal of Immunotherapy. 32 (6), 638-654. https://doi.org/10.1097/CJI.0b013e3181a5bc13
  141. Hollier, L., Keelan, J., Jamnadass, E., et al. (2015). Adult digit ratio (2D:4D) is not related to umbilical cord androgen or estrogen concentrations, their ratios or net bioactivity. Early Human Development. 91 (2), 111-117. https://doi.org/10.1016/j.earlhumdev.2014.12.011
  142. Iwatani, H., & Imai, E. (2010). Kidney repair using stem cells: myth or reality as atherapeutic option. Nephrology. 23 (2), 143-146.
  143. Jansen, M.A.A., Spiering, R., Broere, F., et al. (2018). Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases? 153 (1), 51-59. https://doi.org/10.1111/imm.12811
  144. Jazayeri, M.G., Kshersagar, J., Desai, S.R., & Sharma, S. (2020). Antiviral properties of placental growth factors: A novel therapeutic approach for COVID-19 treatment. 99, 117-130. https://doi.org/10.1016/j.placenta.2020.07.033
  145. Jazayeri, M.H., Вarzaman, K., Nedaeinia, R., Aghaie, T., & Motallebnezhad, M. (2020). Human placental extract attenuates neurological symptoms in the experimental autoimmune encephalomyelitis model of multiple sclerosis-a putative approach in MS disease? Autoimmunity Highlights. 11 (1). Article number: 14. Retrieved from https://doi.org/10.1186/s13317-020-00137-x
  146. Karimi-Busheri, F., Zadorozhny, V., Carrier, E., & Fakhrai, H. (2013). Molecular integrity and global gene expression of breast and lung cancer stem cells under long-term storage and recovery. Cell Tissue Banking. 14 (2), 175-186. https://doi.org/10.1007/s10561-012-9315-3
  147. Keidar, S., Kaplan, M., Pavlotzky, E., et al. (2004). Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensinconverting enzyme and the receptors for angiotensin II and aldosterone. 109 (18), 2213-2220. https://doi.org/10.1161/01.CIR.0000127949.05756.9D
  148. Kiricuta, I.C., Risca, R., & Morariu, V.V. (1979). The effect of low temperatures on the viability of Ehrlich ascites tumor cells. Morphologie et Embryologie (Bucur). 25 (4), 361-364.
  149. Kirpatovskiy, V.I., Kazachenko, A.V., Kon’kova, T.A., et al. (2006). Functional aftereffects of intraparenchymatous injection of human fetal stem and progenitor cells to rats with chronic and acute renal failure. Bulletin of Experimental Biology and Medicine. 141 (4), 500-506. https://doi.org/10.1007/s10517-006-0209-x
  150. Kitagawa, T., Masuda, Y., Tominaga, T., & Kano, M. (2001). Cellular biology of cryopreserved allograft valves. Journal of Medical Investigation. 48 (3-4), 123-132.
  151. Kondakov, I.I. (2005). Anti-atherogenic effects of the drug cryopreserved fetoplacental complex in experimental atherosclerosis. Problems of Cryobiology 15 (3), 435-439.
  152. Koren, S., & Bentires-Alj, M. (2015). Breast tumor heterogeneity: source of fitness. Hurdle for therapy. Molecular Cell. 60 (4), 537-546. https://doi.org/10.1016/j.molcel.2015.10.031
  153. Kottke-Marchant, K., & Corcoran, G. (2002). The laboratory diagnosis of platelet disorders: an algorithmic approach. Archives of Pathology & Laboratory Medicine. 126, 133-146. https://doi.org/10.5858/2002-126-0133-TLDOPD
  154. Kovalov, G.O., Vlasov, O.O., Myroshnychenko, M.S., & Sandomirskiy, B.P. (2019). Experimental model of skin cryodestruction. Problems of Cryobiology and Cryomedicine. 29 (1), 88-101. https://doi.org/10.15407/cryo29.01.088
  155. Li, K., Chen, Yu., Zhang, J., et al. (2020). Microenvironment derived from metanephros transplantation inhibits the progression of acute kidney injury in glycerol-induced rat models. Renal Failure. 42 (1), 89-97. https://doi.org/10.1080/0886022X.2019.1708393
  156. Li, W., Ma, H., Zhang, J., et al. (2017). Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Scientific Reports. 7. Article number: 13856. Retrieved from https://doi.org/10.1038/s41598-017-14364-2
  157. Liu, J., & Cao, X. (2015). Regulatory dendritic cells in autoimmunity: a comprehensive review. Journal of Autoimmunity. 63, 1-12. https://doi.org/10.1016/j.jaut.2015.07.011
  158. Luno, J., Barrio, V., Goicoechea, M.A., et al. (2002). Effect of dual blockade of the renin-angiotensin system in primary proteinuric nephropathies. Kidney International. 62 (82), 47-52. https://doi.org/10.1046/j.1523-1755.62.s82.10.x
  159. Makino, M., & Baba, M. (1997). A cryopreservation method of human peripheral blood mononuclear cells for efficient production of dendritic cells. The Scandinavian Journal of Immunology. 45 (6), 618-622. https://doi.org/10.1046/j.1365-3083.1997.d01-441.x
  160. Maldonado, R.A., & von Andrian, U.H. (2010). How tolerogenic dendritic cells induce regulatory T cells. Advances in Immunology. 108, 111-165. https://doi.org/10.1016/B978-0-12-380995-7.00004-5
  161. Mao, Y., Singh-Varma, A., Hoffman, T., et al. (2018). The effect of cryopreserved human placental tissues on biofilm formation of wound-associated pathogen. Journal of Functional Biomaterials. 9 (1). Article number: 3. Retrieved from https://doi.org/10.3390/jfb9010003
  162. Marisa, K.A., Clarke, E.A., & Bertram, P. (2019). The renin-angiotensin-aldosterone system and its suppression. Journal of Veterinary Internal Medicine. 33 (2), 363-382. https://doi.org/10.1111/jvim.15454
  163. Martine, P., Chevriaux, A., Derangère, V., et al. (2019). HSP70 is a negative regulator of NLRP3 inflammasome activation. Cell Death & Disease. 10. Article number: 256. Retrieved from https://doi.org/10.1038/s41419-019-1491-7
  164. McGrath, J.J., Cravalho, E.G., & Huggins, C.E. (1975). An experimental comparison of intracellular ice formation and freeze-thaw survival of HeLa S-3 cells. Cryobiology. 12 (6), 540-550. https://doi.org/10.1016/0011-2240(75)90048-6
  165. Mehanni, S., Ibrahim, N., Hassan, A., et al. (2013). New approach of bone marrow-derived mesenchymal stem cells and human amniotic epithelial cells applications in accelerating wound healing of irradiated albino rats. International Journal of Stem Cells. 6 (1), 45-54. https://doi.org/10.15283/ijsc.2013.6.1.45
  166. Meijerink, M., Ulluwishewa, D., Anderson, R.C., & Wells, J.M. (2011). Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation. Journal of Immunological Methods. 373 (1-2), 136-142. https://doi.org/10.1016/j.jim.2011.08.010
  167. Mendoza, L., Bubeník, J., Indrová, M., et al. (2002). Freezing and thawing of murine bone marrow-derived dendritic cells does not alter their immunophenotype and antigen presentation characteristics. Folia Biologica (Praha). 48 (6), 242-245.
  168. Mojgan, N., Sharifah Zainiyah, S., Munn Sann, L., et al. (2012). Relationship between plasma cord blood zinc and infant birth weight in fatemieh hospital, hamadan, Iran. Malaysian Journal of Public Health Medicine. 12 (1), 49-56.
  169. Molloy, A., Mills, J., Cox, C., et al. (2005). Choline and homocysteine interrelations in umbilical cord and maternal plasma at delivery. American Journal of Clinical Nutrition. 82 (4), 836-842. https://doi.org/10.1093/ajcn/82.4.836
  170. Motta, A., Schmitz, C., Rodrigues, L., et al. (2007). Mycobacterium tuberculosis heat-shock protein70 impairs maturation of dendritic cells from bone marrow precursors, induce interleukin-10 production and inhibits T-cell proliferation in vitro. 121 (4), 462-472. https://doi.org/10.1111/j.1365-2567.2007.02564.x
  171. Mukherjee, C., Saleem, S., Das, S., Biswas, S.C., & Bhattacharyya, D. (2020). Human placental laminin: Role in neuronal differentiation, cell adhesion and proliferation. Journal of Biosciences. 45. Article number: 93. Retrieved from https://doi.org/10.1007/s12038-020-00043-4
  172. Murugan, R., & Kellum, J.A. (2011). Acute kidney injury: what’s the prognosis? Nature Reviews Nephrology. 7, 209-217. https://doi.org/10.1038/nrneph.2011.13
  173. Musatova, I.B., Volina, V.V.., Chub, O.V., Prokopyuk, V.Yu., & Prokopyuk, O.S. (2017). Effects of implantation of cryopreserved placental explants on the behavioral indices and morphological characteristics of the cerebral structures in senescent mice. 49 (5), 363-371. https://doi.org/10.1007/s11062-018-9696-4
  174. Nagae, M., Nagata, M., Teramoto, M., et al. (2020). Effect of porcine placenta extract supplement on skin condition in healthy adult women: a randomized, double-blind placebo-controlled study. 12 (6). Article number: 1671. Retrieved from https://doi.org/10.3390/nu12061671
  175. Nagase, M., Shibata, S., Yoshida, S., et al. (2006). Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. (47), 1084-1093. https://doi.org/10.1161/01.HYP.0000222003.28517.99
  176. Nakamura, H., Yokoyama, Y., Motoyoshi, S., et al. (1979). Effect of a nonsteroidal anti-inflammatory agent, tolmetin sodium on exudative inflammation in experimental animals. Nippon Yakurigaku Zasshi. 75 (5), 447-458. https://doi.org/10.1254/fpj.75.447
  177. Narozhnyi, S., Bobrova, O., Rozanova, S., & Nardid, O. (2019). Towards placenta storage conditions optimization and standardization. In Europe Biobank Week 2019. Biobanking for a healthier world. Abstract book poster presentations (8-11.10.2019, Lübeck, Germany). (p.9). Lubeck.
  178. Navarro-Barriuso, J., Mansilla, M.J., & Martínez-Cáceres, E.M. (2018). Searching for the transcriptomic signature of immune tolerance induction-biomarkers of safety and functionality for tolerogenic dendritic cells and regulatory macrophages. Frontiers in Immunology. Article number: 2062. Retrieved from https://doi.org/10.3389/fimmu.2018.02062
  179. Niks, M., & Otto, M. (1990). Towards an optimized MTT assay. Journal of Immunological Methods. 130 (1), 149-151. https://doi.org/10.1016/0022-1759(90)90309-J
  180. Nikulina, V., Kuchma, M., Bukreieva, T., et al. (2019). Cryopreservation of placenta tissue allows isolating viable mesenchymal and hematopoietic stem cells. Cytotherapy. 21 (5), 78-79. https://doi.org/10.1016/j.jcyt.2019.03.485
  181. Ozaslan, M., Karagoz, I.D., Kilic, I.H., Guldur, M.E. (2011). Ehrlich ascites carcinoma. African Journal of Biotechnology. 10 (13), 2375-2378.
  182. Pan, S.Y., Chan, M.K.S., Wong, M.B.F., Klokol, D., & Chernykh, V. (2017). Placental therapy: An insight to their biological and therapeutic properties. Journal of Medicine and Therapeutics. 1 (3), 1-6.
  183. Park, H.-J., Shim, H.S., Lee, S., et al. (2018). Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats. BMC Complementary and Alternative Medicine. Article number: 149. Retrieved from https://doi.org/10.1186/s12906-018-2193-x
  184. Parks, D.A., Williams, T.K., & Beckman, J.S. (1998). Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. American Journal of Physiology. 254 (5), G774-G778. https://doi.org/10.1152/ajpgi.1988.254.5.G768
  185. Parolini, O., Alviano, F., Bagnara, G.P., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 26 (2), 300-311. https://doi.org/10.1634/stemcells.2007-0594
  186. Pegg, D.E. (2007). Principles of Cryopreservation. In: Day, J.G., Stacey, G.N. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 368. (pp. 39-57). Totowa: Humana Press. https://doi.org/10.1007/978-1-59745-362-2_3
  187. Perchik, O. (2005). Possibilites of placenta cryoextract use when treating late symptoms of climacteric syndrome. Przeglad lekarski. 62 (1), 70.
  188. Petrenko, Y., Syková, E., & Kubinová, Š. (2017). The therapeutic potential of three dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research & Therapy. 8. Article number: 94. Retrieved from https://doi.org/10.1186/s13287-017-0558-6
  189. Pischiutta, F., Sammali, E., Parolini, O., Carswell, H.V.O., & Zanier, E.R. (2018). Placenta-derived cells for acute brain injury. Cell Transplantation. 27 (1), 151-167. https://doi.org/10.1177/0963689717732992
  190. Pogozhikh, D.N., Rozanova, E.D., & Nardid, O.A. (2008). Change of properties of human placenta aqueous-saline extracts during low temperature storage. Problems of Cryobiology. 18 (1), 22-26.
  191. Pogozhykh, D., Prokopyuk, V., Pogozhykh, O., Mueller, T., & Prokopyuk, O. (2015). Influence of factors of cryopreservation and hypothermic storage on survival and functional parameters of multipotent stromal cells of placental origin. PLoS One. 10 (10). Article number: e0139834. Retrieved from https://doi.org/10.1371/journal.pone.0139834
  192. Pogozhykh, O., Prokopyuk, V., Figueiredo, C., & Pogozhykh, D. (2018). Placenta and placental derivatives in regenerative therapies: experimental studies, history, and prospects. Stem Cells International. 2018. Article number: 4837930. Retrieved from https://doi.org/10.1155/2018/4837930
  193. Popovych, Y.O. (2014). Cryopreserved cord blood preparations in combined surgical treatment of purulent complications of type II diabetes mellitus. Problems of Cryobiology and Cryomedicine. 24 (4), 332-345. https://doi.org/10.15407/cryo24.04.332
  194. Prokopiuk, V.Yu. (2018). Influence of media conditioned by cryopreserved and fresh placental explants and cells on murine uterine and ovarian organotypic cultures. Problems of Cryobiology and Cryomedicine. 28 (2),139-150. https://doi.org/10.15407/cryo28.02.139
  195. Prokopiuk, V.Yu., Falko, O.V., Karpenko, V.G., Chub, O.V., & Loginova, O.O. (2018). Influence of native and cryopreserved placental derivatives on the splenocyte functional characteristics in vitro. Bulletin of problems in biology and medicine. (2), 221-223. https://doi.org/10.29254/2077-4214-2018-2-144-221-224
  196. Prokopyuk, O.S., Lipina, O.V., & Musatova, I.B. (2008). About clinical efficiency of cryopreserved human cord blood serum. Problems of Cryobiology. 18 (4), 535-537.
  197. Prokopyuk, V.Y., Chub, O.V., Shevchenko, N.A., et al. (2017). Cryopreserved placental explants increase lifespan of male mice and change survival features of female mice. Problems of Cryobiology and Cryomedicine. 27 (2), 143-150. https://doi.org/10.15407/cryo27.02.143
  198. Prokopyuk, V.Yu., Chub, O.V., Shevchenko, M.V., & Prokopyuk, O.S. (2017). Placental stem cells, organotypic culture and human placenta extract have neuroprotective activity. Cell and Organ Transplantology. 5 (1), 39-42. https://doi.org/10.22494/cot.v5i1.67
  199. Prokopyuk, V.Yu., Karpenko, V.G., Shevchenko, M.V., et al. (2020). Experience in clinical application of cryopreserved placental derivatives: cells, tissue, membranes, extract, and cord blood serum. Innovative Biosystems and Bioengineering. 4 (3), 160-168. https://doi.org/10.20535/ibb.2020.4.3.215215
  200. Prokopyuk, V.Yu., Pogozhykh, D., Pogozhykh, O., et al. (2016). Influence of cryopreservation on survival of placental, umbilical cord, and fetal membrane explants, as well as placental cells within spheroids and alginate microspheres. In Society for Low Temperature Biology Annual Meeting. (7 Sep. 2016, Dresden, Germany). Dresden.
  201. Pustynskiy, I.N., Tabolinovskaya, T.D., Tkachev, S.I., et. al. (2017). Cryo-radiotherapy for local lyadvanced recurrent skin cancer of the face. Siberian journal of oncology. 16 (6), 67-72. https://doi.org/10.21294/1814-4861-2017-16-6-67-72
  202. Radhakrishnan, A.K., Sim, G.C., & Cheong, S.K. (2012). Comparing the ability of freshly generated and cryopreserved dendritic cell vaccines to inhibit growth of breast cancer in a mouse model. BioResearch Open Access. 1 (5), 239-246. https://doi.org/10.1089/biores.2012.0229
  203. Re, R., Pellegrini, N., Proteggente, A., et al. (1999). Antioxidant activity applying an improved ABTS radical cation depolarization assay. Free Radical Biology and Medicine. 26 (9/10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  204. Ricardo, S., Vieira, A.F., Gerhard, R., et al. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology. 64 (11), 937-946. https://doi.org/10.1136/jcp.2011.090456
  205. Ronchetti, S., Migliorati, G., & Riccardi, C. (2015). GILZ as a mediator of the anti-inflammatory effects of glucocorticoids. Frontiers in Endocrinology. 6. Article number: 170. Retrieved from https://doi.org/10.3389/fendo.2015.00170
  206. Rozanova, S., Cherkashina, Y., Repina, S., et al. (2012). Protective effect of placenta extracts against nitrite-induced oxidative stress in human erythrocytes. Cellular & Molecular Biology Letters. 17 (2), 240-248. https://doi.org/10.2478/s11658-012-0007-6
  207. Rozanova, S.L., Rozanova, E.D., Nardid, O.A., & Karpenko, V.G. (2011). Antioxidant activity of placenta extracts after low temperature and hypothermic storage. Problems of Cryobiology. 21 (3), 291-300.
  208. Santos, K.M., Maciel, F.P., Souza, C.M., et al. (2015). Evaluation of different methods of cryopreservation of Ehrlich tumor cells. CryoLetters. 36 (2), 68-73.
  209. Sasai, K., Romer, J.T., Lee, Y., et al. (2006). Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Research. 66 (8), 4215-4222. https://doi.org/10.1158/0008-5472.CAN-05-4505
  210. Schülke, S. (2018). Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Frontiers in Immunology. 9. Article number: 455. Retrieved from https://doi.org/10.3389/fimmu.2018.00455
  211. Sesti-Costa, R., Mendes de Moraes-Vieira, P.M., & Cervantes-Barragan, L. (2020). Dendritic cells: immune response in infectious diseases and autoimmunity mediators of inflammation. Mediators of Inflammation. 2020. Article number: 2948525. Retrieved from https://doi.org/10.1155/2020/2948525
  212. Sharfuddin, A.A., & Molitoris, B.A. (2011). Pathophysiology of ischemic acute kidney injury. Nature Reviews Nephrology. (7), 189-200. https://doi.org/10.1038/nrneph.2011.16
  213. Shevtsov, M., Huile, G., & Multhoff, G. (2018). Membrane heat shock protein 70: a theranostic target for cancer therapy. Philosophical Transactions of the Royal Society B: Biological Sciences. 373 (1738). Article number: 20160526. Retrieved from https://doi.org/10.1098/rstb.2016.0526
  214. Shibata, S., Nagase, M., Yoshida, S., et al. (2007). Podocyte as the target for aldosterone: roles of oxidativestress and Sgk1. Hypertension. (49), 355-364. https://doi.org/10.1161/01.HYP.0000255636.11931.a2
  215. Shibata, T., Yamashita, T., Suzuki, K., et al. (1998). Enhancement of experimental pulmonary metastasis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Research. 18 (6A), 4443-4448.
  216. Shiva, S.R.C.S., Subramanyam, M.V.V., Vani, R., et al. (2007). In vitro models of oxidative stress in rat erythrocytes: Effect of antioxidant supplements. Toxicology in Vitro. 21 (5), 1355-1364. https://doi.org/10.1016/j.tiv.2007.06.010
  217. Sies, H., & Jones, D.P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology. 21, 363-383. https://doi.org/10.1038/s41580-020-0230-3
  218. Silberman, S. (1999). Platelets: preparations, transfusion, modifications, and substitutes. Archives of Pathology & Laboratory Medicine. 123 (10), 889-894. https://doi.org/10.5858/1999-123-0889-P
  219. Silini, A.R., Cargnoni, A., Magatti, M., Pianta, S., & Parolini, O. (2015). The long path of human placenta, and its derivatives, in regenerative medicine. Frontiers in Bioengineering and Biotechnology. 3. Article number: 162. Retrieved from https://doi.org/10.3389/fbioe.2015.00162
  220. Silveira, G.F., Wowk, P.F., Machado, A.M., et al. (2013). Immature dendritic cells generated from cryopreserved human monocytes show impaired ability to respond to LPS and to induce allogeneic lymphocyte proliferation. PLoS One. 8 (7). Article number: e712912013. Retrieved from https://doi.org/10.1371/journal.pone.0071291
  221. Simionescu, N., & Simionescu, M. (1988). Endothelial cell biology in health and disease. Oxford: Oxford Press. https://doi.org/10.1007/978-1-4613-0937-6
  222. Simmons, R.M., Ballman, K.V., Cox, C., et al. (2016). A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Annals of Surgical Oncology. 23 (8), 2438-2445. https://doi.org/10.1245/s10434-016-5275-3
  223. Snyder, L.M., Fortier, N.L., Trainor, J., et al. (1985). Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. Journal of Clinical Investigation. 76, 1971-1977. https://doi.org/10.1172/JCI112196
  224. Snyder, S., Pendergraph, B. (2005). Detection and evaluation of chronic kidney disease. American Family Physician. 72 (9), 1723-1732.
  225. Sooranna, S.R., Oteng-Ntim, E., Meah, R., Ryder, T.A., & Bajoria, R. (1999). Characterization of human placental explants: morphological, biochemical and physiological studies using first and third trimester placenta. Human Reproduction. 14 (2), 536-541. https://doi.org/10.1093/humrep/14.2.536
  226. Spiering, R., van der Zee, R., Wagenaar, J., et al. (2013). Mycobacterial and mouse HSP70 have immuno-modulatory effects on dendritic cells. Cell stress & chaperones. 18 (4), 439-446. https://doi.org/10.1007/s12192-012-0397-4
  227. Springer, T., Galfrè, G., Secher, D.S., & Milstein, C. (1978). Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. European Journal of Immunology. 8 (8), 539-551. https://doi.org/10.1002/eji.1830080802
  228. Stocki, P., & Dickinson, A.M. (2012). The immunosuppressive activity of heat shock protein 70. Autoimmune Diseases. 2012. Article number: 617213. Retrieved from https://doi.org/10.1155/2012/617213
  229. Sun, T., & Ma, Q.-H. (2013). Repairing neural injuries using human umbilical cord blood. Molecular Neurobiology. 47 (3), 938-945. https://doi.org/10.1007/s12035-012-8388-0
  230. Sunil, K.G., Mehran, A., Tae-Hyoung, K., et al. (2019). Effect of human amniotic fluid stem cells on kidney function in a model of chronic kidney disease. Tissue Engineering Part A. 25 (21-22), 1493-1503. https://doi.org/10.1089/ten.tea.2018.0371
  231. Sur, T.K., Biswas, T.K., Ali, L., & Mukherjee, B. (2003). Anti-inflammatory and anti-platelet aggregation activity of human placental extract. Acta Pharmacologica Sinica. 24 (2), 187-192.
  232. Takenobu, H., Yamazaki, A., Hirata, M., Umata, T., & Mekada, E. (2003). The stress- and inflammatory cytokine-induced ectodomain shedding of heparin-binding epidermal growth factor-like growth factor is mediated by p38 MAPK, distinct from the 12-O-tetradecanoylphorbol-13-acetate- and lysophosphatidic acid-induced signaling cascades. Journal of Biological Chemistry. 278 (19), 17255-17262. https://doi.org/10.1074/jbc.M211835200
  233. Takuma, K., Mizoguchi, H., Funatsu, Y., et al. (2012). Placental extract improves hippocampal neuronal loss and fear memory impairment resulting from chronic restraint stress in ovariectomized mice. Journal of Pharmacological Sciences. 120, 89-97. https://doi.org/10.1254/jphs.12115FP
  234. Tatsutani, K., Rubinsky, B., Onik, G., & Dahiya, R. (1996). Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells. Urology. 48 (3), 441-447. https://doi.org/10.1016/S0090-4295(96)00199-9
  235. Tiwary, S.K., Shukla, D., Tripathi, A.K., et al. (2006). Effect of placental-extract gel and cream on healing wounds. Journal of Wound Care. 15 (7), 325-328. https://doi.org/10.12968/jowc.2006.15.7.26937
  236. Tramontano, A., Knight, T., Vizzuso, D., et al. (2006). Nested N-terminal megalin fragments induce high-titer autoantibody and attenuated Heymann nephritis. Journal of the American Society of Nephrology. 17 (7), 1979-1985. https://doi.org/10.1681/ASN.2005101144
  237. Tuten, A., Erman, H., Korkmaz, G., et al. (2014). Comparison of maternal and umbilical cord blood soluble lectin-like oxidized low-density lipoprotein receptor 1 levels in early- and late-onset preeclampsia. Archives of Gynecology and Obstetrics. 290 (5), 1007-1013. https://doi.org/10.1007/s00404-014-3294-5
  238. Varner, M., Marshall, N., Rouse, D., et al. (2015). The association of cord serum cytokines with neurodevelopmental outcomes. American Journal of Perinatology. 30 (2), 115-122. https://doi.org/10.1055/s-0034-1376185
  239. Vescovi, A.L., Galli, R., & Reynolds, B.A. (2006). Brain tumour stem cells. Nature Reviews Cancer. 6 (6), 425-436. https://doi.org/10.1038/nrc1889
  240. Vétillard, M., & Schlecht-Louf, G. (2018). Glucocorticoid-induced leucine zipper: fine-tuning of dendritic cells function. Frontiers in Immunology. 9. Article number: 1232. Retrieved from https://doi.org/10.3389/fimmu.2018.01232
  241. Vlasov, O.O., Kovalov, G.O., & Myroshnychenko, M.S. (2020). Morphological features of a cold skin wound under the influence of an extract of cryopreserved skin fragments of piglets (experimental study). Wiadomości Lekarskie. 73 (2), 306-312. https://doi.org/10.36740/WLek202002119
  242. Wang, L., Huckelhoven, A., Hong, J., et al. (2016). Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring – development of an algorithm. Cytometry. 89 (3), 246-258. https://doi.org/10.1002/cyto.a.22813
  243. Wculek, S.K., Cueto, F.J., Mujal, A.M., et al. (2020). Dendritic cells in cancer immunology and immunotherapy. Nature Reviews Immunology. 20 (1), 7-24. https://doi.org/10.1038/s41577-019-0210-z
  244. World Health Organization. (2020). World health statistics 2020: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization.
  245. Yang, J., Yang, Y., Ren, Y., et. al. (2013). A mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells. PLoS One. 8 (10). Article number: e77729. Retrieved from https://doi.org/10.1371/journal.pone.0077729
  246. Yang, M., Xu, W., Wang, Y., et al. (2018). CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Molecular Pain. 14. Article number: 1744806918808150. Retrieved from https://doi.org/10.1177/1744806918808150
  247. Yurchenko, T.N., Kondakov, I.I., & Strona, V.I. (2014). Renal effects following introduction of cryopreserved placental extract on the background of experimental renal failure. Problems of Cryobiology and Cryomedicine. 24 (1), 75-78. https://doi.org/10.15407/cryo24.01.075
  248. Zeck, J., Schallheim, J., Lew, S.Q., & DePalma, L. (2013). Whole blood platelet aggregation and release reaction testing in uremic patients. BioMed Research International. Article number: 486290. Retrieved from https://doi.org/10.1155/2013/486290
  249. Zhang, D., Lijuan, G., Jingjie, L., et al. (2011). Cow placenta extract promotes murine hair growth through enhancing the insulin – like growth factor-1. Indian Journal of Dermatology. 56 (1), 14-18. https://doi.org/10.4103/0019-5154.77544

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top