V.V. Petrov
Z. Le
A.A. Kryuchyn
S.M. Shanoylo
M. Fu
Ie.V. Beliak
D.Y. Manko
A.S. Lapchuk
E.M. Morozov
Affiliation:
Project: Ukrainian scientific book in a foreign language
Year: 2018
Publisher: PH “Akademperiodyka”
Pages: 148
DOI:
http://doi.org/10.15407/akademperiodyka.360.148
ISBN: 978-966-360-360-5
Language: English
How to Cite:
Abstract:
Long-term storage of digital information is an important scientific and technical task in the conditions of rapid growth of the amount of information presented in digital form. A key poit of the problem solving is creation of special media for longterm storage of strategically important information, scientific and technical information and information representing national cultural heritage. Special type optical media development from highly stable materials for long-term storage of information is considered.
Keywords:
References:
1. Voos, H. (1972). Handbook of Data Processing for Libraries (Book Review). College & Research Libraries, 33(1), 55-56. https://doi.org/10.5860/crl_33_01_55
2. Grigorescu, A., Cerchia, A. E., & Jeflea, F. V. (2016). Modern technologies for data storage, organization and managing in CRM systems. Proceedings of the ICA, June 2016. IIT. https://doi.org/10.20544/AIIT2016.09
3. McMillan, G., Schultz, M., & Skinner, K. (2011). Digital preservation. Washington, D.C.: Association of Research Libraries.
4. Adkins, Lesley; Adkins, R. A. (2000). The keys of Egypt: the obsession to decipher Egyptian hieroglyphs. HarperCollins.
5. Wayleith, P. R. (2008). Data security: laws and safeguards. New York: Nova Science.
6. Yaranal, M. A., & R. (2015). Comprehensiveness of Digital Information in Digital Age – A Survey on Research Trends in National Law School of India University. SRELS Journal of Information Management, 52(2), 119. https://doi.org/10.17821/srels/2015/v52i2/61950
7. Lee, G. (2014). Storage Networks. Cloud Networking, 139-161. https://doi.org/10.1016/B978-0-12-800728-0.00008-4
8. Permanent Digital Data Storage: A Materials Approach. (n.d.). Retrieved October 5, 2017, from http://www.bing.com.
9. Scaling the Facebook data warehouse to 300 PB. (n.d.). Retrieved October 05, 2017, from https://code.facebook.com.
10. Graham, W. (2012). Introducing the Facebook Platform. Beginning Facebook Game Apps Development, 171-200. https://doi.org/10.1007/978-1-4302-4171-3_8
11. Song, J., & He, B. (2013). NAND FLASH based three-tier fault-tolerant storage strategy. IEEE Conference Anthology. https://doi.org/10.1109/ANTHOLOGY.2013.6784969
12. Graham, W. (2014). The Cultural Imperative. Big Data, Big Innovation, 47-78. https://doi.org/10.1002/9781118914984.ch3
13. Lueck, T. (2014). Internet Archive: Digital Library of Free Books, Movies, Music, and Wayback Machine. The Internet Archive Companion. American Journalism, 31(2), 299-301. https://doi.org/10.1080/08821127.2014.905381
14. Lueck, T. (2015). Long-Term Preservation of Digital Documents. (n.d.). LongTerm Preservation of Digital Documents, 3-20.
15. Sony and Panasonic announce the Archival Disc: is it the answer to the longterm digital storage conundrum? (n.d.). Retrieved October 05, 2017, from http://www.imaging-resource.com.
16. Millenniata and LG to Release M-Disc Archival DVD Burner. (n.d.). Retrieved October 05, 2017, from http://blog.cdrom2go.com.
17. Hitachi Storage Performance Monitoring. (n.d.). Retrieved October 05, 2017, from http://www.solarwinds.com.
18. Hard Disk in Andhra Pradesh. (n.d.). Retrieved October 05, 2017, from https://www.olx.in/andhrapradesh/q-hard-disk.
19. ArXiv, E. T. (2013, October 31). Million-Year Data Storage Disk Unveiled. Retrieved October 05, 2017, from https://www.technologyreview.com.
20. Eternal 5D data storage could record the history of humankind. (n.d.). Retrieved October 05, 2017, from https://www.southampton.ac.uk.
21. Bancroft, C. (2001). Long-Term Storage of Information in DNA. Science, 293 (5536), 1763- 1765.https://doi.org/10.1126/science.293.5536.1763c
22. Wilson, A. (2010). How Much Is Enough: Metadata for Preserving Digital Data. Journal of Library Metadata, 10(2 3), 205-217. https://doi.org/10.1080/19386389.2010.506395
23. G.A., Kartha (2015). Study on the Environmental Stability of Nickel Ion Doped Photopolymer Material for Data Storage Applications. Washington, D.C.: Association of Research Libraries.
24. Schweizer, T., Rosenthaler, L., & Fornaro, P. (2017). Content-based Interoperability: Beyond Technical Specifications of Interfaces. Archiving Conference, 2017 (1), 34-38.https://doi.org/10.2352/issn.2168-3204.2017.1.0.34
25. Coughlin, T. M. (2008). Fundamentals of Optical Storage. Digital Storage in Consumer Electronics, 53-71.https://doi.org/10.1016/B978-075068465-1.50005-9
26. Minor, D., & Kozbial, A. (2013). The Chronopolis digital network: the economics of long-term preservation. A Handbook of Digital Library Economics, 115-123.https://doi.org/10.1016/B978-1-84334-620-3.50010-6
27. Amazon Glacier – Cloud Archive. (n.d.). Retrieved October 05, 2017, from https://aws.amazon. com/glacier.
28. Backblaze Online Backup. (n.d.). Retrieved October 05, 2017, from https://www.backblaze.com.
29. Google Drive – Cloud Storage & File Backup for Photos, Docs & More. (n.d.). Retrieved October 05, 2017, from https://www.google.com/drive.
30. Welcome to Microsoft OneDrive. (n.d.). Retrieved October 05, 2017, from https://onedrive.live. com/about/en-us/plans.
31. National Archives of the Netherlands. (n.d.). Retrieved October 07, 2017, from http://en. nationaalarchief.nl.
32. Open Yearbook. (n.d.). Retrieved October 07, 2017, from http://uia.org/s/or/en/1100014774.
33. Portree, D. S. Viking on the Moons of Mars. Retrieved October 07, 2017, from https://www. wired.com/2013/04/viking-on-the-moons-of-mars-1972.
34. Gutenberg, P. (n.d.). Digital dark age. Retrieved October 07, 2017, from http://self.gutenberg. org/articles/eng/Digital_Dark_Age.
35. Mann, M. (n.d.). MarexMG Project. Retrieved October 07, 2017, from http://www.marexmg. org/ fileshtml/howtoSSTV.html.
36. Borghi, M., & Karapapa, S. (2013). Copyright and Mass Digitization. Oxford: OUP Oxford.https://doi.org/10.1093/acprof:oso/9780199664559.001.0001
37. Lenk, B. (2012). QR-Code. Kirchheim unter Teck: Lenk Fachbuchverl.
38. Roebuck, K. (2011). QR Code: High-impact strategies – what you need to know: definitions, adoptions, impact, benefits, maturity, vendors. Dayboro: Emereo Pty Limited.
39. Honeyson J. (2011). Shotcode. Retrieved October 07, 2017, from https://www.slideshare.net/ honey211/shotcode.
40. DATABASES: Library of Congress E-Resources Online Catalog. (n.d.). Retrieved October 07, 2017, from http://eresources.loc.gov.
41. Zomaya, A. Y., Sakr, S., & Sahni, S. (2017). Handbook of big data technologies. Cham, Switzerland: Springer.https://doi.org/10.1007/978-3-319-49340-4
42. Preserving the scholarly record historical record cultural record for this and future generations. (n.d.). Retrieved October 07, 2017, from http://dpn.org.
43. Bailey, C. W. (2006). Institutional repositories. Washington, DC: Association of Research Libraries, Office of Management Services.
44. Jeflea, F. V. (1999). Information-based access to storage: the foundation of information systems. Proceedings of the IEEE, June 1999, IEEE Computer Society Press.
45. Infotoday Conferences. (n.d.). Retrieved October 07, 2017, from http://www.infotoday.com/cilmag/sep12/Huwe–Digital-Migration-Strategies….
46. Information Systems: Definitions and Components. (n.d.). Retrieved October 7, 2017, from http:// www.bing.com.
47. Yang, J. (2015). Summary Report of ISO/IEC 10995 Test Program. RITEK: Global Home. Retrieved October 17, 2015, from http://www.ritek.com/m-disc/eng/download/001.pdf.
48. Vries, J., Schellenberg, D., Abelmann, L. (2013). Towards Gigayear Storage Using a SiliconNitride/Tungsten Based Medium. ArXiv. Retrieved May 11, 2013, from http://arxiv.org/ abs/ 1310.2961.
49. Clery, D. (2012) A Million-Year Hard Disk. Science. Retrieved May 21, 2012, from: www. scien cemag.org/ news/2012/07/million-year-hard-disk.
50. Petrov, V.V., Krychyn, A.A., Shanoylo, S.M,, etc. (2009). High-density optical information recording. NAS of Ukraine, Institute for information recording, Kyiv: NASU, 282.
51. Office, U. G. (2016, May 25). Information Technology: Federal Agencies Need to Address Aging Legacy Systems. Retrieved October 07, 2017, from http://www.gao.gov/products/GAO-16-696T.
52. Self-assembling polymer arrays improve data storage potential. (n.d.). Retrieved October 07, 2017,from http://news.wisc.edu/self-assembling-polymer-arrays-improve-data-storage….
53. Domingo, J. S. (2016, January 21). Seagate Backup Plus Portable Drive. Retrieved October 07, 2017, from https://www.pcmag.com/article2/0,2817, 2497199,00.asp.
54. MTBF and power supply reliability. (n.d.). Retrieved October 07, 2017, from https://www.electronicproducts.com/Power_Products/AC_DC_Power_Supplies/M….
55. S.M.A.R.T. technology. (n.d.). Retrieved October 07, 2017, from http://www.ariolic.com/activesmart/smart-technology.html.
56. IBM Tape Library Slot and Capacity Calculator 2017 v5.5. (n.d.). Retrieved October 07, 2017, from https://www.ibm.com.
57. Home Altosystems. (n.d.). Retrieved October 07, 2017, from https://www.altosystems.com.
58. Magnetic tape. (n.d.). Retrieved October 07, 2017, from https://www.alibaba.com/showroom/magnetic-tape.html.
59. What is magnetic tape used for? (n.d.). Retrieved October 07, 2017, from https://www.reference.com.
60. The Role of Future Magnetic Tape Technology for Digital. (n.d.). Retrieved October 7, 2017, from http://www.bing.com.
61. LTO Archiving Solutions & LTFS Asset Managment. (n.d.). Retrieved October 07, 2017, from http://1beyond.com/archiving.
62. LTO-6 SAS External Tape Drive. (n.d.). Retrieved October 07, 2017, from https://www.bhphotovideo.com.
63. IBM Tape Library Guide for Open Systems. (2016, September 30). Retrieved October 07, 2017, from https://www.redbooks.ibm.com.
64. Office, U. G. (2000) Imaging materials – Polyester-base magnetic tape – Storage practices: ISO 18923. Genf: ISO.
65. Oracle StorageTek SL8500 Modular Library System. (n.d.). Retrieved May 17, 2017, from https://www.oracle.com/storage/tape-storage/sl8500-modular-library-syste….
66. Hidaka, H. (2017). Embedded flash memory for mcu/soc applications. S.l.: Springer international Pu.
67. Liu, D. (2012). Write-activity-aware NAND flash memory management for PCM-based embedded systems. Hong Kong: Dept. of Computing, The Hong Kong Polytechnic University.https://doi.org/10.1109/RTSS.2011.40
68. Hidaka, H. (2009) SSD: Solid State Drive 2010. Tōkyō: Nikkei BP Sha.
69. Park, K. (2016). Data processing using flash storage: some opportunities and limitations. Ann Arbor, MI: ProQuest LLC.
70. Sand S. (n.d.). A better computing experience. Retrieved October 27, 2016, from https://www.sandisk.com/home/ssd.
71. Servers, S. (2013, August 15). Facebook to rely on cold flash technology for cold data storage needs. Retrieved October 07, 2017, from https://storageservers.wordpress.com/2013/08/15/facebook-to-rely-on-cold… -for-cold-data.
72. DAlleyrand, M. R. (1989). Image storage and retrieval systems: a new approach to records management. New York: Intertext Publications.
73. What is Microfilm? (n.d.). Retrieved October 07, 2017, from http://www.microfilmworld.com/ whatismicrofilm.aspx
74. Computer-output microfilming. (2007, January 01). Retrieved October 07, 2017, from https://link.springer.com/referenceworkentry/10.1007/1-4020-0613-6_3393.
75. Digital Optical Tape: Technology and Standardization (n.d.). Retrieved October 7, 2017, from https://www.bing.com.
76. PA.Gov. (n.d.). Retrieved October 07, 2017, from http://www.phmc.pa.gov.
77. Systems Archives – Laser Photonics. (n.d.). Retrieved October 7, 2017, from https://www.bing.com
78. Yaniv Erlich, Dina Zielinski. (Sep. 9, 2016) Capacity-approaching DNA storage. BioRxiv preprint: Association of Research Libraries..
79. Extance A. (2016) How DNA could store all the world’s data. Nature, 7618 v., 537 p..https://doi.org/10.1038/537022a
80. Bornhol, J., Ceze, L. (2016) A DNA-Based Archival Storage System. Proceedings of the Asplos, June 2016. ASPQ.https://doi.org/10.1145/2872362.2872397
81. Lopez, R , Carmean D. DNA Data Storage. Proceedings of the Asplos, June 2016. ASPQ.
82. Clelland, T., Risca, V. and Bancroft, C. Hiding messages in DNA microdots. Nature, 399:533- 534, 1999.https://doi.org/10.1038/21092
83. Church, G., Gao, Y. and Kosuri, S. Next-generation digital information storage in DNA. Science, 337(6102):1628, 2012.https://doi.org/10.1126/science.1226355
84. Goldman, N., Bertone, P., Chen, S. Towards practical, high-capacity, low- maintenance information storage in synthesized DNA. Nature, 494:77-80, 2013.https://doi.org/10.1038/nature11875
85. Liang, P., Yongshik, P., Yi, X. (2011). Maskless Plasmonic Lithography at 22 nm Resolution. Scientific Reports. Retrieved October 25, 2011, from: www.nature.com/articles/srep00175.
86. Inoue, M., Kosuda, A., Mishima, K., Ushida, T., Kikukawa, T. (2010) 512 Gb recording on 16 layer optical disc with Blu-Ray Disk based optics. Proc. SPIE, 7730, D1-D6.https://doi.org/10.1117/12.858861
87. Gu, M., Li, X., Cao, Ya. (2014). Optical storage arrays: a perspective for future big data storage. Light: Science & Applications, 3, 71-77.https://doi.org/10.1038/lsa.2014.58
88. Gu, M. (2013). Optical data storage with diffraction-unlimited resolution lasers and electro-optics Europe. Conference on and International Quantum Electronics Conference. Munich (Germany), 93-99.https://doi.org/10.1109/CLEOE-IQEC.2013.6801790
89. Gu, M, Li, X, Lan, Th., Tien, Ch. (2012). Plasmonic keys for ultra-secure information encryption. SPIE-Newsroom. Retrieved October 3, 2012, from: http://spie.org/newsroom/4538-plasmonic-keys-for-ultra-secure-informatio…
90. Kudryavtsev, A.A., Moskalenko, N.L. (2013). Is there any future of optical discs? Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(4), 362-365.https://doi.org/10.15407/spqeo16.04.362
91. Nikles, D. E., Wiest, J. M. (1999). Accelerated aging studies and the prediction of the archival lifetime of optical disc media, Proc. SPIE, 3806, 30-36.https://doi.org/10.1117/12.371162
92. Petrov, V.V., Kryuchin, A.A., Gorbov, I.V., Kossko, I.O., Kostyukevych, S.O. (2009) Analysis of properties of optical carriers after long-term storage. Semiconductor Physics, Quantum Electronics and Optoelectronics 12(4), 399-402.https://doi.org/10.15407/spqeo12.04.399
93. Everspan. (n.d.). Retrieved October 07, 2017, from http://www.everspan.com.
94. Kryuchyn, A. A., Petrov, V. V., Shanoilo, S. M., Lapchuk, A. S., & Morozov, Y. M. (2014). Sapphire optical discs for long term data storage. Optical Data Storage 3(2), 25-32 .https://doi.org/10.1117/12.2060786
95. Petrov, V.V., Semynozhenko, V.P., Puzikov, V.M., Kryuchyn, A.A., Lapchuk, A.S., Shanoilo, S.M., Morozov, Ye.M., Kosyak, I.V., Borodin, Yu.O., Gorbov I.V. (2014). Readout optical system of sapphire disks intended for long-term data storage. arXiv, 1403.3119, 10.
96. Dobrovinskaya, E.R., Lytvynov, L.A., Pishchik, V., (2009). Sapphire: Material, Manufac – tu ring, Applications. Retrieved May 5, 2009, from: http://www.springer.com/us/book/9780387856940.
97. Petrov, V.V., Semynozhenko, V.P., Puzikov, V.M., Kryuchyn, A.A., Lapchuk, A.S., Morozov, Ye.M., Borodin, Yu.O., Shyhovets, O.V., Shanoylo, S.M. (2014). Method of aberration compensation in sapphire optical disks for the long term data storage. Functional Materials, 21(1), 105-111. https://doi.org/10.15407/fm21.01.105
98. Archive Appliance Libraries. (n.d.). Retrieved October 07, 2017, from http://www.plasmon.com/products/udo.
99. Gan, Z., Cao, Ya., Evans, R.A., Gu, M. (2011) Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Retrieved October 11, 2011 from: http://www.nature.com.
100. LaFratta, C.N., Fourkas, J.T., Baldacehini, T. (2007) Multiphoton Fabrication. Angewandte Chemie, 46 (33), 6201-6379. https://doi.org/10.1002/anie.200790161
101. Cumpston, B.H. (1999). Two-photon polymerization initiators for threedimensional optical da ta storage and microfabrication. Nature, 398, 51-54.https://doi.org/10.1038/17989
102. Xue, J., Zhao, Y., Wu, J., Wu, F. (2008). Novel benzylidene cyclopentanone dyes for two-photon photopolymerization. J. Photochem. Photobiol. A Chem., 195, 261-266.https://doi.org/10.1016/j.jphotochem.2007.10.012
103. Cao, Y., Gan, Z., Jia, B., Evans, R. A., Gu, M. (2011). High-photosensitive resin for superresolution direct-laser writing based on photoinhibited polymerization. Optics Express, 19 (20), 19486-19494. https://doi.org/10.1364/OE.19.019486
104. Dodson B. (2013). New technique would allow a petabyte of data on a single disc. Gizmag. Retrieved May 23, 2013 from: http://www.gizmag.com/petabyte-dvd-data-storage/28181.
105. Jinga, P.E., Andronescu, S. (2013). 2 nm Quantum Optical Lithography. Optics Communications, 291, 259 263.
https://doi.org/10.1016/j.optcom.2012.10.079
106. Stocker M.P.,, Li, L., Gattass, R.R., Fourkas, J.T. (2011). Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nat Chem., 3 (3), 223 227.https://doi.org/10.1038/nchem.965
107. Li, L., Gattass, R.R., Gershgoren, E., Hwang, H., Fourkas, J.T. (2009). Achieving λ/20 Resolution by One Color Initiation and Deactivation of Polymerization. Science 324 (15) 910-913.https://doi.org/10.1126/science.1168996
108. Li, L., Gattass, R.R., Fourkas, J. (2009). Dual-beam, 3D photolithography provides exceptio nal resolution.SPIE Newsroom. Retrieved October 21, 2009 from: http://spie.org/newsroom/1690-dual-beam-3d-photolithography-provides-exc….
109. Li, L., Gattass, R.R., Gershgoren, E., Fourkas, J.T. (2009). Achieving Resolution Far beyond the Diffraction Limit with RAPID Photolithography. Retrieved October 19, 2009 from: http://spie.org/newsroom/1690-dual-beam-3d-photolithography-provides-exc….
110. Stocker, M.P., Li, L., Gattass, R.R., Fourkas, J.T. (2011). Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nature Chemistry, 3, 223-227.https://doi.org/10.1038/nchem.965
111. Fourkas, J.T. (2010). Nanoscale photolithography with visible light. J. Phys. Chem. Lett., 1(8), 1221-1227. https://doi.org/10.1021/jz1002082
112. Li, L.J., Gattass, R.R., Gershgoren, E., Hwang, H., Fourkas, J.T. (2009). Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science, 324 (5929), 910-913.https://doi.org/10.1126/science.1168996
113. Forman, D.L., Cole, M.C., McLeod, R.R. (2013). Radical diffusion limits to photoinhibited superresolution lithography. Phys. Chem. Chem. Phys., 15 (36), 14862-14867.https://doi.org/10.1039/c3cp51512e
114. Scott, T.F., Kowalski, B.A., Sullivan, A.C., Bowman, C.N., McLeod, R.R. (2009). Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography. Science, 324 (5929), 913-917. https://doi.org/10.1126/science.1167610
115. Tsuujioka T., Kume M., Horikawa Y., Ishikawa A., Irie M. (1997). Super-resolution disk with a photochromic mask layer. Jpn. J. Appl. Phys. 36 (1/1B), 526-529.https://doi.org/10.1143/JJAP.36.526
116. Tsuujioka T., Kume M., Irie M. (1997). Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer. Opt. Rev., 4(3), 385-389.https://doi.org/10.1007/s10043-997-0385-6
117. Chen, Q., Tominaga, J., Men, L., Fukaya, T., Atoda N. (2001). Superresolution optical disk with a thermoreversible organic thin film. Optics Letters, 26 (5), 274-279.https://doi.org/10.1364/OL.26.000274
118. Andrew, T.L., Tsai, H.Y., Menon, R. (2009) Confining light to deep sub-wavelength dimensions to enable optical nanopatterning. Science, 324 (5929), 917-921.https://doi.org/10.1126/science.1167704
119. Masid, F., Andrew, T.L., Menon, R. (2013) Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation. Optics Express, 21(4), 5209-5214.https://doi.org/10.1364/OE.21.005209
120. Ma, X., Wei, J. (2011). Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures. Shanghai Institute of Optics and Fine Mechanics, 3, 1489-1492.https://doi.org/10.1039/c0nr00888e
121. Zhang , Ch., Wang, K., Bai, J., Wang, Sh., Zhao, W., Yang F., Gu, Ch., Wang, G. (2013). Nanopillar array with a λ /11 diameter fabricated by a kind of visible CW laser direct lithography system. Nanoscale Res Lett., 8 (1), 280-285.https://doi.org/10.1186/1556-276X-8-280
122. Coufal, H., Burr, G.W., Sincerbox, G.T. (2004). Handbook of Lasers and Optics. SpringerVerlag: New York.
123. Pham V.T., Lee S.K., Trinh M.T., Lim K.S., Hamilton D.S. (2006). Nonvolatile two-color holographic recording in Tm-doped near stoichiometric LiNbO3. Korean Phys. Soc. 49, 533.https://doi.org/10.1016/j.optcom.2004.12.002
124. Петров, В.В., Крючин, А.А., Токарь, А.П. (1992). Оптико-механические запоминающие устройства. Киев.: Наукова думка. 125. Milster, T., Upton, R.S., Luo, H. (1999). Objective lens design for multiple-layer optical data storage. Opt. Eng., 38, 295-299.https://doi.org/10.1117/1.602088
126. Eichler, H.J., Kuemmel, P., Orlic, S., Wappelt, A. (1998). Resolution-limited optical recording in 3D. IEEE J. Sel. Top. Quantum Electron, 19 (17), 16096-16105.https://doi.org/10.1364/OE.19.016096
127. Yan, A., Tao, Sh., Wang, D. (2005). Multiplexing holograms in the photopolymer with equal diffraction efficiency. Proc. of SPIE, 5643, 109-117.https://doi.org/10.1117/12.576964
128. Curtis, K., Psaltis, D. (1992). Recording of multiple holograms in photopolymer films. Appl. Opt., 31, 7425-7428.https://doi.org/10.1364/AO.31.007425
129. Pu, A., Psaltis, D. (1996). High-density recording in photopolymer-based holographic threedimensional disks. Appl. Opt., 35, 2389-2397.https://doi.org/10.1364/AO.35.002389
130. Pu, A., Curtis, K. (1996). Exposure schedule for multiplexing holograms in photopolymer films. Opt. Eng., 35, 2824-2829.https://doi.org/10.1117/1.600967
131. Dhar L., Curtis K. (1998) Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Opt. Lett., 23, 1710-1712.https://doi.org/10.1364/OL.23.001710
132. Van De Nes, A.S. (2006). High-density optical data storage. Reports on Progress in Physics, 69, 53-63.
133. Walker, E., Rentzepis, P.M. (2008). Two-photon technology: A new dimension. Nat. Photonics, 2,406-408.https://doi.org/10.1038/nphoton.2008.121
134. Zhang, Yu., Dvornikov, A.S., Walker, E.P., Kim, N.H., McCormick, F.B. (2000) Single Beam Two-Photon-Recorded Monolithic Multi-Layer Optical Disks. Optical Data Storage. Proceedings of SPIE, 4090, 174 178.https://doi.org/10.1117/12.399355
135. Orlic, S. (2001). Microholographic storage in photopolymers. J. Opt. A: Pure Appl. Opt., 3 (72), 10-18. https://doi.org/10.1088/1464-4258/3/1/312
136. Kikukawa, T., Inoue, M., Mishima, K., Ushida, T. (2010). Recording characteristics of 10-layers recodable optical disc and a prospect for over 500G-byte recording. Jpn. J. Appl. Phys., 49, 10-20. https://doi.org/10.1143/JJAP.49.08KF01
137. Shirashi, J., Kobayashi, S., Miyashita, H., Hino, H. (2009). New Signal Quality Evaluation Method for GB/Layer BDs. ISOM 2009 Tech. Dig., 9, 74-75.
138. Tanaka, H., Takahashi, K., Ogasawara, M., Taniguchi S. (2013). Advanced Radial Position Control of a Recording Beam for Super Multilayer Disc with Separated Guide Layer. Japanese Journal of Applied Physics, 52 (9S2), 13-20. https://doi.org/10.7567/JJAP.52.09LC03
139. Lapchuk, A.S., Kryuchin, A.A., Klimenko, V.A., Kolesnikov, M.U., Petrov, V.V. (1996) Diffraction of Gaussian laser beam by three-dimensional grating of dielectric spheres. Proc. SPIE, 3055, 160-169. https://doi.org/10.1117/12.267703
140. Shylo, S.A., Lapchuk, A.S., Song, J.S., Kim, K.S. (2005). Optical Parameters of Light Beam in Multilayer Nano-Structures. J. of the Korean Physical Society, 47, 18-22.
141. Glushko, B.A., Levich, E.B. (2008). Fluorescent optical memory. USA patent. G11B 007/24.№ 6071671; published 10.02.2008.
142. Wang, M., Esener, S. (2008). Three-dimensional optical data storage in fluorescent dye-doped photopolymer. Appl Opt. 2000 Apr 10, 39(11), 1826-34.https://doi.org/10.1364/AO.39.001826
143. Зубарева, Т.С. (2014) Флуоресцентная микроскопия полного внутреннего отражения. TIRF – микроскопия. Retrieved January 31, 2014, from: http://www.stormoff.ru/articles_565_101.html.
144. Vasara, A., Taghizadeh, M.R., Turunen, J., Westerholm, J., Noponen, E., Ichikawa, H., Miller, J.M., Jaakkola, T., Kuisma, S. (1992). Binary surface-relief gratings for array illumination in digital optics. Applied Optics, 31 (17), 3320-3336.https://doi.org/10.1364/AO.31.003320
145. Soifer, V.A. (2002). Methods for Computer Design of Diffractive Optical Elements. Retrieved January 23, 2002, from http://eu.wiley.com/WileyCDA/ WileyTitle/ productCd-0471095338.html.
146. Korolkov, V.P., Nasyrov, R.K., Shimansky, R.V. (2006). Zone-boundary optimization for di rect laser writing of continu¬ous-relief diffractive optical elements. Appl. Opt., 45 (1), 53 62.https://doi.org/10.1364/AO.45.000053
147. Yan, A., Tao, Sh., Wang, D., Shi, M., Wu, M. (2005). Multiplexing holograms in the photopolymer with equal diffraction efficiency. Proc. SPIE, Advances in Optical Data Storage Technology, 5643, 10-19. https://doi.org/10.1117/12.576964
148. Nam, K. (2005). Holographic applications based on photopolymer materials. International Workshop on Photonics and Applications. Proceedings of the ICA, June 2005. Hanoi.
149. Sun, H.-B., Kawatal, S. (2004). Two-Photon Photopolymerization and 3D Lithographic Microfabrication. APS, 170, 169-273.https://doi.org/10.1007/b94405 150. Хонина, С.Н., Волотовский, С.Г. (2009) Фраксикон – дифракционный оптический элемент с конической фокальной областью. Компьютерная оптика, 33(4), 401-411.
151. Хонина, С.Н., Волотовский, С.Г. (2010) Исследование применения аксиконов в вы сокоапертурной фокусирующей системе. Компьютерная оптика, 34(1), 35-51.
152. Yang, A.A., Wrigley, Ch.Y., Lindmayer, J. (1996). Optical storage medium utilizing electron trapping film layers sandwiched with electrodes. USA patent. G11C13/04. № US5502706 A; published 26.03.1996.
153. Akselrod, M. (2010). Aluminum oxide material for optical data storage. USA patent. G11B7/243. № US 6846434 B2. Published 15.12.2010.
154. Goldsmith, P., Lindmayer, J., Wrigley, C. (1990). Electron trapping. A new approach to rewritable optical data storage. Proceedings of SPIE, 1316, 312-320.https://doi.org/10.1117/12.22008
155. Zhang, Yu., Dvornikov, A.S., Walker, E.P., Kim, N.H., McCormick, F.B. (2000) Single Beam Two-Photon-Recorded Monolithic Multi-Layer Optical Disks. Proceedings of SPIE, 4090, 174-178.https://doi.org/10.1117/12.399355
156. Zhang, Yu., Milster, T.D., Butz, J., Bletcher, W., Erwin, K.J., Walker, E. (2002) Signal, Cross Talk and Signal to Noise Ratio in Bit-Wise Volumetric Optical Data Storage. IEEE Catalog, 02EX552, 246-248. https://doi.org/10.1109/OMODS.2002.1028630
157. Lindmayer, J., Goldsmith, P., Wrigley, C. (1989). Electronic Optical-Storage Technology Approaches Development Phase. Laser Focus World, 11, 109-119
158. Yang, X., Wrigley, Ch.Y., Lindmayer, J. (1993). Three-dimensional optical memory based on transparent electron-trapping thin films. Proc. SPIE, 1773, 41-43.https://doi.org/10.1117/12.141545
159. Yang, X., Wrigley, Ch.Y., Lindmayer, J. (1993). Three-dimensional optical storage system based on electron-trapping thin films. SPIE, 560, 60-66.https://doi.org/10.1117/12.163606
160. Driggers R.G. (2000). Encyclopedia of Optical Engineering Retrieved October 5, 2000, from: www.crcpress.com/Encyclopedia-of-Optical-Engineering-Print/Driggers-Hoff… p/ book/9780824709402
161. Beliak, Ie.V., Kravets, V.G., Kryuchyn, A.A. (2007). Luminescence of the pyrazoline dye in nanostructured zeolite matrix. Semiconductor Physics, Quantum Electronics & Optoelectronics, 10 (1), 33-35. https://doi.org/10.15407/spqeo10.01.033
162. Beliak, I., & Butenko, L. (2011). Development of fluorescent multilayer disc structure. 22nd Congress of the International Commission for Optics: Light for the Development of the World..https://doi.org/10.1117/12.901595
163. Gu, M., Li, X. (2010). The road to multi-dimensional bit-by-bit optical data storage. Opt. Photon. News, 21, 29-33. https://doi.org/10.1364/OPN.21.7.000028
164. Li, X., Lan T.-H., Tien, Ch.-H., Gu, M. (2012). Three-dimensional orientation-unlimited polarisation encryption by a single optically-configured vectorial beam. Nature Communications, 998, 10-18.
165. Chang, S.S., Shih, C.W., Chen, C.D., Lai, W.C., Wang, C.R.C. (1999).The shape transition of gold nanorods. Langmuir, 15, 701-709. https://doi.org/10.1021/la980929l
166. Link, S., Burda, C., Nikoobakht, B., El-Sayed, M. A. (2000). Laser-induced shape change of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem., B104, 6152-6163. https://doi.org/10.1021/jp000679t
167. Link, S., Burda, C., Mohamed, M.B., Nikoobakht, B., El-Sayed, M.A. (1999) Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence. J. Phys. Chem. A, 103 (9), 1165-1170.https://doi.org/10.1021/jp983141k
168. Ditlbacher, H., Krenn, J. R., Lamprecht, B., Leitner, A. & Aussenegg, F. R. (2000). Spectrally coded optical data storage by metal nanoparticles. Opt. Lett., 25, 563-565https://doi.org/10.1364/OL.25.000563
169. Chon, J.W.M., Bullen, C., Zijlstra, P., Gu, M. (2007). Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage. Adv. Funct. Mater., 17, 875-880. https://doi.org/10.1002/adfm.200600565
170. Zhang, J., Gecevičius, M., Beresna, M., Kazansky, P.G. (2013). 5D Data Storageby Ultrafast Laser Nanostructuring in Glass. OSA Postdeadline Paper Digest. Retrieved August 12, 2013, from: https://www.osapublishing.org.https://doi.org/10.1364/CLEO_SI.2013.CTh5D.9
171. Shimotsuma, Ya., Sakakura, M., Kazansky, P.G., Beresna, M., Qiu, J., Miura, K., Hirao, K. (2010). Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass. Adv. Mater., 22, 4039-4043 https://doi.org/10.1002/adma.201000921
172. Shimotsuma, Z.Y., Sakakura, M., Kazansky, P.G., Beresna, M., Qiu, J., Miura, K., Hirao, K. (2010). Ultrafastmanipulation of self-assembled form birefringence in glass. Advanced Materials, 22, 4039-4043. https://doi.org/10.1002/adma.201000921
173. Beresna, M., Gecevičius, M., Kazansky, P.G., Tailor, T., Kavokin, A.V. (2012). Exitation mediated self-organization in glass driven by ultrashort light pulses. Applied Physics Letters, 101, 20-31. https://doi.org/10.1063/1.4742899
174. Zhang, J. (2014). Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass. Phys. Rev. Lett., 112, 33-39. Petrov, V. V., Kryuchyn, A.A., Shanoylo, S. M., Kryuchyna, L.I., Koss ko, I.O. (2005). The Metal Carriers for Long-Term Storage of the Information. NAS of Ukraine, Institute for Information Recording, Naukova dumka, Kiev.
175. Gorbov, I.V., Petrov, V.V, Kryuchyn, A.A. (2007). Using ion beams for creation of nanostructureson the surface of high-stable materials. Semiconductor Physics, Quantum Electronics & Optoelectronics, 10 (1), 27-29. https://doi.org/10.15407/spqeo10.01.027
176. Kryuchyn A.A. (2008). Un disque optique en verre gravé pour l’archivage longue durée. Le magazine du stockage et de la gestion d’informations, 247/248, 3-4.
177. Petrov, V.V, Kryuchyn, A.A., Lapchuk , A.S., Gorbov, I.V., Manko, D.Yu., Fu, M., Shanoylo S.M., Morozov, Ye.M. (2016). Long-term data preservation on sapphire optical discs. SPIE Proc. 9818(02), 4-10. https://doi.org/10.1117/12.2242268
178. Fu, M., Xu, W., Le, Z., Gorbov, I., Manko D. (2016). Data recording in digital form on sapphire optical disk. Optics and Presision Engeeniring, 24(10), 110-115.https://doi.org/10.3788/OPE.20162410.2456
179. Petrov, V.V, Kryuchyn, Shanoylo, S.M., Kossko, I.O., Kravets , V.G. (2003). Methods of So lving the Problem of Long-Term Information Storage Recorded in a Digital Form. Rep. of the Nat. Acad. Sci. of Ukraine, 4, 52-58.
180. Petrov, V., Gorbulin, V., Kryuchyn, A. (2009). Information security and problems of long-term storage of electronic documents. Pomiary, Automatyka, Komputery w Gospodarce i Ochronie Srodowiska, 1 (Mar.), 6-8.
181. Petrov, V., Kryuchyn, A., & Gorbov, I. (2011). High-density optical disks for long-term information storage. 22nd Congress of the International Commission for Optics: Light for the Development of the World. https://doi.org/10.1117/12.900745
182. Petrov, V.V., Kryuchyn, A.A., Shanoylo, S.M., Kravets, V.G., Kossko, I.O., Belyak, Ie.V., Lapchuk, A. S., Kostyukevych, S. O. (2009). Super-Dense Optical Information Recording. Institute for Information Recording, NAS of Ukraine: Kyiv.
183. Petrov, V.V., Kryuchyn, A.A., Beliak, Ie. V., Lapchuk, A.S. (2016). Multi-photon microscopy бand optical recording. Nat. acad. of sciences of Ukraine, Inst. for information recording, Akademperiodyka: Kyiv https://doi.org/10.15407/akademperiodyka.311.156