Diamonds of Ukraine

Authors:

V.M. Kvasnytsya

Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

ORCID:0000-0002-3692-7153

 

Reviewers:

V.I. Pavlyshyn

Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

ResearcherID: D-6558-2019

 

О.І. Matkovskyi

Ivan Franko Lviv National University, Lviv, Ukraine.

Scopus AuthorID 6508384388

 

D.K. Voznyak

Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

ORCID:0000-0002-6124-2033

 

Affiliation:

Project: Scientific book

Year: 2024

Publisher: PH "Naukova Dumka"

Pages: 404

DOI:

https://doi.org/10.15407/978-966-00-1890-7

ISBN: 978-966-00-1890-7

Language: Ukrainian

How to Cite:

Kvasnytsya, V.M. (2024) Diamonds of Ukraine. Kyiv, Naukova Dumka. 404p. [in Ukrainian].

Abstract:

Diamonds from Ukraine were studied in terms of their separation into their geological and genetic types, distribution and occurrence, the ages of their host rocks, and their nature in Proterozoic and Neogene age sediments. The placer mantle diamonds are variable in morphology, internal structure, carbon isotopes, concentration and degree of aggregation of nitrogen centers and mineral inclusions. Placer diamonds, primarily from Neogene sands, are anomalous in many respects. They are mostly extremely small, polyhedral, and morphologically diverse showing octahedral, rhombic dodecahedral and cubic forms and they have various colors. In addition to the large heterogeneity in nitrogen concentrations (from 20 to 2000 ppm), many diamonds are characterized by a low degree of aggregation of nitrogen centers, which indicates short mantle residence times. Depending on the nitrogen impurity content, the degree of aggregation of nitrogen centers and the possible temperatures of crystallization, several types of diamonds are distinguished in the studied sedimentary placers. According to new isotope-geochemical data, placer diamonds are characterized by a wide range of carbon isotopic composition (from –33 to +3.3 ‰δ13CVPDB). This may indicate isotopic inhomogeneity of diamond carbon, different modes of formation and chemical variability in their source regions. Impact diamonds from meteorite craters and Neogene sedimentary deposits of Ukraine are paramorphoses from graphite crystals with similar morphological, isotopic and structural characteristics. There are seven meteorite craters and several Neogene placers in the Ukrainian Shield containing impact apographitic diamond. In this work impact diamonds from the Bilylivka meteorite crater and from the Samotkan’ Neogene titanium-zirconium placer were studied in detail. The results of a comprehensive study of impact diamond crystals — morphology, microtopography, microstructure, carbon isotope composition, photoluminescence, optical, infrared, and Raman spectroscopy — are presented. The size of the impact diamonds is up to 0.5mm. Impact diamond crystals are mostly two- or three-phase polycrystalline aggregates (diamond, lonsdaleite, graphite). They show external morphological and internal microstructural features of solid-state phase transition of graphite to diamond during impact shock metamorphism – they are paramorphoses on graphite crystals. Microstructural features of the graphite-diamond transition in the studied crystals of impact diamonds are their polysynthetic (111) twinning and the polycrystalline structure of the twins themselves. The carbon isotopic composition of impact diamonds ranges: for Bilylivka diamonds – from –14.80 to –21.84 ‰ δ13C VPDB, with an average value of –17.21 ‰ δ13C and for Samotkan’ diamonds – from –10.35 to –23.06 ‰ δ13C VPDB, with an average value of –17.64 ‰ δ13C. The photo luminescent and spectroscopic features of the studied diamonds indicate the absence of nitrogen defects in crystals that are characteristic for mantle diamond. The location of the source rocks and potential routes how diamond have been incorporated into the Samotkan’ placer are discussed. The goals of future research of Ukrainian diamonds are discussed. An atlas of diamond crystals of different nature is presented.

For a wide range of geologists, mineralogists and crystallographers, as well as for specialists in other fields of science and technology, who study diamonds and artificially obtain them.

Keywords:

Mantle diamond, impact diamond, crystal morphology, microtopography, microstructure, carbon isotope, nitrogen centers, mineral and fluid inclusions, Neogene placers, meteorite craters, the Ukrainian Shield.

References:

Bartoshinsky, Z.V. & Kvasnitsa, V.N. (1991). Crystal morphology of diamond from kimberlites. Kyiv: Naukova Dumka.
Valter, A.A., Eremenko, G.K., Kvasnitsa, V.N. & Polkanov, Yu.A. (1992). Impact-metamorphogenic carbon minerals. Kyiv: Naukova Dumka.
Geiko, Yu.V., Gursky, D.S., Lykov, L.I., Metalidi, V.S., Pavlyuk, V.N., Prikhodko, V.L., Tsymbal, S.N. & Shimkiv, L.M. (2006). Prospects for the indigenous diamond potential of Ukraine. Kiev-Lvov: Publ. House «Center of Europe».
Gordeev, E.I., Silaev, V.I., Karpov, G.A., Anikin, L.P., Vasiliev, E.A. & Sukharev A.E. (2019). On the history of the discovery and nature of diamonds in volcanic rocks of Kamchatka. Bulletin of Perm University. Geology, 18(4), 307–331. https://doi.org/10.17072/psu.geol.18.4.307
Isaenko, S.I. & Kvasnitsa, V.N. (2014). Raman spectroscopy of microdiamonds from the Samotkan Neogene placer (Ukraine). International conf. “Yushkin Readings – 2014”: materials. Syktyvkar, 181–182.
Kvasnitsa, V.N. (1985). Small diamonds. Kyiv: Naukova Dumka.
Kvasnytsya, V.M., Taran, M.M. & Langer, K. (1999). Prospects for using of small diamonds in Ukraine. Mineralogical journal, 21(2/3), 3–7.
Kvasnytsya, V.M., Wirth R. & Tsymbal, S.M. (2015). Nanomicromorphology and anatomy of crystals of impact diamond from the Bililivska (Zakhidna) astroblem (Ukrainian Shield). Mineralogical journal, 37(4), 36–45. https://doi.org/10.15407/mineraljournal.37.04.036
Kvasnytsya, V.M. (2016). About the endemicity of green microdiamonds in Pobuzhzhye–Transnistria. Reports of the National Academy of Sciences of Ukraine. 1, 57–64. http://jnas.nbuv.gov.ua/article/UJRN-0000461003
Kvasnytsya, V.M., Kvasnitsya, I.V. & Gurnenko, I.V. (2019). Features of the morphology of CVD diamond crystals. Mineralogical journal, 41(2), 18–25. https://doi.org/10.15407/mineraljournal.41.02.018
Kvasnytsya, V.M. (2019). Impact diamonds from the Neogene placer Samotkan, Middle Dnipro region. Mineralogical journal, 41(4), 3–12. https://doi.org/10.15407/mineraljournal.41.04.003
Kvasnytsya, V.M. (2020). Crystal morphology and origin of microdiamonds from the Neogene Samotkan placer (Middle Dnipro region). Mineralogical journal, 42(1), 12-23. https://doi.org/10.15407/mineraljournal.42.01.012
Kvasnytsya, V.M. (2020). Diamonds from terrigenous deposits of the Dnister and Pivdenny Bug river basins. Mineralogical journal, 42(3), 3–16. https://doi.org/10.15407/mineraljournal.42.03.003
Kvasnytsya, V.M. (2021). About the diamonds of the Ingulo—Ingulets’ megablock (the Ukrainian Shield). Mineralogical journal, 43(1), 87–96. https://doi.org/10.15407/mineraljournal.43.01.087
Kvasnytsya, V.M. (2021). Microdiamonds from the Neogene placer Zeleny Yar (Ros’—Tikych megablock of the Ukrainian Shield). Mineralogical journal, 43(2), 3–11. https://doi.org/10.15407/mineraljournal.43.02.003
Kvasnytsya, V.M. (2021). Diamonds of Ukraine: results and goals. Mineralogical journal, 43(3), 25–41. https://doi.org 10.15407/mineraljournal.43.03.025
Kvasnytsya, V.M. (2022a). The size and shape of diamond crystals of different origin. Mineralogical journal, 44(1), 32–40. https://doi.org/10.15407/mineraljournal.44.01.032
Kvasnytsya, V.M. (2022b). Placer diamonds of the East Azov region. Mineralogical journal. 44(2), 3–10. https://doi.org/10.15407/mineraljournal.44.02.003
Lavrova, L.D., Pechnikov, V.A., Pleshakov, A.M., Nadezhdina, E.D. & Shukolyukov, Yu.A. (1999). New genetic type of diamond deposits. Moscow: Scientific World.
Orlov, Yu.L. (1984). Mineralogy of diamond. 2nd ed. Moscow: Nauka.
Polkanov, Yu.A. (2009). Small diamonds of sandy sediments: Distribution. Properties. Origin. Meaning. Simferopol: SPD “Baranovsky A.E.”.
Pokhilenko, N.P., Shumilova, T.G., Afanasyev, V.P. & Litasov, K.D. (2019). Diamond finds in Kamchatka (Tolbachik and Avachinsky volcanoes): a natural phenomenon or contamination? Geology and geophysics, 2019. 60(5), 463-472. https://doi.org/10.15372/RGG2019024
Silaev, V.I., Karpov, G.A., Rakin, V.I., Anikin, L.P., Vasiliev, E.A., Filippov, V.N. & Petrovsky, V.A. (2015). Diamonds in the products of the Tolbachik fissure eruption 2012–2013, Kamchatka. Bulletin .of Perm University. Geology, 14( 1), 6–27. https://doi.org/10.17072/psu.geol.26.6
Silaev, V.I., Kuzmin, I.A., Kolyamkin, V.M., Vasiliev, E.A., Sukhareva, A.E., Smoleva, I.V., Filippova, V.N., Kurbatova, N.S., Khazova, A.F. & Petrovsky, V.A. (2017). Tuffisite diamonds on the Yenisei Ridge. Bulletin of Perm University. Geology, 16(4), 304–329. https://doi.org/10.17072/psu.geol.16.4.304
Khrushchov, D.P., Zosimovich, V.Yu., Lalomov, A.V., Ganzha, O., Vasilenko, S.P., Okholina, T.V., Fursova, A.A. (2015). Miocene titanium–zirconium placers of the Ukrainian Shield and the Dnipro—Donetsк depression: stratigraphic position, lithostratigraphy and paleogeographic conditions. Geological journal, 1(350), 17–34. https://doi.org/10.30836/igs.1025-6814.2015.1.139047
Tsymbal, S.N. & Polkanov, Yu.A. (1975). Mineralogy of titanium-zirconium placers in Ukraine. Kyiv: Naukova Dumka.
Sheremet, E.M., Kozar, N.A., Strekozov, S.N., Chashka, A.I., Bondarenko, V.A., Fedorishin, Yu.I. & Pigulevsky, P.I. (2014). Search for diamonds in the Azov block of the Ukrainian Shield. Donetsk: «Knowledge».
Yatsenko, I.G., Skublov, S.G., Levashova, E.V. , Galankina, O.L. & Bekesha, S.N. (2020). Composition of spherules and lower mantle minerals, isotope-geochemical characteristics of zircon from volcanogenic-clastic facies of the Mriya lamproite pipe. Notes of the Mining Institute, 242, 150–159. https://doi.org/10.31897/pmi.2020.2.150
Anders, E. (1965). Diamonds in meteorites. Scientific American, 213(4), 26-37. https://doi.org/10.1038/scientificamerican1065-26
Capdevila, R., Arndt, N., Letendre, J. & Sauvage, J.F. (1999). Diamonds in volcaniclastic komatiite from French Guiana. Nature, 399, (6735), 456–458. https://doi.org/10.1038/20911
Carlisle, D.B. (1991). Diamonds at the K/T boundary. Nature, 357, 119–120. https://doi.org/10.1038/357119c0
Carlisle, D.B. & Braman, D.R. (1991). Diamonds at the K/T boundary clay of Alberta. Nature, 352, 708–709.
Carter, N.L. & Kennedy, G.C. (1964). Origin of diamonds in the Canyon Diablo and Novo Urei meteorites. Journal of Geophysical Research, 69(12), 2403–2421. https://doi.org/10.1029/JZ069i012p02403
Cartigny, P., Harris, J.W. & Javoy, M. (1998). Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science, 280(5368), 1421–1424. https://doi.org/10.1126/science.280.5368.1421
Cartigny, Р., Chinn, I., Viljoen, K.S. & Robinson, D. (2004). Early Proterozoic ultrahigh pressure metamorphism: Evidence from microdiamonds. Science, 304(5672), 853–855. https://doi.org/ 10.1126/science.1094668
Cartigny, P. (2005). Stable isotopes and the origin of diamond. Elements, 1(2), 79–84. https://doi.org/10.2113/gselements.1.2.79
Cartigny, P. (2010). Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet. Sci. Lett, 296, 329–339. https://doi.org/10.1016/j.epsl.2010.05.015
Chapman, J.G.& Boxer, G.L. (2004). Size distribution analyses for estimating diamond grade and value. Lithos, 76(1–4), 369–375. https://doi.org/10.1016/j.lithos.2004.03.021
Chinn, I., Kyser, K. & Viljoen, F. (2000). Microdiamonds from the Thirsty Lake (Akluilak) dykes, Northwest Territories, Canada. Abstr. of Goldschmidt Conf. 2000, Cambridge Publ., 5(2), 307–308.
Dahl, J.E., Liu, S.G. & Carlson R.M.K. (2003). Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science, 299(5603), 96–99. https://doi.org/10.1126/science.1078239
Das, S., Basu, A.R. & Mukherjee, B.K. (2017). In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology, 45(8), 755–758. https://doi.org/10.1130/G39100.1
Davies, M.R., Griffin, L.W., O’Reilly, O.Y. & Doyle, J.B. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the D027, A154, A21, A418, D018, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55. https://doi.org/10.1016/j.lithos.2004.04.016
Dawson, J.B. & Smith, J.V. (1974). The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite. Geochimica et Cosmochimica Acta, 41(2), 309–323. https://doi.org/10.1016/0016-7037(77)90239-3
De Stefano, A., Lefebvre, N. & Kopylova M. (2006). Enigmatic diamonds in Archean calc-alcalyne lamprophyres of Wawa, southern Ontario, Canada. Contributions to Mineralogy and Petrology, 151, 158–173. https://doi.org/ 10.1007/s00410-005-0052-5
De Stefano, A., Kopylova, M.G., Cartigny, P.& Lefebvre, N.S. (2008). C and N isotope compositions of diamonds from the calc-alkaline lamprophyres of Wawa (Superior Craton). 9th Int. Kimberlite Conf. Extended Abstract, 9IKC-A-00320.
Dilek, Y. & Yang, J.S. (2018). Ophiolites, diamonds, and ultrahigh-pressure minerals: New discoveries and concepts on upper mantle petrogenesis. Lithosphere, 10(1), 3–13. https://doi.org/10.1130/L715.1
Dobrzhinetskaya, L.F. (2012). Microdiamonds – Frontier of ultrahigh-pressure metamorphism: A review. Gondwana Research, 21(1), 207–223. https://doi.org/10.1016/j.gr.2011.07.014
Dobrzhinetskaya, L.F., O’Bannon, E.F. & Sumino H. (2022). Non-cratonic diamonds from UHP metamorphic terranes, ophiolites and volcanic sources. Reviews in Mineralogy and Geochemistry, 88, 191–255. https://doi.org/10.2138/rmg.2022.88.04
El Goresy, A. & Donnay, G. (1968). A new allotropic form of carbon from Ries crater. Science, 161(3839), 363–364. https://doi.org/10.1126/science.161.3839.363
Erjomenko, G.K., Valter, A.A., Kvasnitsa V.N. (1997). Cubic impact diamond: structure, natural etching, origin. Twenty-Sixth microsymposium on comparative planetology: аbstracts. Moscow, P. 35–36.
Ferrari, A.C. & Robertson J. (2004). Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362(1824), 2477–2512. https://doi.org/10.1098/rsta.2004.1452
Ferreira, J.J. (2013). Sampling and estimation of diamond content in kimberlite based on microdiamonds. [Doctoral dissertation, Ecole Nationale Supérieure des Mines de Paris]. PQDT Open. https://theses.hal.science/pastel-00982337/
Foote, A.E. (1891). A new locality for meteoric iron wih a preliminary notice of the discovery of diamonds in the iron. American Journal of Science, 42(251), 413–417.
Gebbie, M.A., Ishiwata, H., McQuade P.J., Petrak, V., Taylor, A., Freiwald, Ch., Dahl, J.E., Carlson, R.M.K., Fokin, A.A., Schreiner, P.R., Shen, Zhi-Xun, Nesladek, M. & Melosh, N.A. (2018). Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features. PNAS, 115(33), 8284–8289. https://doi.org/10.1073/pnas.1803654115
Galimov, E.M. (1991). Isotope fractionation related to kimberlite magmatism and diamond formation. Geochimica et Cosmochimica Acta, 55(6), 1697–1708. https://doi.org/10.1016/0016-7037(91)90140-Z
Galimov, E.M., Kaminsky, F.V., Shilobreeva, S.N., Sevastyanov, V.S., Voropaev, S.A., Khachatryan, G.K., Wirth, R., Schreiber, A., Saraykin, V.V., Karpov G.A. & Anikin, L.P. (2020). Enigmatic diamonds from the Tolbachik volcano, Kamchatka. American Mineralogist, 105(4), 498–509. https://doi.org/10.2138/am-2020-7119
Gilmour, I., Russell, S.S., Arden, J.W., Lee, M. R., Franchi, I.A. &Pillinger, C.T. (1992). Terrestrial carbon and nitrogen isotopic ratios from Cretaceous-Tertiary boundary nanodiamonds. Sience, 258(5088), 1624–1626. https://doi.org/10.1126/science.258.5088.1624
Gilmour, I., Russel, S.S., Pillinger, C.T., Lee, M. & Arden, J.W. (1992). Origin of microdiamonds in KT boundary clays. Abstracts of the Lunar and Planetary Science Conference, 23(1), 413–414. Bibliographic Code: 1992LPI….23..413G
Goldschmidt, V. (1916). Atlas der Krystallformen. Heidelberg: C. Winters Universitatsbuchhandlung, Band 3, tafel 17-48, text 37–51.
Goresy, A., Gillet, P., Chen, M. Künstler, F., Graup, G. & Stähle, V. (2001). In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries crater, Germany. American Mineralogist, 86(5–6), 611–621. https://doi.org/10.2138/am-2001-5-603
Gurov, E.P., Gurova, E.P. & Socur, T.M. (2002). Geology and petrography of the Zapadnaya crater in the Ukrainian Shield. In: Impacts in Precambrian shields [Eds Plado, J. & Pesonen, L.J.] Heidelberg: Springer-Verlag Berlin, 173–188. https:doi.org/10.1007/978-3-662-05010-1_7
Guthrie, G.D., Veblen, D.R., Navon, O. & Rossman, G.R. (1991). Submicrometer fluid inclusions in turbid-diamond coats. Earth and Planetary Science Letters, 105(1–3), 1–12. https://doi.org/10.1016/0012-821X(91)90116-Y
Haggerty, S.E. (2019). Micro-diamonds: Proposed origins, crystal growth laws, and the underlying principle governing resource predictions. Geochimica et Cosmochimica. Acta, 266, 184–196. https://doi.org/10.1016/j.gca.2019.03.036
Harris, J.W., Hawthorne, J.B., Osterveld, M.M. & Wehmeyer E. (1975). A classification scheme for diamond and a comparative study of South African diamond characteristics. In: Physics and Chemistry of the Earth [Eds Ahrens L.H., Dawson J.B., Duncan A.R., Erlank A.J.], 9( 49), 765–783. https://doi.org/10.1016/0079-1946(75)90050-6
Hartman, P. (1965). The non-uniform distribution of faces in a zone. Zeitschrift fürKristallographie, 121(1–6), 78–80.
Heymann, D., Lipschutz, M.E., Nielsen, B. & Anders, E. (1966). Canyon Diablo meteorite: metallographic and mass spectrometric study of 56 fragments. Journal of Geophysical Research, 71(2), 619–641. https://doi.org/10.1029/JZ071i002p00619
Hough, R.M., Gilmour, I., Pillinger, C.T., Arden, J. W., Gilkess, K. W. R., Yuan, J. & Milledge, H. (1995). Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature, 378(2), 41–44. https://doi.org/10.1038/378041а0
Hough, R.M., Gilmour, I., Pillinger, C.T., Langenhorst, F. & Montanari, A. (1997). Diamonds from the iridiumrich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico. Geology, 25(11), 1019–1022. https://doi.org/10.1130/0091-7613(1997)025<1019:DFTIRK>2.3.CO;2
Inoue, T., Irifune, T., Yurimoto, H. & Miyagi, I. (1998). Decomposition of K-amphibole at high pressures and implications for subduction zone volcanism. Physics of the Earth and Planetary Interiors, 107(1–3), 221–231. https://doi.org/10.1016/S0031-9201(97)00135-0
Izraeli, E.S., Harris, J.W. & Navon, O. (2001). Brine inclusions in diamonds: a new upper mantle fluid. Earth and Planetary Science Letters, 187(3–4), 323–332. https://doi.org/10.1016/S0012-821X(01)00291-6
Izraeli, E.S., Harris, J.W. & Navon, O. (2004). Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochimica et Cosmochimica Acta, 68(11), 2561–2575. https://doi.org/10.1016/j.gca.2003.09.005
Jochum, K.P., Hofmann, A.W. & Seufert. H.M. (1993). Tin in mantle-derived rocks: Constraints on Earth evolution. Geochimica et Cosmochimica Acta, 57(15), 3585–3595. https://doi.org/10.1016/0016-7037(93)90141-I
Kalb, G. (1967). Die Morphologie der Diamantkristalle unter Berückschtigung der Oberflächen structur. Neues Jahrbuch für Mineralogie/Monatshefte, 7/8, 193–200.
Kaminsky, F.V., Zakharchenko, O.D., Griffin, W.L., Channer, D.M.DeR. & Khachatryan-Blinova, G.K. (2000). Diamonds from the Guaniamo area, Venezuela. Canadian Mineralogist, 38(6), 1347–1370. https://doi.org/10.2113/gscanmin.38.6.1347
Kaminsky, F.V. & Khachatryan, G.K. (2001). Characteristics of nitrogen and other impurities in diamond as revealed by infrared absorption data. Canadian Mineralogist, 39(6), 1733–1745. https://doi.org/10.2113/gscanmin.39.6.1733
Kaminsky, F.V., Zakharchenko, O.D., Davies, R.M., Griffin, W.L., Khachatryan-Blinova, G.K. & Shiryaev, A.A. (2001). Superdeep diamonds from the Juina, Mato Grosso state, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753. https://doi.org/10.1007/s004100000221
Kaminsky, F.V. (2007). Non-kimberlitic diamondiferous igneous rocks: 25 years on. Journal Geological Society of India, 69(3), 557–575.
Kaminsky, F.V., Wirth, R. & Schreiber, A. (2013). Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogust, 51, 669–688. https://doi.org/10.3749/canmin.51.5.669
Kaminsky, F.V. (2017). The Earth’s Lower Mantle. Composition and Structure. Springer Int. Publ. AG. https://doi.org/10.1007/978-3-319-55684-0
Kaminsky, F.V., Wirth, R., Anikin, L.P. & Schreiber, A. (2019). «Kamchatite» diamond aggregate from northern Kamchatka, Russia: New find of diamond formed by gas phase condensation or chemical vapor deposition. American Mineralogist, 104(1), 140–149. https://doi.org/10.2138/am-2019-6708
Kaminsky, F.V. & Voropaev, S.A. (2021). Modern Concepts on Diamond Genesis. Geochemisery International joirnal, 59(11), 1038–1051. https://doi.org/10.1134/s0016702921110033
Klein-BenDavid, O., Wirth, R. & Navon, O. (2006). TEM imaging and analysis of nanoinclusions in diamonds: a close look at diamond-growing fluids. American Mineralogist, 91(2–3), 353–365. https://doi.org/10.2138/am.2006.1864
Konzett, J. & Fei, Y. (2000). Transport and storage of Potassium in me Earth’s Upper Mantle and Transition Zone: an experimental study to 23 GPa in simplified and natural bulk compositions. Journal of Petrology, 41(4), 583–603. https://doi.org/10.1093/petrology/41.4.583
Konzett, J., Sweeney, R.J., Thompson, A.B. & Ulme, P. (1997). Potassium amphibole stability in the Upper Mantle: an experimental study in a Peralkaline KNCNASH system to 8.5 GPa. Journal of Petrology, 38(5), 537–568. https://doi.org/10.1093/petroj/38.5.537
Kvasnitsa, V.N., Zinchouk, N.N. & Koptil V.I. (1999). Tipomorphizm of diamond microcrystals. Moscow: Publ. House «Nedra».
Kvasnitsa, V.N., Silaev, V.I. & Smoleva I.V. (2016). Carbon isotopic composition of diamonds in Ukraine and their probable polygenetic nature. Geochemistry International, 54(11), 948–963. https://doi.org/10.1134/S0016702916090020
Kvasnytsya, V.M., Glevassky, Ye.B. & Kryvdik S.G. (2004). Paleotectonic, petrological and mineralogical criteria of diamond-bearing ability of the Ukrainian Shield. Mineralogical journal, 26(1), 24–40.
Kvasnytsya, V.M. & Wirth, R. (2009). Nanoinclusions in microdiamonds from Neogenic sands of the Ukraine (Samotkan’ placer): а TEM study. Lithos, 113(3–4), 454–464. https://doi.org/10.1016/j.lithos.2009.05.019
Kvasnytsya, V. (2013). Crystal forms of natural microdiamonds. Diamond and Related Materials, 39, 89–97. https://doi.org/10.1016/j.diamond.2013.08.005
Kvasnytsya, V. & Wirth R. (2013). Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study. Diamond and Related Materials, 32, 7–16. https://doi.org/10.1016/j.diamond.2012.11.010
Kvasnytsya, V., Wirth, R., Dobrzhinetskaya, L., Matzel, J., Jacobsen, B., Hutcheon, I., Tappero, R. & Kovalyukh, M. (2013). New evidence of meteoritic origin of the Tunguska cosmic body. Planetary and Space Science, 84, 131–140. https://doi.org/10.1016/j.pss.2013.05.003
Kvasnytsya, V., Wirth, R., Piazolo, S., Jacob, D.E. & Trimby, P. (2016). Surface morphology and structural types of natural impact apographitic diamonds. Journal Superhard Materials, 38(2), 71–84. https://doi.org/10.3103/S1063457616020015
Kvasnytsya, V.M. (2018). Unusual nano-microcrystals of natural diamond. Journal Superhard Materials, 40(4), 229–235. https://doi.org/10.3103/S1063457618040019
Kvasnytsya, V.M. & Shumlyanskyy, L.V. (2018). Native gold and diamonds from the Palaeoproterozoic terrigenous rocks of the Bilokorovychi basin, North-Western region of the Ukrainian Shield. Мineralogical journal, 40(3), 23–38. https://doi.org/10.15407/mineraljournal.40.03.023
Kvasnytsya, V.M. & Kvasnytsia, I.V. (2019). Cyclic twins of CVD diamond crystals. Journal Superhard Materials, 41(6), 369–376. https://doi.org/10.3103/S1063457619060017
Kvasnytsya, V.M. (2020). Rare diamond microcrystals. Journal Superhard Materials, 42(6), 365–370. https://doi.org/10.3103/S1063457620060052
Kvasnytsya, V. (2021). Morphology of diamond crystals and mechanism of their growth. Journal Superhard Materials, 43(2), 75–84. https://doi.org/10.3103/S1063457621020076
Kvasnytsya, V.M. & Kaminsky, F.V. (2021). Unusual green Type Ib–Iab Dniester–type diamond from Ukrainian placers. Mineralogy and Petrology, 115(1-2), 149–160. https://doi.org/10.1007/s00710-020-00732-w
Kvasnytsya, V. & Wirth, R. (2022). Impact diamonds from meteorite craters and Neogene placers in Ukraine. Mineralogy and Petrology, 116(5814), 169–187. https://doi.org/10.1007/s00710-022-00778-y
Lang, A.R. & Walmsley, J.C. (1983). Apatite inclusions in natural diamond coat. Physics and Chemistry of Minerals, 9(1), 6–8. https://doi.org/10.1007/BF00309462
Langenhorst, F., Shafranovsky, G. & Masaitis, V.L. (1998). A comparative study of impact diamonds from the Popigai, Ries, Sudbury, and Lappajarvi craters. Meteoritics and Planetary Science, 33(4), A90–A91.
Leahy, K. & Taylor, W.R. (1997). The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites. Russian Geology and Geophysics, 38(2), 481–491. https://doi.org/10.29173/ikc1876
Leung, I.S., Li, Y.L. & Han, Z.G. (1994). Metasomatised olivine, garnet and diopside entrapped in diamonds from Fuxian. Transactions, American Geophysical Union, 75, 192.
Lewis, P.S., Tang Ming, Wacker, J.F., Anders & E., Steel, E. (1987). Interstellar diamonds in meteorites. Nature, 326(6109), 160–162. https://doi.org/10.1038/326160a0
Lian, D. & Yang, J. (2019). Ophiolite-hosted diamond: A New window for probing carbon cycling in the deep mantle. Engineering, 5(3), 406–420. https://doi.org/10.1016/j.eng.2019.02.006
Lipschutz, M.E. (1964). Origin of diamonds in the ureilites. Science, 143(3613), 1431–1434. https://doi.org/10.1126/science.143.3613.1431.b
Lipschutz, M.E. & Anders, E. (1961). The record in meteorites, IV. Origin of diamonds in iron meteorites. Geochimica et Cosmochimica Acta, 24(1–2), 83–105. https://doi.org/10.1016/0016-7037(61)90009-6
Litasov, K.D., Kagi, H., Voropaev, S.A., Hirata, T., Ohfuji, H., Ishibashi, H., Makino, Y., Bekker, T.B., Sevastyanov, V.S., Afanasiev, V.P.& Pokhilenko, N.P. (2019). Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: assessing the role of contamination by synthetic materials. Gondwana Research, 75, 16–27. https://doi.org/10.1016/j.gr.2019.04.007
Logvinova, A.M., Wirth, R., Fedorova, E.N. & Sobolev, N.V.(2008). Nanometresized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. European Journal of Mineralogy, 20(3), 317–331. https://doi.org/10.1127/0935-1221/2008/0020-1815
Masaitis, V.L., Shafranovsky, G.I., Grieve, R.A.F., Langenhorst, F., Peredery, W.V., Therriault, A.M., Balmasov, E.L. & Fedorova, I.G. (1999). Impact diamonds in the suevitic breccias of the black member of the Onaping formation, Sudbury structure, Ontario, Canada. Special paper of the Geological Society of America, 339, 317–321. https://doi.org/10.1130/0-8137-2339-6.317
McCandless, T.E., Letendre, J. & Eastoe, C.J. (1999). Morphology and carbon isotope composition of microdiamonds from Dachine, French Guiana. The Agora Political Sci. Undergraduate Journal, 2(1), 550-556. https://doi.org/10.29173/ikc2783
McDonough, W.F. & Sun, S.S. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
Meyer, H.O.A. & McCallum, M.E. (1986). Mineral inclusions in diamond from the Sloan kimberlite, Colorado. The Journal of Geology, 94(4), 600–612. https://doi.org/10.1086/629062
Moore, M. (1985). Diamond morphology. Industrial Diamond Review, 45(2), 67–71.
Moore, M. (1979). Optical studies of diamonds and their surfaces: a review of the plate professor Tolansky work. In: The properties of diamond (ed. by J.E. Field). London–New York–San-Francisco: Acad. Pres, 245–277.
Navon, O. (1991). High internal pressures in diamond fluid inclusions determined by infrared-absorption. Nature, 353, 746–748.
Navon, O., Hutcheon, I.D., Rossman, G.R. & Wasserburg, G.J. (1988). Mantle-derived fluids in diamond microinclusions. Nature, 335, 784–789. https://doi.org/10.1038/335784a0
Nininger, H.H. (1956). Arisona’s meteorite crater: its past, present and future. Denver, Colorado: World Press Inc.
Oleinik, G.S., Valter, А.А. & Erjomenko, G.K. (2003). The structure of high lonsdaleite diamond grains from the impactites of the Belilovka (Zapadnaja) astrobleme (Ukraine). 34th Lunar and Planetary Sci. Conf. LPI: Abstr. Houston, Texas, USA, 1561.
Pattison, D.R.M. & Levinson, A.A. (1995). Are euhedral microdiamonds formed during ascent and decompression of kimberlite magma? Implications for use of microdiamonds in diamond grade estimation. Applied Geochemistry, 10, 725–738. https://doi.org/10.1016/0883-2927(95)00037-2
Pokhilenko, N.P., Sobolev, N.V., Reutsky, V.N., Hall, A.E. & Taylor, L.A. (2004). Crystalline inclusions and C isotope rations in diamonds from Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos, 77(1–4), 57–67. https://doi.org/10.1016/j.lithos.2004.04.019
Presnal, D.C. & Gasparik, T. (1990). Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4)—majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. Journal of Geophysical Research, 95(B10), 15771–15777. https://doi.org/10.1029/JB095iB10p15771
Presser, J.L.B., Matías, J., Tondo, O.M.J., Dolsa, S.F., Rocca, M.C.L., Alonso, R.N., Benitez, P., Larroza, C. F.A., Duarte, B.J.R. & Cabral-Antúnez, N.D. (2017). Brief comments on the impact metamorphism in Cerro León quartzites, Western-Paraguay. Pyroclastic Flow, 7(1), 16–24. https://www.researchgate.net/publication/319451171
Promprated, P., Taylor, L.A., Anand, M., Floss, Ch., Sobolev, N.V. & Pokhilenko, N.P. (2004). Multiple-mineral inclusions in diamond from the Snap Lake/King kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos, 77(1–4), 69–81. https://doi.org/10.1016/j.lithos.2004.04.009
Sandler, J., Shaffer, M.S.P. & Windle, A.H. (2003). Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Physical Review B, 67, 035417. https://doi.org/10.1103/PhysRevB.67.035417
Shirey, B.S., Cartigny, P., Frost, J.D., Keshav, S., Nestola, F., Nimis, P., Pearson, D. G., Sobolev, N.V. & Walter, M.J. (2013). Diamonds and the geology of mantle carbon. Reviews in Mineralogy and Geochemistry, 75, 355–421. https://doi.org/10.2138/rmg.2013.75.12
Shumilova, T.G., Mayer, E. & Isaenko, S.I. (2011). Natural monocrystalline lonsdaleite. Doklady Earth Sciences, 441(1), 1552–1554. https://doi.org/10.1134/S1028334X11110201
Shumilova, T.G., Ulyashev, V.V., Kazakov, V.A., Isaenko, S.I., Svetov, S.A., Chazhengina, S.Yu. & Kovalchuk, N.S. (2020). Karite — diamond fossil: A new type of natural diamond. Geoscience Frontiers, 11(4), 1163–1174. https://doi.org/10.1016/j.gsf.2019.09.011
Simakov, S.K. (2018). Nano- and micron-sized diamond genesis in nature: an overview. Geoscience Frontiers, 9, 1849–1858. https://doi.org/10.1016/j.gsf.2017.10.006
Smart, K.A., Tappe, S., Stern, R.A., Webb, S.J. & Ashwal, L.D. (2016). Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nature Geoscience, 9, 255–259. https://doi.org/10.1038/NGEO2628
Smith, B.Ch., Walter, J.M., Bulanova, G.P., Mikhail S., Burnham, A.D., Gobbo, L. & Kohn, S.C. (2016). Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos, 265(special issue), 82–95. https://doi.org/10.1016/j.lithos.2016.09.026
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A. Yefimova,E.S., Lavrent`ev, Yu.G. & Usova, L.V. (2000). Anomalously high Ni admixture in olivine inclusions from microdiamonds, the Yubileynaya kimberlite pipe, Yakutia. Doklady Earth Sciences, 375A, 1403–1406.
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Seryotkin, Y.V., Yefimova, E.S., Floss, C. & Taylor, L.A. (2004). Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos, 77(1–4), 225–242. https://doi.org/10.1016/j.lithos.2004.04.001
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Kuzmin, D.V.& Sobolev, A. (2008). Olivine inclusions in Siberian diamonds: high-precision approach to minor elements. European Journal of Mineralogy, 20(3), 305–315. https://doi.org/10.1127/0935-1221/2008/0020-1829
Sobolev, N.V. & Shatsky, V.S. (1990). Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 343, 742–746. https://doi.org/10.1038/343742a0
Sobolev, N.V. & Yefimova, E.S. (2000). Composition and petrogenesis of Ti-oxides associated with diamonds. International Geology Review, 42, 758–767. https://doi.org/10.1080/00206810009465110
Stachel, T., Banas, A., Muehlenbachs, K., Kurszlaukis, S. & Walker, E.C. (2006). Archean diamonds from Wawa (Canada) : samples from deep cratonic roots predating cratonization of the Superior Province. Contributions to Mineralogy and Petrology, 151, 737–750. https://doi.org/10.1007/s00410-006-0090-7
Stachel, T. & Harris, J.W. (2008). The origin of cratonic diamonds – Constraints from mineral inclusions. Ore Geology Reviews, 34(1–2), 5–32. https://doi.org/10.1016/j.oregeorev.2007.05.002
Stachel, T., Harris, J.W. & Muehlenbachs, K. (2009). Sources of carbon in inclusion bearing diamonds. Lithos, 112, 625–637. https://doi.org/10.1016/j.lithos.2009.04.017
Sunagawa, I. (1984). Morphology of natural and synthetic diamond crystals. In: Materials Science of the Earth’s Interior. Tokyo: TERRA PUB, 303–330.
Sunagawa, I. (1986). Morphology of diamonds. In.: Morphology and phase equilibrium of minerals (Materials of IMA, 1982). Sophia, 195–207.
Sunagawa, I. (1990). Growth and morphology of diamond crystals under stable and metastable conditions: Journal of Crystal Growth, 99(1–4), 1156–1161. https://doi.org/10.1016/S0022-0248(08)80100-5
Sunagawa, I. (2005). Crystals: Growth, Morphology, and Perfection. Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511610349
Taran, M.N., Kvasnitsa, V.N., Valter, A.A., Chashka, A.I. & Palkina, E.Yu. (1998). Optical spectroscopy study of diamond microcrystals from placers of Ukraine. Мineralogical journal, 20(6), 64–71.
Taran, M.N., Kvasnytsya, V.M. & Langer, K. (2004). On unusual deep-violet microcrystals of diamond from placers of Ukraine. European Journal of Mineralogy, 16(2), 241–245. https://doi.org/10.1127/0935-1221/2004/0016-0241
Taran, M.N., Kvasnytsya, V.M., Langer, K. & Ilchenko, K.O. (2006). Infrared spectroscopy study of nitrogen centers in microdiamonds from Ukrainian Neogenic placers. European Journal of Mineralogy, 18(1), 71–81. https://doi.org/10.1127/0935-1221/2006/0018-0071
Taylor, W.R., Jagues, A.L. & Ridd, M. (1990). Nitrogen-defect aggregation characteristics of some Australasian diamonds: Time-temperature constraints on the source regions of pipe and alluvial diamonds. American Mineralogist, 75(11–12), 1290–1310.
Taylor, W.R. & Milledge, H.J. (1995). Nitrogen aggregation character, thermal history and stable isotope composition of some xenolith-derived diamonds from Roberts Victor and Finch. In Sixth Int. Kimberlite Conf. (Novosibirsk), Extended Abstr., 620–622.
Tomkins, A.G., Wilson, N.C., Colin MacRae, C., Salek, A., Field, M.R., Brand, H. E. A., Langendam, A.D., Stephen, N. R., Torpy, A., Pintér, Z., Jennings, L.A. & McCulloch, D.G. (2022). Sequential lonsdaleite to diamond formation in ureilite meteorites via in situ chemical fluid/vapor deposition. PNAS. 119(38), e2208814119. https://doi.org/10.1073/pnas.2208814119
Turner, F.J., Heard, H.C. & Griggs, D.T. (1960). Experimental deformation of enstatite and accompanying inversion to clinoenstatite. Reports of 21st International Geological Congress, Copenhagen, 18, 399–408.
Vyshnevskyi, O.A. & Kvasnytsya, V.M. (2019). On the provenance of diamonds from Samotkan placer (Middle Dnipro area, Ukraine). Abstracts of the scientific conference “Achievements and prospects for the development of geological science in Ukraine. Kyiv: IGMR of the National Academy of Sciences of Ukraine, 1, 138–139.
Walmsley, J.C. & Lang, A.R. (1992). On submicrometer inclusions in diamond coat – crystallography and composition of ankerites and related rhombohedral carbonates. Mineralogical Magazine, 56(385), 533–543. https://doi.org/10.1180/minmag.1992.056.385.09
Wang, A., Pasteris, J.D., Meyer, H.O.A. & Dele-Duboi, M.L. (1996). Magnesitebearing inclusion assemblage in natural diamond. Earth and Planetary Science Letters, 141(1–4), 293–306.
Wells, A.F. (1946). Crystal habit and internal structure. Philosophical Magazine, 37(266), 184–199. https://doi.org/10.1080/14786444608561072
Wirth, R. (2004). Focused ion beam (FIB) combined with SEM and TEM: advanced analytical micro- and nanoanalysis in geoscience and applied mineralogy. European Journal of Mineralogy, 16(6), 863–876. https://doi.org/10.1016/j.chemgeo.2008.05.019
Wirth, R. (2009). Focused ion beam (FIB): A novel technology for advanced application of tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale. Chemical Geology, 261(3–4), 217–229. https://doi.org/10.1016/j.chemgeo.2008.05.019
Wolff, G.A. (1956). Faces and habits of diamond type crystals. AmericanMineralogist, 41(1–2), 60–66.
Woods, G.S. (1832). Platelets and the infrared absorbance of Type Ia diamonds. Proceedings of the Royal Society A, 407(1832), 219–238.
Yang, J.S., Robinson, P.T. & Dilek, Y. (2014). Diamonds in ophiolites. Elements, 10(2), 127–130. https://doi.org/10.2113/gselements.10.2.127
Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustovarov, V., Gromilov, S., Panchenko, A., Pokhilenko, N., & Litasov, K. (2015). Luminescence of natural carbon nanomaterials – impact diamonds from the Popigai astrobleme. Diamond and Related Materials, 58, 69–77. https://doi.org/10.1016/j.diamond.2015.06.010
Yelisseyev, A., Meng, G.S., Afanasyev, V., Pokhilenko, N., Pustovarov, V., Isakova, A., Lin, Z.S. & Lin, H.Q. (2013). Optical properties of impact diamonds from the Popigai astrobleme. Diamond and Related Materials, 37, 8–16. https://doi.org/10.1016/j.diamond.2013.04.008

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх