Models and methods of improving the efficiency and safety of the operation of thermal power equipment

Authors:

V.P. Babak

General Energy Institute of the NAS of Ukraine

https://orcid.org/0000-0002-9066-4307

https://www.scopus.com/authid/detail.uri?authorId=57218226416

https://www.webofscience.com/wos/author/record/2094666

https://scholar.google.com.ua/citations?user=3Gr9I7QAAAAJ&hl

 

A.O. Zaporozhets

General Energy Institute of the NAS of Ukraine

https://orcid.org/0000-0002-0704-4116

https://www.scopus.com/authid/detail.uri?authorId=57192642007

https://www.webofscience.com/wos/author/record/615474

https://scholar.google.com.ua/citations?user=8xMuKuoAAAAJ&hl

 

A.D. Sverdlova

General Energy Institute of the NAS of Ukraine

https://orcid.org/0000-0001-8222-1357

https://www.scopus.com/authid/detail.uri?authorId=57208674913

https://scholar.google.com/citations?user=Us54PZkAAAAJ&hl

 

V.V. Khaidurov

General Energy Institute of the NAS of Ukraine

https://orcid.org/0000-0002-4805-8880

https://www.scopus.com/authid/detail.uri?authorId=57220030054

https://www.webofscience.com/wos/author/record/3689135

https://scholar.google.com/citations?user=lGgERaAAAAAJ&hl

 

Reviewers:

Ie.O. Zaitsev

Institute of Electrodynamics of the NAS of Ukraine

https://orcid.org/0000-0003-3303-471X

http://www.scopus.com/authid/detail.url?authorId=55606990800

https://www.webofscience.com/wos/author/record/1111250

https://scholar.google.com.ua/citations?user=RrP-5K4AAAAJ&hl

 

V.S. Eremenko

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

https://orcid.org/0000-0002-4330-7518

https://www.scopus.com/authid/detail.uri?authorId=36180926400

https://www.webofscience.com/wos/author/rid/AAF-7923-2021

https://scholar.google.com.ua/citations?user=y75xh-cAAAAJ&hl

 

S.I. Kovtun

General Energy Institute of the NAS of Ukraine

https://orcid.org/0000-0002-6596-3460

https://www.scopus.com/authid/detail.uri?authorId=57208498650

https://www.webofscience.com/wos/author/record/1964898

https://scholar.google.com.ua/citations?user=nQY3SLEAAAAJ&hl

Affiliation:

Project: Scientific book

Year: 2024

Publisher: PH "Naukova Dumka"

Pages:

DOI:

https://doi.org/10.15407/978-966-00-1931-7

ISBN: 978-966-00-1931-7

Language:

How to Cite:

Abstract:

The monograph examines modern problems of increasing the efficiency and safety of the operation of thermal power equipment and ways to solve them. The available methods and systems for diagnosing complex thermal power facilities have been analysed and systematised. The features and parameters of diagnosing elements of complex thermal power facilities are presented, the general requirements for diagnostic systems are substantiated. Mathematical models of the investigated fields are developed, models and characteristics of the input signals of the measuring modules of the proposed information-measuring system of diagnostics using current and retrospective information are described. Methods of forecasting abnormal states of complex thermal power objects using machine learning algorithms with LSTM architectures have been developed. A system for monitoring and controlling the process of fuel combustion in small and medium power boilers is proposed, which is based on the use of an oxygen sensor and frequency-regulated blowing fans. A method of measuring the coefficient of excess air taking into account the current volume concentration of oxygen in the air is proposed. Modern methods and algorithms for solving linear and non-linear inverse heat conduction problems of various nature are considered. A technique for obtaining the numerical solution of the main classes of inverse problems of heat conduction has been developed, which makes it possible to reduce the total number of calculations required to find the global minimum of the quadratic functional used in the formulation of most inverse problems.

For researchers, engineers, as well as teachers, graduate students and students of higher educational institutions deal with the problems of increasing the efficiency and safety of the operation of energy equipment.

Keywords:

thermal power equipment, boiler, technical condition, fuel combustion, efficiency, diagnostics, monitoring, control, neural networks, machine learning, algorithms,  models, inverse problem, heat exchange

References:

For chapter 1
  1. Zaporozhets A.O., Sverdlova A.D. analysis of methods for diagnosing heat energy objects. Science-Based Technologies. 2017. Т. 35, № 3. С. 259—265. doi: 10.18372/2310-5461.35.11846.
  2. HyeonminKim, Man Gyun Na, Gyunyoung Heo.Application of Monitoring, Diagnosis, and Prognosis in Thermal Performance Analysis for Nuclear Power Plants. Nuclear Engineering and Technology. 2014. Vol. 46, iss. 6. P. 737—752.
  3. Joly R.B., Ogaji S.O.T., Singh R., Probert S.D.Gasturbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine. Applied Energy. 2004. Vol. 78. P. 397—418.
  4. Miller D.H., Mercer F., Popelas J. Service and diagnostic logic scan apparatus and method. U.S. Patent, 7,836,347. Oct. 17, 2007.
  5. Babak V., Eremenko V., Zaporozhets A. Research of diagnostic parameters of composite materials using Johnson distribution. International Journal of Computing. 2019. Vol. 18, N 4. P. 483—494.
  6. Salahshoor K., Kordestani M., Khoshro M.S. Fault detection of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy. 2010. Vol. 35. P. 5472—5482.
  7. Eremenko V., Zaporozhets A., Babak V., Isaienko V., Babikova K. Using Hilbert Trans­form in Diagnostic of Composite Materials by Impedance Method. Periodica Polytechnica Elect­rical Engineering and Computer Science. 2020. Vol. 64, N 4. P. 334—342. https://doi.org/ 10.3311/PPee.15066.
  8. Eremenko V.S., Babak V.P., Zaporozhets A.O. Method of reference signals creating in non-destructive testing based on low-speed impact method. Technical Electrodynamics. 2021. N 4. P. 70—82. https://doi.org/10.15407/techned2021.04.070.
  9. Park S., Heo G. Simulation Based Data Reconciliation for Monitoring Power Plant Efficiency. Transactions of the Korean Nuclear Society. Jeju, Korea, Oct 21—22, 2010.
  10. Bohachev I.V., Babak V.P., Zaporozhets A.O. Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Technical Electrodynamics. 2022. N 3. P. 69—78. https://doi.org/10.15407/techned2022.03.069.
  11. Zaporozhets A., Eremenko V., Isaienko V., Babikova K. Approach for Creating Refe­ren­ce Signals for Detecting Defects in Diagnosing of Composite Materials. Advances in Intelligent Systems and Computing IV. 2020. Vol. 1080. P. 154—172. doi: 10.1007/978-3-030-33695-0_12.
  12. Zaporozhets A., Babak V., Sverdlova A., Isaienko V., Babikova K. Development of a System for Diagnosing Heat Power Equipment Based on IEEE 802.11s. Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control. 2021. Vol. 346. P. 141—151. doi: 10.1007/978-3-030-69189-9_8.
  13. Babak V.P., Babak S.V., Eremenko V.S., Kuts Y.V., Myslovych M.V., Scherbak L.M., Zaporozhets A.O. Models and Measures for Standardless Measurements of the Composite Materials Characteristics. Models and Measures in Measurements and Monitoring. 2021. Vol. 360. P. 157—190. doi: 10.1007/978-3-030-70783-5_6.
  14. Dzyuba V., Zaporozhets A. Mathematical Approaches to Forecasting and Researching the Technical State of Cylindrical Shells of Energy Objects’ Elements Based on Vibration Monitoring Systems. Systems, Decision and Control in Energy III. Studies in Systems, Decision and Control. 2022. Vol. 399. P. 107—119. https://doi.org/10.1007/978-3-030-87675-3_6.
  15. Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvaritch V.M. Diagnostic Systems For Energy Equipments. Springer International Publishing, 2020. 133 p. doi: 10.1007/978-3-030-44443-3.
  16. Eremenko V. Zaporozhets A., Isaienko V., Babikova K. Application of Wavelet Trans­form for Determining Diagnostic Signs. Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume I. Main Conference, Kherson, Ukraine, June 12—15, 2019. Eds. V. Ermolayev, F. Mallet, V. Yakovyna, H.C. Mayr, A. Spivakovsky. P. 202—214. (CEUR Workshop Proceedings, Vol. 2387). Access mode: http://ceur-ws.org/Vol-2387/20190202.pdf.
  17. Babak S., Babak V., Zaporozhets A., Sverdlova A. Method of Statistical Spline Functions for Solving Problems of Data Approximation and Prediction of Objects State. [Electronic resource]. Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15—19, 201 . Eds. D. Luengo, S. Subbotin, P. Arras, Ye. Bodyanskiy, K. Henke, I. Izonin, V. Levashenko, V. Lytvynenko, A. Parkhomenko, A. Pester, N. Shakhovska, A. Sharpanskykh, G. Tabunshchyk, C. Wolff, H.-D. Wuttke, E. Zaitseva. P. 810—821. (CEUR Workshop Proceedings, Vol. 2353). Access mode: http://ceur-ws.org/Vol-2353/paper64.pdf.
  18. Zaporozhets A.O., Eremenko V.S., Serhiienko R.V., Ivanov S.A. Development of an intelligent system for diagnosing the technical condition of the heat power equipment. IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT) (11—14 September 2018, Lviv, Ukraine). Lviv: Vezhai Ko, 2018. P. 48—51. doi: 10.1109/STC-CSIT.2018.8526742.
  19. Ajami A., Daneshvar M. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using Independent Component Analysis (ICA). Electrical Power and Energy Systems. 2012. Vol. 43. P. 728—735.
  20. Joly R.B., Ogaji S.O.T., Singh R., Probert S.D. Gasturbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine. Applied Energy. 2004. Vol. 78. P. 397—418.
  21. Fast M., Assadi M., De S. Development and multi-utility of an ANN model for an industrial gasturbine. Applied Energy. 2009. Vol. 86. P. 9—17.
  22. Deshpande P., Warke N., Khandare P., Deshpande V. Thermal Power Plant Analysis Using Artificial Neural Network. Nirma University International Conference on Engineering (NUiCONE), 06—08 December 2012. IEE. 2013.
  23. Heo G. Condition Monitoring using Empirical Models: Technical Review and Prospects for Nuclear Applications. Nuclear Engineering and Technology. Feb. 2008. Vol. 40, N 1. P. 49—68.
  24. Jianping M.A, Jin J., Semi-Supervised Classification for Fault Diagnosisin Nuclear Power Plants. International Symposium on Future I&C for Nuclear Power Plants. International Symposium on Symbiotic Nuclear Power Systems 2014 (ISOFIC/ISSNP 2014). Aug 24—28, 2014. P. 24—25.
For chapter 2
  1. Babak V.P., Zaporozhets A.A., Sverdlova A.D. Diagnostics of technical condition of thermal power objects based on distributed computing infrastructure. e-Journal of Nondestructive Testing. 2016. Vol.187(1). P. 85—89.
  2. Sverdlova A.D., Zaporozhets A.A., Redko A.A. Developing of multilevel diagnosic system for heating equipment. Arhivarius. 2016. 1(13). P. 89—94.
  3. Babak V.P., Zaporozhets A.O., Kuts Y.V., Scherbak L.M. Models and measuresin theory and practice of measurements. Thermophysics and Thermal Power Engineering. 2020. Vol. 42. №4. P. 5—18. https:doi.org/10.31472/ttpe.4.2020.1.
  4. Babak V., Zaporozhets A., Kuts Yu., Scherbak L. Some features of Hilbert transform and their use in energy informatics. The Problems of General Energy. 2022. N 1—2 (68—69). P. 90—96. https://doi.org/10.15407/pge2022.01-02.090.
  5. Babak V., Zaporozhets A., Zvaritch V., Scherbak L., Myslovych M., Kuts Yu. Models and Measures in Theory and Practice of Manufacturing Processes. IFAC-Papers On Line. 2022. Vol. 55 (10). P. 1956—1961. https://doi.org/10.1016/j.ifacol.2022.09.685.
  6. Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvaritch V.M. Principles of Construction of Systems for Diagnosing the Energy Equipment. Diagnostic Systems For Energy Equipments. Studies in Systems. Decision and Control. 2020. Vol. 281. P. 1—22. doi: 10.1007/978-3-030-44443-3_1.
  7. Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvaritch V.M. Methods and Models for Information Data Analysis. Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control. 2020. Vol. 281. P. 23—70. doi: 10.1007/978-3-030-44443-3_2.
  8. Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvaritch V.M. Technical Provision of Diagnostic Systems. Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control. 2020. Vol. 281. P. 91—133. doi: 10.1007/978-3-030-44443-3_4.
  9. Babak V.P., Babak S.V., Eremenko V.S., Kuts Y.V., Myslovych M.V., Scherbak L.M., Zaporozhets A.O. Models of Measuring Signals and Fields. Models and Measures in Measurements and Monitoring. 2021. Vol. 360. P. 33—59. doi: 10.1007/978-3-030-70783-5_2.
  10. Babak V.P., Babak S.V., Eremenko V.S., Kuts Y.V., Myslovych M.V., Scherbak L.M., Zaporozhets A.O. Models and Measures for the Diagnosis of Electric Power Equipment. Models and Measures in Measurements and Monitoring. 2021. Vol. 360. P. 99—126. doi: 10.1007/978-3-030-70783-5_4.
  11. Babak V.P., Babak S.V., Eremenko V.S., Kuts Y.V., Myslovych M.V., Scherbak L.M., Zaporozhets A.O. Models and Measures in Measurements and Monitoring. Springer International Publishing, 2021. 266 p. doi: 10.1007/978-3-030-70783-5.
  12. Hinton G., Salakhutdinov R. Reducing the dimensionality of data with neural networks — science magazine. 2006. [Online]. Available: http://www.cs.toronto.edu/~rsalakhu/
    papers/science.pdf.
  13. Nemire B. Cuda spotlight: Gpu-accelerated deep neural networks. 2014. [Online]. Available: http://devblogs.nvidia.com/parallelforall/cuda-spotlight-gpu-accelerated-deep-neural-networks.
  14. Scherer D., Schulz H., Behnke S. Accelerating large-scale convolutional neural networks with parallel graphics multiprocessors. In Artificial Neural Networks — ICANN, 2010. Springer, 2010. P. 82—91.
  15. Hof R.D. Deep learning — 10 breakthrough technologies 2013. 2013. [Online]. Available: http://www.technologyreview.com/featuredstory/513696/deep-learning/
For chapter 3
  1. Sverdlova A., Zaporozhets A. Diagnosis of complex thermal energy objects using neural networks. Proceedings of the XII International Online Conference “Problems of Thermal Physics and Thermal Power Engineering” (October 26-27, 2021). Kyiv: Symonenko O.I., 2021. P. 115.
  2. Sverdlova A., Zaporozhets A. Predicting anomaly conditions of energy equipment using neural networks. Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). E3S Web of Conferences 280, 09005 (2021). doi:10.1051/e3sconf/202128009005.
  3. Sverdlova A.D., Zaporozhets A.O., Bohachev I.V., Popov O.O., Iatsyshyn A.V., Kovach V.O., Artemchuk V.O., Hrushchynska N.M. Self-organizing network topology for autonomous IoT systems. Joint Proceedings of the Workshops on Quantum Information Technologies and Edg eComputing (QuaInT+doors 2021), Zhytomyr, Ukraine, April, 11, 2021. Ed. Serhiy O. Semerikov. P. 57—70. (CEUR Workshop Proceedings, Vol. 2850). Access mode: http://ceur-ws.org/Vol-2850/paper4.pdf.
  4. Kawakami T. Combining models related to data distribution through productive expe­rimentation. . In G.A. Stillman, W. Blum, G. Kaiser (eds.). Mathematical modelling and applica­tions: Crossing and researching boundaries in mathematic seducation. Cham: Springer, 2017. P. 95—105.
  5. Ludwig M., Reit X.-R. A cross-sectional study about modelling competency in secondary school. In G.A. Stillman, G. Kaiser, W. Blum, J.P. Brown (eds.). Teaching mathematical mo­delling: Connecting to research and practice. Dordrecht, The Netherlands: Springer, 2013. P. 327—337.
  6. Brown J.P., Stillman G.A. Developing the roots of modelling conceptions: ‘Mathe­matical modelling is the life of the world’. International Journal of Mathematical Education in Science and Technology. 2017. Vol. 48 (3). P. 353—373.
  7. Sokolowski A. The effects of mathematical modelling on students’ achievement-meta-analysis of research. The IAFOR Journal of Education. 2015. Vol. 3(1). P. 93—114. State Board of Education. (SBOE). (n.d.). Texas Essential Knowledge and Skills (TEKS). Available: https:// tea.texas.gov/Academics/Curriculum_Standards/.
  8. Stillman G. Impact of prior knowledge of task context on approaches to applications tasks. Journal of Mathematical Behavior. 2000. Vol. 19 (3). P. 333—361.
  9. Stillman G., Brown J., Galbraith P. Identifying challenges within transition phases of mathematical activities at Year 9. In R. Lesh P. Galbraith, C. Haines A. Hurford (eds.). Modelling students’ mathematical modelling competencies. New York: Springer, 2010. P. 385—398.
  10. Alridha A., Al-Jilawi A., Alsharify F. Review of Mathematical Modelling Techniques with Applications in Biosciences. IraqiaUniversity, College of Education Publishers Office Allrightsreserved. 2019. http://journal.esj.edu.iq/index.php/IJCM.
  11. Navarro H., Leonardo B. Descriptive examples of the limitations of artificial neural networks applied to the analysis of independent stochastic data. International Journal of Computer Engineering and Technology. 2014. Vol. 5 (5). P. 40—42.
  12. Palit A.K., Popovic D. Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. Berlin: Springer Science and Business Media, 2006.
  13. Palmé T., Fast M., Thern M. Gas turbine sensor validation through classification with artificial neural networks. Applied Energy. 2011. Vol. 88(11). P. 3898—3904.
  14. Panda S.K., Mohanty N.S., Jagadev A.K. Long term electrical load forecasting: An empirical study across techniques and domains. Indian Journal of Science and Technology. 2017. Vol. 10 (26). P. 1—16.
  15. Ronquillo-Lomeli G., Herrera-Ruiz G., Rios-Moreno J., Ramirez-Maya I., Trejo-Perea M. Total suspended particle emissions modelling in an industrial boiler. Energies. 2018. Vol. 11 (11). P. 3097.
  16. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 1958. Vol. 65 (6). P. 386.
  17. Ferrero B.J., Fernández J.F.G., Polo F.O., Márquez A.C. A review of the use of artificial neural network models for energy and reliability prediction. A studyofthesolar PV, hydrauli­cand­wind energysources. Applied Sciences. 2019. Vol. 9 (9). P. 1844.
  18. Fouilloy A., Voyant C., Notton G., Motte F., Paoli C., Nivet M.L., Duchaud J.L. Solar irradiation prediction with machinelearning: Forecasting models selection method depending on weather variability. Energy. 2018. Vol. 165. P. 620—629.
  19. Babatunde D.E., Babatunde O.M., Akinbulire T.O., Oluseyi P.O. Hybrid energy systems model with the inclusion of energy efficiency measures: A rural application perspective. International Journal of Energy Economics and Policy. 2018. Vol. 8 (4). P. 310—317.
  20. Babatunde O.M., Adedoja O.S., Babatunde D.E., Henry D.I. Offgrid hybrid renewable energy system for rural healthcare centers. A casestudyin Nigeria. Energy Science and Engineering. 2019. N 7. P. 1—18.
  21. Chokshi R.B., Chavda N.K., Patel A.D. Prediction of performance of coal-based KWU designed thermal power plants using an artificial neural network. International Journal of Applied Engineering Research. 2018. Vol. 13 (5). P. 3093—3110.
  22. Denwigwe I.H., Babatunde O.M., Babatunde D.E., Akintunde T.J., Akinbulire T.O. A technical review on methods and tools for evaluation of energy footprints, impact on buildings and environment. In Energy Footprints of the Bio-refinery, Hotel, and Building Sectors. Singapore: Springer, 2019. P. 47—81.
  23. Dybkowski M., Klimkowski K. Artificial neural network application for current sensors fault detection in the vector controlled induction motor drive. Sensors. 2019. Vol. 19 (3). P. 571.
For chapter 4
  1. Babak V.P., Zaporozhets A.O., Sverdlova A.D. Smart Grid Technology in Monitoring of Power System Objects. Thermophysics and Thermal Power Engineering. 2016. Vol. 38, № 6. P. 71—81. doi: 10.31472/ihe.6.2016.10.
  2. Zaporozhets A.A., Sverdlova A.D. Peculiarities of application of Smart Grid technology in systems for monitoring and diagnostics of heat-and-power engineering objects. Technical Diagnostics and Non-Destructive Testing, 2017. № 2. P. 33—41. doi: 10.15407/tdnk2017.02.05.
  3. Gazzola F. Evaluation of the potentials of Temperature Controlled Reactivity Compression Ignition combustion for efficiency increase in CI engines. J. Clean. Prod. 2022. Vol. 330. P. 129781.
  4. Lucchini T., Pontoni D., D’Errico G., Somers B. Modeling diesel combustion with tabu­lated kinetics and different flame structure assumptions based on flamelet approach. Int. J. Engine Res. 2020. Vol. 21. P. 89—100.
  5. Baratta M., Catania A.E., Pesce F.C. Multidimensional Modeling of Natural Gas Jet and Mixture Formation in Direct Injection Spark Ignition Engines — Development and Validation of a Virtual Injector Model. J. Fluids Eng. 2011. Vol. 133. P. 041304.
  6. Serrano J.R., Bracho G., Gomez-Soriano J., Fernandes C. Development of an Oxy-Fuel Combustion System in a Compression Ignition Engine for Ultra-Low Emissions Powerplants Using CFD and Evolutionary Algorithms. Appl. Sci. 2022. N 12. P. 7104.
  7. Murugesan A., Subramaniam D., Panneerselvam N. An Experimental Investigation of Diesel Engine Fuelled with MgO Nano Additive Biodiesel — Diesel Blends. Bull. Sci. Res. 2019. N 1. P. 28—34.
  8. Qureshi K.N, Abdullah A.H. A survey on intelligent transportation systems. Middle-East J. Sci. Res. 2013. Vol. 15 (5). P. 629—642.
  9. Yan Y., Qian Y., Sharifand H., Tipper D. 2012. A survey on cyber security for smart grid communications. IEEE Commun. Surv. Tutorials,. 2012. Vol. 14 (4). P. 998—1010.
  10. Rohjans S., Uslar M., Bleiker R., González J., Specht M., Sudingand T., Weidelt T. Sur­vey of smart grid standardization studies and recommendations. Proceeding of 1st IEEE Inter­na­tional Conference on Smart Grid Communications (SmartGridComm). 2010.
  11. Amin S.M., Wollenberg B.F. Toward a smart grid: power delivery for the 21st century. IEEE Power Energy M. 2005. Vol. 3 (5). P. 34—41.
  12. Abdullah A.A., Hassan T.M. Smart grid (SG) properties and challenges: an overview. Discov Energy. 2022. N 2. P. 8. https://doi.org/10.1007/s43937-022-00013-x.
  13. Lixia Zhou, Xun Liao, Shunxin Li, Jincan Yuan. Design and development of the reliability prediction software for smart meters. Proceedings of the International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE) 2012. P. 612—616.
  14. Maghsoodi N.H, Haghnegahdar M., Jahangir A.H., Sanaei E. Performance evaluation of energy management system in smart home using wireless sensor network. Proceedings of the 2nd Iranian Conference on Smart Grids (ICSG). 2012. P. 1—8.
  15. Li Li, Hu Xiaoguang, Huang Jian, He Ketai. Design of new architecture of AMR system in Smart Grid. Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications (ICIEA)-2011. P. 2025—2029.
  16. Nizami A., Ali J., Zulfiqar M.. Climate change is real and relevant for sustainable development, an empirical evidence on scenarios from North West Pakistan. Sarhad Journal of Agriculture. 2020. Vol. 36 (1). P. 42—69. doi: 10.17582/journal.sja/2020/36.1.42.69.
  17. Ahmad S., Zafar M.H., Ashraf M., Khan I., Khan F.Q. Energy-efficient TDMA based clustering scheme for WSN. Proceedings of the Pakistan Academy of Sciences. A. Physical and Computational Sciences. 2018. Vol. 55 (3). P. 53—65.
  18. Lombardi P., Powalko M., Rudion K. Optimal operation of a virtual power plant. Proceeding of IEEE Power and Energy Society General Meeting (PES’09). 2009.
For chapter 5
  1. Zaporozhets A.O. Investigation of stoichiometric «air-fuel» ratio of organic compounds. Part 1. Alkanes. Science-Based Technologies. 2014. Vol. 22, № 2. P. 163—167. doi: 10.18372/2310-5461.22.6803.
  2. Babak V.P., Zaporozhets A.A. Research the stoichiometric composition «air-fuel» of flammable and explosive hydrocarbones. e-Journal of Nondestructive Testing. 2014. Vol. 150, № 1. P. 90—94.
  3. Бабак В.П., Запорожець А.О., Редько О.О. Increasing the accuracy of measuring the air excess coefficient in the boilers using the electrochemical gas analyzer. Thermophysics and Thermal Power Engineering. 2015. Vol. 37, № 1. P. 82—96. doi: 10.31472/ihe.1.2015.10.
  4. Запорожець А.О. Investigation of stoichiometric «air-fuel» ratio of organic compounds. Part 2. Alkenes, alkynes. Science-Based Technologies. 2014. Vol. 24, № 4. P. 393—399. doi: 10.18372/2310-5461.24.7506.
  5. Babak V.P., Zaporozhets A.O. System of quality of combustion of air-fuel mixture in boiler units of small and medium capacity. Quality control methods and devices. 2014. № 2 (33). P. 106—114.
  6. Babak V.P., Zaporozhets А.O., Redko A.A. Influence of meteorological parameters on optimization in combustion. e-Journal of Nondestructive Testing. 2015. Vol. 165, № 2. P. 361—364.
  7. Babak V.P., Zaporozhets А.O., Redko A.A. Experimental research of changes the volume concentration of oxygen in the air and influence on the combustion process. e-Journal of Nondestructive Testing. 2016. Vol. 187, № 1. P. 81—84.
  8. Babak V.P., Mokiychuk V.M., Zaporozhets A.A., Redko A.A. Improving the efficiency of fuel combustion with regard to the uncertainty of measuring oxygen concentration. Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6, N 8 (84). P. 54—59. doi: 10.15587/1729-4061.2016.85408.
  9. Babak V.P., Zaporozhets A.A., В. Control combustion process in small and medium power boilers using oxygen sensors. e-Journal of Nondestructive Testing. 2017. Vol. 216, № 1. P. 130—134.
  10. Zaporozhets A.O. Experimental studies of the fuel combustion control system in boiler units. Metrology and instruments. 2017. № 5-1. P. 111—114.
  11. Zaporozhets A.O., Redko O.O., Babak V.P., Eremenko V.S., Mokiychuk V.M. Method of indirect measurement of oxygen concentration in th eair. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2018. N5. P. 105-114. doi: 10.29202/nvngu/2018-5/14.
  12. Zaporozhets A. Analysis of control system of fuelcombustioninboilers with oxygen senso. Periodica Polytechnica Mechanical Engineering. 2019. Vol. 64, N 4. P. 241—248. doi: 10.3311/PPme.12572.
  13. Zaporozhets A.O., Kuts Y.V. Hardware and    software    of    automatic    control    system    of    fuel combustion  process  in  low  and  medium  power  boilers.  Part  1.  Method and hardware. Bulletin of Kyiv Polytechnic Institute. Series Instrument Making. 2021. № 61 (1). P. 37—45. doi: 10.20535/1970.61(1).2021.237091.
  14. Zaporozhets A.O., Kuts Y.V. Hardware and    software    of    automatic    control    system    of    fuel combustion    process    in    low    and    medium    power    boilers.    Part    2. Algorithmic software. Bulletin of Kyiv Polytechnic Institute. Series Instrument Making. 2021. № 62 (2). P. 65—75. doi: 10.20535/1970.62(2).2021.249223.
  15. Stanytsina V., Artemchuk V., Bogoslavska O., Zaporozhets A., Kalinichenko A., Stebila J., Havrysh V., Suszanowicz D. Fossil Fuel and Biofuel Boilers in Ukraine: Trends of Changes in Levelized Cost of Heat. Energies. 2022. Vol. 15 (19). P. 7215. https://doi.org/10.3390/en15197215.
  16. Bilan T., Kaplin M., Makarov V., Perov M., Novitskii I., Zaporozhets A., Havrysh V., Nitsenko V. The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study. Energies. 2022. Vol. 15 (21). P. 8103. https://doi.org/10.3390/en15218103.
  17. Zaporozhets A.O. Methods and Means for the Control of the Fuel Combustion Process. Control of Fuel Combustion in Boilers. Studies in Systems, Decision and Control. 2020. Vol. 287. P. 1—33. doi: 10.1007/978-3-030-46299-4_1.
  18. Zaporozhets A.O. Research of the Process of Fuel Combustion in Boilers. Control of Fuel Combustion in Boilers. Studies in Systems, Decision and Control. 2020. Vol. 287. P. 35—60. doi: 10.1007/978-3-030-46299-4_2.
  19. Zaporozhets A.O. Hardware and Software Implementation of Modules of the System of the Fuel Combustion Control Process. Control of Fuel Combustion in Boilers. Studies in Systems, Decision and Control. 2020. Vol. 287. P. 61—87. doi: 10.1007/978-3-030-46299-4_3.
  20. Zaporozhets A.O. Experimental Research of a Computer System for the Control of the Fuel Combustion Process. Control of Fuel Combustion in Boilers. Studies in Systems, Decision and Control. 2020. Vol. 287. P. 89—123. doi: 10.1007/978-3-030-46299-4_4.
  21. Zaporozhets A.O. Control of Fuel Combustion in Boilers. Springer International Publishing, 2020. 123 p. doi: 10.1007/978-3-030-46299-4.
  22. Zaporozhets A.O., Babak V.P. Control of fuel combustion in small and medium power boilers. Kyiv: PH «Akademperiodyka», 2020. 128 p. doi: 10.15407/akademperiodyka.418.128.
  23. Zaporozhets A., Eremenko V., Redko O. Metrological assessment of the indirect method of measuring the concentration of oxygen in the air. XVI Scientific Workshop «Measurement Uncertainty: Scientific, Normative, Applied and Methodical Aspects» (Septem­ber, 7, 2019, Sozopol, Bulgaria). P. 640—643. doi: 10.1109/CAOL46282.2019.9019506.
  24. Zaporozhets A. Development of Software for Fuel Combustion Control System Based on Frequency Regulator. Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume I: Main Conference, Kherson, Ukraine, June 12—15, 2019. Eds. V. Ermolayev, F. Mallet, V. Yakovyna, H.C. Mayr, A. Spivakovsky. P. 223—230. (CEUR Workshop Proceedings. Vol. 2387). Access mode: http://ceur-ws.org/Vol-2387/20190223.pdf.
  25. Janic T. et al. Control of Baled Biomass Combustion Process in Hot Water Boiler Plants (in Serbian). Savremena poljoprivredna tehnika. 2010. Vol. 36, N 4. P. 366—372.
  26. Repic B. et al. Soya Straw Bales Combustion in High-Efficient Boiler. Thermal Science. 2008. Vol. 12, N 4. P. 51—60.
For chapter 6
  1. Qian Z., Zhang Q. Differential-difference regularization for a 2D inverse heat conduction problem. Journal of Inverse Problems. 2010. Vol. 26 (9).
  2. Qiu C., Fu C. Wavelets and regularization of the Cauchy problem for the Laplace equation. Journal of Mathematical Analysis and Applications. 2008. Vol. 33 (2). P. 1440—1447.
  3. Qu S., Li S., Chen H., Qu Z. Radial integration boundary element method for acoustic eigenvalue problems. Engineering Analysis with Boundary Elements. 2013. Vol. 37. P. 1043—1051.
  4. Quarteroni A., Valli A. Numerical Approximation of Partial Differential Equations. Springer Berlin Heidelberg, 1994.
  5. Quigley A. An approach to the control of divergence in Kalman filter algorithms. International Journal of Control, Automation and Systems. 1973. Vol. 17. N 4. P. 741—746.
  6. Rees T. Preconditioning Iterative Methods for PDE Constrained Optimization. University of Oxford: Hilary, 2010.
  7. Reginska T., Elden L. Stability and convergence of wavelet-Galerkin method for the sideways heat equation. Journal of Inverse Problems. 2000. N 8. P. 31—49.
  8. Reusken A. Numerical methods for elliptic partial differential equations. Lecture notes, 2005.
  9. Reusken A., Soemers M. On the robustness of a multigrid method for anisotropic reaction-diffusion problems. International Journal of Computing. 2007. Vol. 80. P. 299—317.
  10. Rosch A. A Gauss-Newton method for the identification of non-linear heat transfer laws. International Series of Numerical Mathematics. 2002. Vol. 139. P. 217—230.
  11. Rosch A. Identification of nonlinear he attransferlawsby optimal control. Numerical Functional Analysis and Optimization. 1994. N 15. P. 417—434.
  12. Rosch A. Stability estimates for the identification of nonlinear heat laws. Inverse Problems. 1996. Vol. 12. P. 743—756.
  13. Saad Y. Iterative Methods for Sparse Linear Systems. SIAM: 2nd edition, 2003.
  14. Seidman T., Elden L. An optimal filtering method for the sideways heat equation. Inverse Problems. 1990. Vol. 6. P. 681—696.
  15. Sheng C. Direct And Inverse Heat Conduction Problems Solving by the Boundary Element Method. Hunan University, 2007.
  16. Silva Neto A., Lugon Jr., Soeiro F. Application of simulated annealing and hybrid methods in the solution of inverse heat and mass transfer problems. Simulated Annealing. Theory with Applications. 2010. Vol. 2. P. 17—50.
  17. Stutz D. Parallel computation strategies for image restoration with Tikhonov’s regularization functional. D.Sc. Thesis. Computational Modelling Program. Polytechnique Institute: Rio de Janeiro State University, 2009.
  18. Tautenhahn U. Optimality for ill-posed problems under general source conductions. Numerical Functional Analysis and Optimization. 1988. P. 377—398.
  19. Tian N. Numerical Methods for the PDE-Based Inverse Problems and Applications. Journal of Jiangnan University. 2012.
  20. Wang J.R. Shannon wavelet regularization methods for a backward heat equation. Journal of Computational and Applied Mathematics. 2011. N 235 (9). P. 3079—3085.
  21. Wang L., Mei L., Huang J. Inverse heat conduction problem based on least squares prediction. Chinese Journal of Chemical Engineering (CIESC Journal). 2016. Vol. 67. P. 103—110.
  22. Wang Y., Cheng J., Nakagawa J. A numerical method for solving the inverse heat conduction problem without initial value. Inverse Problems in Science and Engineering. 2010. Vol. 18, N 5. P. 655—671.
  23. Woodbury K., Beck J., Najafi H. Filter solution of inverse heat conduction problem using measured temperature history as remote boundary condition. International Journal of Heat and Mass Transfer. 2014. Vol. 72. P. 139—147.
  24. Wroblewska A., Frackowiak A., Cialkowski A. Regularization of the inverse heat conduction problem by the discrete Fourier transform. Inverse Problems in Science and Engineering. 2016. Vol. 24 (2). P. 195—212.
  25. Wu H. Heat Conduction Problem Solving by Boundary Element Method. Beijing, China: National Defence Industry Press, 2008.
  26. Xiong X.T., Hon Y.C. Regularization error analysison a one-dimensional inverse heat conduction problem in multilayer domain. Inverse Problems in Science and Engineering. 2013. Vol. 21 (5). P. 865—887.
  27. Xue Q., Wei W. Parameters identification of non-linear inverse heat conduction problem. Engineering Mechanics. 2010. Vol. 27, N 8. P. 5—9.
  28. Yaparova N. Numerical methods for solving a boundary-value inverse heat conduction problem. Inverse Problems in Science and Engineering. 2014. Vol. 22, N 5. P. 832—847.
  29. Yu X. Inverse Analysis of Thermal Conductivities in Non-Homogeneous Heat Conductions Using Boundary Element Method. Dalian University of Technology, 2013.
  30. Zhu L., Wang G., Chen H. Estimating steady multi-variables inverse heat conduction problem by using conjugate gradient method. Proceedings of the Chinese Society of Electrical Engineering. 2011. Vol. 31, N 8. P. 58—61.
  31. Wroblewska A., Frackowiak A., Cialkowski A. Regularization of the inverse heat conduction problem by the discrete Fourier transform. Inverse Problems in Science and Engineering. 2016. Vol. 24 (2). P. 195—212.
  32. Wu H. Heat Conduction Problem Solving by Boundary Element Method. Beijing, China: National Defence Industry Press, 2008.
  33. Xiong X.T., Hon Y.C. Regularization error analysis on a one-dimensional inverse heat conduction problem in multilayer domain. Inverse Problems in Science and Engineering. 2013. Vol. 21 (5). P. 865—887.
  34. Xue Q., Wei W. Parameters identification of non-linear inverse heat conduction problem. Engineering Mechanics. 2010. Vol. 27. N 8. P. 5—9.
  35. Matsevity Y.M. Inverse problems of heat conduction. In two volumes. Volume 1. Methodology. Kyiv: Naukova dumka, 2002. 408 p.
  36. Matsevity Y.M. Inverse problems of heat conduction. In two volumes. Volume 2. Application. Kyiv: Naukova dumka, 2003. 392 p.
  37. Matsevity Y.M., Tymchenko V.P. Diagnostics of metallurgical equipment destruction using methods for solving inverse heat conduction problems. Industrial heat engineering. 2001. Vol.23, № 6. P. 10—15.
  38. Matsevity Yu.M., Tsakanyan O.S., Koshevaya N.A. Hybrid modeling of contact heat transfer in solving a nonlinear heat conduction problem. Electronic modeling. 2001. Vol.23, № 4. P. 3—15.
  39. Matsevity Yu.M., Tsakanyan O.S., Koshevaya N.A. Modeling the thermal state of a composite piston of a forced engine. Problems of Mechanical Engineering. 2001. № 3. P. 30—37.
For chapter 7
  1. Onyango T.T.M., Ingham D.B., Lesnic D. Reconstruction of heat transfer coefficients using the boundary element metod. Computers and Mathematics with Applications. 2008. Vol. 56, № 1. P. 114—126. ISSN: 0898-1221.
  2. Golovnya B.P., Khaidurov V.V. Some high-speed methods of solving nonlinear inverse problems of heat conduction. Collection of scientific papers of Bohdan Khmelnytskyi Cherkasy National University. Applied mathematics. Informatics. Technical sciences. Cherkasy, 2017. № 1—2. P. 71—90.
  3. Golovnya B.P., Khaidurov V.V. Effective methods for solving nonlinear inverse heat conduction problems. Restoration of the coefficient of thermal conductivity. “Young science. Progressive technological processes, technological equipment”: materials of the International Scientific and Technical Internet Conference of Students and Young Scientists, Kramatorsk, (March 30), 2017. Kramatorsk, 2017. P. 101—105.
  4. Golovnya B.P., Khaidurov V.V. The method of finding the numerical solution of the inverse two-dimensional heat conduction problem. Collection of scientific works of the State University of Technology. Technical sciences. Cherkasy, 2015. № 2. P. 49—56.
  5. Golovnya B.P., Khaidurov V.V. Effective methods of solving nonlinear inverse problems of heat conduction. Collection of scientific papers of Bohdan Khmelnytskyi Cherkasy National University. Applied mathematics. Informatics. Technical sciences. Cherkasy, 2014. No. 2. P. 87—98.
  6. Zhaldak M.I., Tryus Y.V. Fundamentals of optimization theory and methods: a study guide for students of mathematical specialties of higher educational institutions. Cherkasy: Brama-Ukraine, 2005. 608 p.
  7. Kabanykhin S.I. Reverse and incorrect tasks. Second edition, revised. Novosibirsk: Siberian Scientific Publishing House, 2009. 457 p.
  8. Krukovsky P.G. Reverse tasks of heat and mass transfer (general engineering approach). Kyiv: Institute of Technical Thermal Physics of the National Academy of Sciences of Ukraine, 1998. 224 p.
  9. Matsevity Y.M. Inverse problems of heat conduction. In two volumes. Volume 1. Methodology. Kyiv: Naukova dumka, 2002. 408 p.
  10. Matsevity Y.M. Inverse problems of heat conduction. In two volumes. Volume 2. Application. Kyiv: Naukova dumka, 2003. 392 p.
  11. Matsevity Y.M., Tymchenko V.P. Diagnostics of metallurgical equipment destruction using methods for solving inverse heat conduction problems. Industrial heat engineering. 2001. Vol.23, № 6. P. 10—15.
  12. Matsevity Yu.M., Tsakanyan O.S., Koshevaya N.A. Hybrid modeling of contact heat transfer in solving a nonlinear heat conduction problem. Electronic modeling. 2001. Vol.23, № 4. P. 3—15.
  13. Matsevity Yu.M., Tsakanyan O.S., Koshevaya N.A. Modeling the thermal state of a composite piston of a forced engine. Problems of Mechanical Engineering. 2001. № 3. P. 30—37.
  14. Khaidurov V.V. A multi-grid method for solving nonlinear inverse problems of electric and thermal energy. Collection of scientific works “Modeling and information technologies”. Technical sciences. Kyiv. Institute of modeling problems in energy named after G.E. Pukhova, 2018. No. 83. P. 117—124.
  15. Khaidurov V.V. Using the Fourier method to find the numerical solution of multidimensional inverse heat conduction problems. “Computer modeling and optimization of complex systems”: abstracts of reports of the 1st All-Ukrainian scientific and technical conference, Dnipropetrovsk, November 3-5, 2015. Dnipropetrovsk, 2015. P. 256-261.
  16. Soti V., Ahmadizadeh Y., Pourgholi Y.R., Ebrahimi M. Estimation of heat flux in one-dimensional inverse heat conduction problem. International Mathematical Forum. 2007. Vol. 2, № 10. P. 455—464. ISSN 1312-7594.
  17. Khaidurov V.V. Some issues of inverse problems of heat conduction. “The role of physics in the development of interdisciplinary scientific and educational areas” (PhysIST-2016): materials of the International Correspondence Multimedia (Internet) Conference, Odesa, May 2-5, 2016. Odesa, 2016. P. 24.
  18. Khaidurov V.V. Effective methods for solving pointwise inverse problems of heat conduction. Collection of scientific works “Young Scientist”. Technical sciences. Sumy, 2016. № 6 (33). P. 87-98.
  19. Khaidurov V.V. Finding optimal temperatures of electric heaters of an industrial furnace. “Information technologies: science, engineering, technology, education, health” (MicroCAD—2018): materials of the XXVI International Scientific and Practical Conference, Kharkiv, May 16—18, 2018. Kharkiv, 2018. 261 p.
  20. Khaidurov V.V. Finding the numerical solution of some pointwise inverse problems of heat conduction. “Modern science: problems and prospects”: materials of the International Scientific and Practical Conference, Kyiv, October 13-14, 2015. Kyiv, 2015. P. 26-30.
  21. Khaidurov V.V. Finding the numerical solution of nonlinear inverse heat conduction problems. Restoration of the thermal conductivity coefficient. “Actual scientific research in the modern world.” Technical sciences: collection of scientific papers, Pereyaslav-Khmelnytskyi, March 26-27, 2017. Pereyaslav-Khmelnytskyi, 2017. P. 115-120.
  22. Khaidurov V.V. The method of thermal equipment performance analysis. “Integrated intelligent robotic complexes” (IIRTK-2018): collection of materials of the XXI International Scientific and Practical Conference, Kyiv, May 22-23, 2018. Kyiv, 2018. P. 191-193.
  23. Hetmaniok E., Słota D. Zielonka A. (2010), Solution of the inverse heat conduction problem by using the ABC algorithm. Proceedings of the 7th international conference on Rough sets and current trends in computing RSCTC’10. Springer-Verlag, Berlin, Heidelberg, 2010. P. 659—668. ISBN 3-642-13528-5.
  24. Khaidurov V.V. Modeling of applied inverse problems of thermal conductivity by calculating the coefficient of thermal conductivity. Collection of scientific works “Modeling and information technologies”. Technical sciences. Kyiv, 2017. № 81. P. 69—77.
  25. Khaidurov V.V. Modified methods for solving nonlinear heat conduction problems. “Current scientific research in the current world”: materials of the VI International Scientific and Practical Internet Conference, Pereyaslav-Khmelnitsky, June 26-27, 2015. Pereyaslav-Khmelnitsky, 2015. pp. 74-82.
  26. Fan Y. Li D.-G. Identifying the Heat Source for the Heat Equation with Convection Term. International Journal of Mathematical Analysis. 2009. Vol. 3, N 27. P. 1317—1323. ISSN 1312-8876.
  27. Monde M., Arima H., Liu W., Mitutake Y. Hammad J.A. An analytical solution for two-dimensional inverse heat conduction problems using Laplace transform. International Journal of Heat and Mass Transfer. 2003. Vol. 46, N12. P. 2135—2148. ISSN: 0017-9310.
  28. Zaporozhets A., Khaidurov V., Tsiupii T. Creation of High-Speed Methods for Solving Mathematical Models of Inverse Problems of Heat Power Engineering. Springer, Systems Decision and Control in Energy III. 2022. Vol. 399. P. 41—74. https://doi.org/10.1007/978-3-030-87675-3. ISSN: 2198-4182.
  29. Zaporozhets A., Khaidurov V., Tsiupii T. Optimization models of industrial furnaces and methods for obtaining their numerical solution. Springer, Systems, Decision and Controlin Energy II. Studies in Systems, Decision and Control. 2021. Vol. 346. P. 121—139. https://doi.org/10.1007/978-3-030-69189-9_7. ISSN: 2198-4182.
  30. Khaidurov V. Application of modern applied software packages in solving problems of identifying parameters of physical and technical processes. All-Ukrainian scientific and technical conference of young scholars, graduates and students “Stand, achievements and prospects of information systems and technologies.” (April 2020). P. 209-211.
For chapter 8
  1. Babak V.P., Kovtun S.I., Khaidurov V.V., Shcherbak L.M. Modeling of the heat exchange process in a closed system with mirror and diffuse surfaces. Collection of scientific papers “Science-intensive technologies”. Technical sciences. Kyiv, 2018. № 2 (38) P. 245—254.
  2. Zaporozhets A., Khaidurov V., Tsiupii T. Creation of High-Speed Methods for Solving Mathematical Models of Inverse Problems of Heat Power Engineering. Springer, Systems Decision and Control in Energy III. Studies in Systems, Decision and Control. 2022. Vol. 399. P. 41—74. https://doi.org/10.1007/978-3-030-87675-3. ISSN: 2198-4182.
  3. Zaporozhets A., Khaidurov V., Tsiupii T. Optimization models of industrial furnaces and methods for obtaining their numerical solution. Springer, Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control. 2021. Vol. 346. P. 121—139. https://doi.org/ 10.1007/978-3-030-69189-9_7. ISSN: 2198-4182.
  4. Khaidurov V. Application of modern applied software packages in solving problems of identifying parameters of physical and technical processes. All-Ukrainian scientific and technical conference of young scholars, graduates and students “Stand, achievements and prospects of information systems and technologies.” (April 2020). P. 209-211.

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх