Prediction of the residual lifetime of oil and gas pipeline pipes, taking into account the operating conditions and degradation of their materials

Authors:

Andreykiv Oleksandr, Head of the Department, Professor, Corresponding Member of the National Academy of Sciences of Ukraine, Doctor of Engineering Sciences; Ivan Franko National University of Lviv, Lviv, Ukraine; Karpenko Physico-mechanical Institute of National academy of sciences of Ukraine, Lviv, Ukraine.

http://orcid.org/0000-0001-5185-3255;

https://scholar.google.com/citations?hl=uk&user=Lhl4T_cAAAAJ&view_op=list_works&sortby=pubdate;

https://www.scopus.com /authid/detail.uri?authorId=6602573329

 

Dolinska Iryna, Leading Researcher, Doctor of Engineering Science; Karpenko Physico-mechanical Institute of National Academy of Sciences of Ukraine, Lviv, Ukraine.

https://orcid.org/0000-0003-1143-8895;

https://scholar.google.com/citations? user=Vb1Q420AAAAJ&hl=uk;

https://www.scopus.com/authid/detail.uri?authorId=35336354100;

https://www.researchgate.net/profile/Iryna_Dolinska

 

Reviewers:

Roman Kushnir, Director, Professor, Corresponding Member of the National Academy of Sciences of Ukraine, Doctor of Physical and Mathematical Sciences; Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Science of Ukraine, Lviv, Ukraine.

https://orcid.org/0000-0003-2749-6846;

https://www.scopus.com/authid/detail.uri?authorId=9132609100

 

Ihor Dmytrakh, Head of the Department, Professor, Corresponding Member of the National Academy of Sciences of Ukraine, Doctor of Engineering Sciences; Karpenko Physico-mechanical Institute of National Academy of Sciences of Ukraine, Lviv, Ukraine.

https://orcid.org/0000-0002-3618-8696;

https://www.scopus.com/authid/detail.uri?authorId=6701861294

 

Maksymovych Olesia, Head of the Department, Professor, Doctor of Engineering Sciences; Lviv Polytechnic National University, Lviv, Ukraine.

https://orcid.org/0000-0002-2892-7735;

https://www.scopus.com/authid/detail.uri?authorId=36186944000

 

Affiliation:

Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 268

DOI:

https://doi.org/10.15407/978-966-00-1852-5

ISBN: 978-966-00-1852-5

Language: Ukrainian

How to Cite:

Andreykiv, O., Dolinska, I. (2023) Prediction of the residual lifetime of oil and gas pipeline pipes, taking into account the operating conditions and degradation of their materials. Kyiv, Naukova Dumka. 268p. [in Ukrainian].

Abstract:

The monograph considers the issue of forecasting the lifetime (residual lifetime) of oil and gas pipeline pipes, taking into account the conditions of operation and degradation of their materials. The condition of operated oil and gas pipelines was analyzed. The conditions and modes of operation are described, as well as their influence on the damage and defects of main oil and gas pipelines. Approaches to the approximate determination of deformation, force and fatigue parameters in oil and gas pipelines are presented. The methods of diagnosing the state of materials of oil and gas pipelines and their welded joints have been developed. In particular, methods of non-destructive testing for determining the size of cracks in structural elements, parameters of the stress-strain state, residual stresses in welded joints. Based on the energy approach and the deformation approach, mathematical models (differential equations with initial and final conditions) for study the kinetics of propagation of surface defects such as cracks in oil and gas pipelines and their welded joints have been built. Methods have been developed for estimating the residual life of oil and gas pipelines under different modes of force loading (static, cyclic, maneuvering (repeated hydraulic shocks, closing-opening of shutters, oil flow turbulence etc)), the action of physical and chemical factors (soil corrosion, hydrogen-containing environment) and the degradation of their materials during operation. The application of the methods is demonstrated on specific examples of calculating the residual lifetime of problematic sections of pipes of oil and gas pipelines of Ukraine. A general approach for determining the lifetime of oil and gas pipeline pipes is formulated, taking into account periods of local chemical corrosion (formation of corrosion caverns and pitting), initiation of corrosion-mechanical cracks near corrosion caverns and pitting, subcritical growth of corrosion-mechanical cracks.

For a wide range of specialists – mechanics, material scientists, research engineers working in the field of predicting the lifetime of structural elements, in particular oil and gas pipelines, as well as students and postgraduates who specialize in this field.

Keywords:

Oil and gas pipelines, residual lifetime, lifetime, soil corrosion, surface crack growth, material degradation, mathematical models, energy approach, deformation approach, maneuver mode of operation

References:

1. Zaitsev, L.F. (1982). Regulirovanie rezhimov raboti magistralnikh nefteprovodov (Regulation of operating modes of main oil pipelines). Nedra.
2. Agapkin, V.M. (1976). Krivoshein B. L. Metodi zashchiti truboprovodov ot razrivov pri neustanovivshikhsya rezhimakh (Methods for protecting pipelines from ruptures in unsteady conditions). VNIIOENG.
3. Chernov, V.Y., Makarenko, V.D., Kryzhanivs’kyi, E.I., & Shlapak, L.S. (2002). On the causes of corrosion fracture of industrial pipelines. Materials Science, 38(6), 880—883.
4. Proekt natsionalnogo standarta RF «Trubi dlya magistralnikh nefteprovodov. Metodika rascheta trub na dolgovechnost» (Draft national standard of the Russian Federation “Pipes for main oil pipelines. Method for calculating pipes for durability”). 2006.
5. Zhukovskii, N.E. (1949). O gidravlicheskom udare v vodoprovodnikh trubakh (About water hammer in water pipes). Gostekhizdat.
6. Kaminer, A.A., & Yakhno, O.M. (1987). Gidromekhanika v inzhenernoi praktike (Hydromechanics in engineering practice). Tekhnika.
7. Navrotskii, K.L. (1991). Teoriya i proektirovanie gidro- i pnevmoprivoda: uchebnik (Theory and design of hydraulic and pneumatic drives: textbook). Mashinostroenie.
8. Vilner, Ya.M., Kovalev, Ya.T., Nekrasov, B.B., & Kirillovskii, Yu.L. (1985). Spravochnoe posobie po gidravlike, gidromashinam i gidroprivodam (Reference manual for hydraulics, hydraulic machines and hydraulic drives) (B.B. Nekrasova, Eds.). Vysshaya shkola.
9. Nykyforchyn, H.M., Poliakov, S.H., Oryniak, I.V., Chervatiuk I.V., Slobodian, Z.V., & Dzhala R.M. (2009). Mitsnist i dovhovichnist naftohazovykh truboprovodiv i rezervuariv (Strength and durability of oil and gas pipelines and tanks) (H.M. Nykyforchyn, Eds.). Spolom.
10. Elboujdaini, M. (2006). Initiation of environmentally assisted cracking in line pipe steel. In Proceedings of the 16th European on Fraсkture (ECF16th) “Fracture of Nano and Engineering materials and structures”, Alexandroupolis, Greece, 3—7 July 2006 (pp. 1007—1008). 2006.
11. Slobodyan, Z.V., Nykyforchyn, H.M., & Petrushchak, O.I. (2002). Corrosion resistance of pipe steel in oil-water media. Materials Science, 38(3), 93—96.
12. Anuchkin, M.P., Gornitskii, V.N., & Miroshnichenko, B.L. (1986). Trubi dlya magistralnikh truboprovodov (Pipes for main pipelines). Nedra.
13. Ivantsov, O.M., & Kharitonov, V.I. (1978). Nadezhnost magistralnikh truboprovodov (Reliability of main pipelines). Nedra.
14. Anenkov, N.P.,  Anuchkin, M.P. (1974). Otsenka prochnosti magistralnikh truboprovodov metodami lineinoi mekhaniki razrusheniya (Estimation of strength of main pipelines by methods of linear fracture mechanics). Trudi VNIIST, 30, 27—32.
15. Vasilchenko, G.S., & Koshelev, P.F. (1974). Prakticheskoe primenenie mekhaniki razrusheniya dlya otsenki prochnosti konstruktsii (Practical application of fracture mechanics for assessing the strength of structures). Nauka.
16. Karpova, L.G.  Rashchepkin, K.E. (1974). Issledovanie uprugoplasticheskogo vzaimodeistviya truboprovoda s gruntom (Study of elastoplastic interaction of pipeline with soil). In Truboprovodnii transport nefti i nefteproduktov (Pipeline transport of oil and oil products) (pp. 120—128). VNIISPneft.
17. Pokhmurskii, V.I. (1985). Korrozionnaya ustalost metallov (Corrosion fatigue of metals). Metalurgiya.
18. Kovalko, M.P., Hruzd, V.Ya., Mykhalkiv, V.B., Tymkiv, D.F., Shlapak, L.S. & Kavalko, O.M. (2002). Truboprovidnyi transport hazu (Pipeline gas transport). Agency for rational use of energy and ecology.
19. Stavrovskii, Ye.R., Sukharev, M.T., & Karasevich, N.M. (1982). Metodi rascheta nadezhnosti magistralnikh gazoprovodov (Methods for calculating the reliability of main gas pipelines). Nauka.
20. Shelton, Ye., Rotvel, A.B., & Kut, R.I. (1985). Trebovaniya k stalyam dlya sovremennikh i perspektivnikh magistralnikh truboprovodov v Kanade (Steel requirements for modern and prospective main pipelines in Canada). In Sbornik Stali dlya gazoprovodnikh trub i fitingov (Collection Steel for Gas Pipes and Fittings) (pp. 8—21). Metallurgiya.
21. Tomas, D.E.Dzh., & Dobl, K.R. (1985). Trebovaniya k stalyam dlya podvodnikh truboprovodov (Steel requirements for subsea pipelines). (1985). In Sbornik Stali dlya gazoprovodnikh trub i fitingov (Collection Steel for Gas Pipes and Fittings) (pp. 21—38). Metallurgiya.
22. Taira, T., & Kobayashi, I. (1985). Razrabotka trub dlya ekspluatatsii v serovodorodsoderzhashchikh sredakh (Development of pipes for operation in hydrogen sulfide-containing environments). In Sbornik Stali dlya gazoprovodnikh trub i fitingov (Collection Steel for Gas Pipes and Fittings) (pp. 226—241). Metallurgiya.
23. Nazarchuk, Z.T., Koshovyi, V.V., Skalskyi, V.R. Bukhalo, O.P., & Vorobel, R.A. (2001). Mekhanika ruinuvannia i mitsnist materialiv: T. 5. Neruinivnyi kontrol i tekhnichna diahnostyka (Fracture mechanics and strength of materials: Vol. 5. Nondestructive testing and technical diagnostics) (V.V. Panasiuk, Eds.). Karpenko Physico-mechanical Institute of National Academy of Sciences of Ukraine.
24. Andreikiv, A.E., & Darchuk, A.I. (1992). Ustalostnoe razrushenie i dolgovechnost konstruktsii (Fatigue fracture and durability of structures). Naukova dumka.
25. Panasyuk, V.V., Andreikiv, O.Є., & Parton, V.Z. (1988). Osnovi mekhaniki razrusheniya (Fundamentals of Fracture Mechanics). Naukova dumka.
26. Hordiienko, I.A., Kolomieiev, V.M., & Frolov, A.F. (2000). Stan vymiriuvannia kilkosti ta parametriv yakosti pryrodnoho hazu u systemi DK “Ukrtranshaz” (The state of measurement of the quantity and quality parameters of natural gas in the system of DC “Ukrtransgaz”). Naftova i hazova promyslovist (Oil and gas industry), 5, 44—47.
27. Shtoiko, I.P. (2018). Metody rozrakhunku zalyshkovoho resursu trub mahistralnykh naftohazoprovodiv z urakhuvanniam yikh koroziino-vodnevoi dehradatsii (Methods of calculating the residual resource of pipes of main oil and gas pipelines taking into account their corrosion-hydrogen degradation). [Candidate’s thesis]. Karpenko Physico-mechanical Institute of National Academy of Sciences.
28. Bekker, M.V. (2007). Obespechenie nadyozhnoi raboti gazotransportnoi sistemi DK “Ukratransgaz” (Ensuring reliable operation of the gas transmission system of the AC “Ukratransgaz”). In Sbornik dokladov nauchno-prakticheskogo seminara (Collection of reports of the scientific-practical seminar) (pp. 19—21). Institut elektrosvarki im. Ye. O. Patonav.
29. Rohozniuk, V.V., Huzhov, Yu.P., & Kuzmenko, Yu.O. (2000). Tekhnichna ekspluatatsiia system zakhystu vid pidzemnoi korozii mahistralnykh hazoprovodiv (Technical operation of systems for protection against underground corrosion of main gas pipelines). Tekhdiahaz.
30. Kryzhanivskyi, Ye.I., Nykyforchyn, H.M., & Panasiuk, V.V. (Eds.). (2011—2012). Koroziino–vodneva dehradatsiia naftovykh i hazovykh truboprovodiv ta yii zapobihannia (Corrosion-water degradation of oil and gas pipelines and damage). (Vols. 1—3). Ivano-Frankivsk National Technical University of Oil and Gas.
31. Panasiuk, V.V. (1991). Mekhanika kvazikhrupkogo razrusheniya materialov (Mechanics of quasi-brittle fracture of materials). Naukova dumka.
32. Cherepanov, G.P. (2012). Mekhanika razrusheniya (Fracture mechanics). Institut kompyuternikh issledovanii (Institute for Computer Research).
33. Andreikiv, A.E. (1982). Prostranstvennie zadachi teorii treshchini (Spatial problems of crack theory). Naukova dumka.
34. Romaniv, O.N., Yarema, S.Ya., Nikiforchin, G.N., & Makhutov, N.A. (1990). Ustalost i tsiklicheskaya treshchinostoikost konstruktsionnikh materialov (Fatigue and cyclic crack resistance of structural materials). Naukova dumka.
35. Schijve, J. (2003). Fatigue of materials and structures in the 20th century: state-of-the-art. Materials Science, 39(3), 7—27.
36. Murakami (Eds.). (1990). Spravochnik po koeffitsientam intensivnosti napryazhenii (Handbook of Stress Intensity Factors). Mir.
37. Savruk, M.P. (1988). Koeffitsiyenty intensivnosti napryazheniy v telakh s treshchinami (Stress intensity factors in bodies with cracks). Naukova dumka.
38. Panasiuk, V.V., Stadnyk, M.M., & Sylovaniuk, V.P. (1986). Kontsentratsyia napriazhenyi v trekhmernykh telakh s tonkymy vkliuchenyiamy (Stress concentration in three-dimensional bodies with thin inclusions). Naukova dumka.
39. Tan, C.L., & Fanner, R.T. (1980). Stress intensity factors for semi-elliptical surface cracks in pressurized cylinders using the boundary integral equation method. International Journal of Fracture, 16(3), 233—245.
40. Cesari, F., & Hellen, T.K. (1979). Evaluation of stress intensity factors for internally pressurized cylinders with surface flaws. International Journal of Pressure Vessels and Piping, 7(3), 199—227.
41. Delate, F., & Erdogan, F. (1982). Application of the line spring model to a cylindrical shell containing a circumferential or axial part-through crack. Transactions of the ASME, Journal of Applied Mechanics, 49(1), 97—102.
42. Newman, J.C., & Raju, I.S. (1980) Stress intensity factors for internal surface crack in cylindrical pressure vessels. Transactions of the ASME, Journal of Pressure Vessel Technology, 102(4), 342—346.
43. Andreikiv, О.Ye., Ivanytskyi, Ya.L., Terletska, Z.O., & Kit, М.B. (2004). Evaluation of the durability of a pipe of oil pipeline with surface crack under biaxial block loading. Materials Science, 40(3), 24—32.
44. Banakhevych, Yu. (2009). Vyznachennia koefitsiientiv intensyvnosti napruzhen v okoli systemy poverkhnevykh trishchyn v truboprovodi (Determination of stress intensity coefficients around the system of surface cracks in the pipeline). Naukovyi visnyk Ivano-Frankivskoho tekhnichnoho universytetu nafty i hazu (Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas), 4(22), 114—119.
45. Panasyuk, V.V. (1968). Predelnoe ravnovesie khrupkikh tel s treshchinami. (Limit equilibrium of brittle bodies with cracks). Naukova dumka.
46. Siratori, M., Miyosi, T., & Matsusita, Kh. (1986). Vichislitelnaya mekhanika razrusheniya (Computational fracture mechanics). Mir.
47. Banakhevych, Yu. (2008). Vyznachennia deformatsiinykh parametriv bilia pivkiltsevoi mikrotrishchyny navkolo mikroiamky v pivprostori (Determining deformation parameters near a semi-annular microcrack around a micropit in a half-space). Mashynoznavstvo (Mechanical Engineering), 11(137), 38—40.
48. Hayes, D.J., & Williams, J.G. (1972). A plastically method for determining Dugdale model solution for cracked bodies of arbitrary shape. International Journal of Fracture Mechanics, 8(3), 239—256.
49. Newman, J.C., & Raju, I.S. (1981). An empirical stress intensity factor equation for the surface crack. International Journal of Fracture Mechanics, 15(1), 185—192.
50. Stadnik, M.M., & Didukh I.V. (1987). Determination of the kinetics of the surface semielliptical crack in a pipe using the δc criterion. Soviet Materials Science, 23(6), 600—604.
51. Karpash, O.M., Koshovyi, V.V., Nedosieka, A.Ya., & Stankevych, O.M. (2017). Tekhnichna diahnostyka materialiv i konstruktsii, t 5: Akustychni metody kontroliu dehradatsii materialiv i defektnosti elementiv konstruktsii (Technical diagnosis of materials and structures, t 5: Acoustic methods of controlling the degradation of materials and defectiveness of structural elements). Publishing House Prostir-M.
52. Kovchik, S.E.,  Morozov, Ye.M. (1988). Kharakteristiki kratkovremennoi treshchinostoikosti materialov i metodi ikh opredeleniya (Characteristics of short-term crack resistance of materials and methods of their determination). Naukova dumka.
53. Mykytyn, H., Ivanytskyi, Ya., Shtaiura, S., & Dmytriv, Z. (2011). Aspekty informatsiinoi tekhnolohii vidboru danykh pro napruzheno-deformovanyi stan konstruktsiinykh materialiv (Aspects of information technology for data selection on the stress-strain state of structural materials). Vymiriuvalna tekhnika ta metrolohiia (Measuring technique and metrology), 72, 62—69.
54. Panasyuk, V.V. (2010). Formation of the physicochemical mechanics of materials as a new direction of science, Materials Science, 46(2), 143–155.
55. Panasyuk, V.V. (Eds.). (1988—1990). Mekhanika razrusheniya i prochnost materialov (Fracture Mechanics and Strength of Materials). (Vols. 1-4). Naukova dumka.
56. Klyuev, V.V. (Eds.). (1995). Nerazrushayushchii kontrol i diagnostika: spravochnik. (Non-destructive testing and diagnostics: a reference book). Mashinostroenie.
57. Lysak, M.V., & Skal’s’kyi, V.R. (1997). Methodical approach to the experimental acoustic-emission evaluation of the crack resistance of structural materials. Materials Science, 33(5), 598—614.
58. Paton, B.Ye. (Eds.). (2009). Problemy resursu i bezpeky ekspluatatsii konstruktsii, sporud i mashyn. Zbirnyk naukovykh prats za rezultatamy, otrymanymy u 2007—2009 rr. (Problems of resources and safety of operation of structures, buildings and machines. A collection of scientific works based on the results obtained in 2007-2009). E.O. Paton Electric Welding Institute (PWI)
59. Nazarchuk, Z.T., & Skalskyi, V.R. (2009). Akustyko-emisiine diahnostuvannia elementiv konstruktsii, t 2: Metodolohiia akustyko-emisiinoho diahnostuvannia (Acoustic-emission diagnostics of structural elements, Vol. 2: Methodology of acoustic-emission diagnostics). Naukova dumka.
60. Muravskyi, L.I. (2010). Metody spekl-koreliatsii dlia doslidzhennia mekhanichnykh vlastyvostei konstruktsiinykh materialiv (Speckle correlation methods for studying the mechanical properties of structural materials). Naukova dumka.
61. Kontrol nerazrushayushchii. Kontrol napryazhenno-deformirovannogo sostoyaniya obektov promishlennosti i transporta. Obshchietrebovaniya. (The control is non-destructive. Control of the stress-strain state of industrial and transport facilities. General requirements). (2005). GOST R 52330—2005 from 31st August 2005. Standartinform.
62. Dubov, A.A., Dubov, Al. An., & Kolokolnikov, S.M. (2006). Metod magnitnoi pamyati i pribory kontrolya (Magnetic memory method and control devices). ZAO “Tisso”.
63. Panasyuk, V.V., Ivanyts’kyi, Ya.L., & Maksymenko, O.P. (2004). Analysis of the elastoplastic deformation of the material in the process zone. Materials Science, 40(5), 648—655.
64. Shtaiura, S.T., Kostiv, R.B, & Lenkovskyi, T.M. (2010). Vplyv vodniu na mitsnist materialiv za riznykh makromekhanizmiv poshyrennia trishchyny (Influence of hydrogen on the strength of materials under different macromechanisms of crack propagation). In Problemy korozii ta protykoroziinoho zakhystu materialiv (Problems of corrosion and anti-corrosion protection of materials) (pp. 106—110). Karpenko Physico-mechanical Institute of National Academy of Sciences.
65. Mykytyn, H.V. (2010). Metodolohichni zasady dlia informatsiinoi tekhnolohii vidboru danykh pro napruzheno-deformovanyi stan konstruktsiinykh materialiv (Methodological principles for the information technology of data selection on the stress-strain state of structural materials). Vymiriuvalna tekhnika i metrolohiia (Measuring technique and metrology), 71, 45—51.
66. Kontrol neruinivnyi. Terminy ta vyznachennia (Non-destructive testing. Terms and definitions). (1996). DSTU 2865—94 from 1st January 1996. Derzhstandart Ukrainy.
67. Gosudarstvennaya sistema obespecheniya yedinstva izmerenii. Metodiki vipolneniya izmerenii. Osnovnie polozheniya (State system of ensuring the unity of measurements. Measurement methods. Basic provisions). (2002). GOST 8.010—99 from 1st May 2002. Gosstandart.
68. Metalli. Metodi ispitanii na rastyazhenie (Metals. Tensile test methods). (1986). GOST 1497—84 from 1st January 1986. Standartinform.
69. Rascheti i ispitaniya na prochnost. Metodi mekhanicheskikh ispitanii metallov. Opredelenie kharakteristik treshchinostoikosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii (Calculations and strength tests. Methods of mechanical testing of metals. Determination of characteristics of crack resistance (fracture toughness) under static loading). GOST 25. 506—85 from 1st January 1986.
70. Rascheti i ispitaniya na prochnost. Eksperimentalnie metodi opredeleniya napryazhenno-deformirovannogo sostoyaniya elementov mashin i konstruktsii. Metod naturnoi tenzometrii energeticheskogo oborudovaniya (Calculations and strength tests. Experimental methods for determining the stress-strain state of machine elements and structures. Natural strain gauge method for power equipment). (1988). Р 50—54—45—88.
71. Ivanytskyi, Ya.V., Shtaiura, S.T, Mykytyn, H.V., & Dmytriv, Z.V. (2010). Metrolohichne zabezpechennia vymiriuvannia parametriv napruzheno-deformovanoho stanu materialiv tenzometrychnym metodom (Metrological support for measuring the parameters of the stress-strain state of materials by the tensometric method). In Materialy 15-yi Mizhnarodnoi konferentsii “Elektromahnitni ta akustychni metody neruinivnoho kontroliu materialiv ta vyrobiv” (Proceedings of the 15th International Conference “Electromagnetic and acoustic methods of non-destructive control of materials and products), Slavske, Ukraina, 15—20 February 2010 (pp. 93—94).
72. Mykytyn, H.V. (2008). Osnovy metrolohii (Basics of metrology). Publishing House Spolom.
73. Guide to the Expression of Uncertaity in Measurement: First edition. (1993). ISO.
74. Metrolohiia. Zastosuvannia “Nastanovy z otsiniuvannia nevyznachenosti u vymiriuvanniakh” (Metrology. Application of the “Guidelines for the Evaluation of Uncertainty in Measurements”). (2006). DSTU—N RMH 43—2006 from 1st January 2007. Derzhstandart Ukrainy.
75. Banakhevych, Yu.V., Drahiliev, A.V., & Domin, Yu.M. (2012). Prodovzhennia resursu truboprovidnoho transportu Ukrainy (Continuation of the pipeline transport resource of Ukraine). Spolom.
76. Nedoseka, A.Ya., Grudz, A.A., & Boichuk, O.I. (2005). Razrabotka ugochneinoi metodiki nerazrushayushchego kontrolya napryazhenii magnitouprugim metodom (Development of an angled technique for non-destructive testing of stresses by a magnetoelastic method). Tekhnicheskaya diagnostika i nerazrushayushchii kontrol (Technical diagnostics and non-destructive testing), 4, 19—22.
77. Lobanov, L.M., Pyvtorak, V.A., Savytskyi, V.V. & Tkachuk H.Y. (2006). Metodyka opredelenyia ostatochnykh napriazhenyi v svarochnykh soedynenyiakh y elementakh konstruktsyi s yspolzovanyem spekl-ynterferometryy (Method for determining residual stresses in welded joints and structural elements using speckle interferometry). Avtomatycheskaia svarka (Automatic welding), 1, 25—30.
78. Banakhevych, Yu.V., Drahiliev, A.V., Kychma, A.O., & Osadchuk, V.A. (2005). Sposib vyznachennia napruzhenoho stanu bilia zvarnykh ziednan truboprovodiv (The method of determining the stress state near welded joints of pipelines) (Patent Ukrainy № 7910). Derzhavnyi departament intelektualnoi vlasnosti.
79. Birgera, I.A., & Shora, B.F. (Eds.). (1995). Termoplastichnost detalei mashin (Thermoplasticity of machine parts). Mashinostroenie.
80. Banachevych, Y., & Dragilyev, A. (2007). Design-experimental diagnostics of stress condition in the girth welded joints zone of pipelines by means of electromagnetic method. In Preseedings of the International conference “Defektoskopie 2007”, Prague, Czech Republic, 2007 (pp. 11—16).
81. Savula, S., Banachewych, J., Osadchuk, V., & Kychma, A. (2004). Diagnostics of residual technological stress in circumferential welds in pipelines. In Proceedings of the 3rd International congress of technical diagnostics “Diagnostics-2004”, Poznan, Poland, 2004, (pp. 155—158).
82. Fomichev, S.K., Minakov, S.N., Yaremenko, M.A., Mikhalko, S.V., Danilchik, A.V., & Minakov, A.S. (2008). Avtonomnaya sistema monitoringa mekhanicheskikh napryazhenii magistralnikh truboprovodov s ispolzovaniem vozmozhnostei GSM-svyazi (Autonomous system for monitoring the mechanical stresses of main pipelines using the capabilities of GSM communication). Tekhnicheskaya diagnostika i nerazrushayushchii control (Technical diagnostics and non-destructive testing), 1, 9—12.
83. Fomichev, S.K., Minakov, S.N., Danilchik, A.V. Tatarnikov, V.G., & Yaremenko, M.A. (1998). Izmeritel mekhanicheskikh napryazhenii serii MESTR-411 (Mechanical stress meter of MESTR-411 series). Tekhnicheskaya diagnostika i nerazrushayushchii control (Technical diagnostics and non-destructive testing), 1, 58—60.
84. Perun, Y.V., Shlapak, L.S., Banakhevych, Yu.V., & Rozghoniuk, V.V. (1996). Dosvid doslidzhennia napruzheno-deformovanoho stanu hazoprovodiv akustychnymy ta mahnitnymy metodamy (Experience of studying the stress-strain state of gas pipelines by acoustic and magnetic methods). In Materialy naukovo-tekhnichnoi konferentsii “Suchasni prylady, materialy ta tekhnolohii dlia tekhnichnoi diahnostyky ta neruinivnoho kontroliu naftohazovoho, khimichnoho ta enerhetychnoho obladnannia. Suchasnyi pidkhid do pidhotovky fakhivtsiv z NK i TD” (Proceedings of the scientific and technical conference “Modern devices, materials and technologies for technical diagnostics and non-destructive control of oil and gas, chemical and energy equipment. A modern approach to the training of NC and TD specialists), Ivano-Frankivsk, 1996 (pp. 33—37).
85. Banakhevych, Yu.V. (2009). Vyznachennia napruzheno-deformovanoho stanu zvarnykh ziednan trub metodom spekl-interferometrii (Determination of the stress-strain state of welded pipe joints by speckle interferometry). Metody ta prylady kontroliu yakosti (Quality control methods and devices), 23, 29—34.
86. Drahilev, A., Banakhevych, Yu., Osadchuk, V., & Kychma, A. (2004). Diahnostyka napruzhen u trubakh shleifiv i truboprovidnykh obviazok z koroziinymy defektamy navkolo zvarnoho shva (Diagnostics of stresses in pipes of plumes and pipelines with corrosion defects around the weld). Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu (Scientific Bulletin of the Ivano-Frankivsk National Technical University of Oil and Gas), 2(8), 102—107.
87. Osadchuk, V.A., Banakhevych, Yu.V., & Ivanchuk, O.O. (2006). Determination of the stressed state of main pipelines in the zones of circular welds. Materials Science, 42(2), 256—262.
88. Ivanchuk, O.O., Osadchuk, V.A., Kychma, A.O., & Banakhevych, Yu.V. (2007). Kontrol napruzhenoho stanu v zvarnykh ziednanniakh riznotovshchynnykh trub mahistralnykh truboprovodiv (Control of the stress state in welded joints of pipes of various thicknesses of main pipelines). In Materialy 5-yi naukovo-praktychnoi konferentsii “Orhanizatsiia neruinivnoho kontroliu yakosti produktsii v promyslovosti NK” (Proceedings of the 5th scientific and practical conference “Organization of non-destructive quality control of products in the NC industry”.), Sharm el Sheikh, 2007 (pp. 38—41).
89. Banakhevych, Yu.V., Osadchuk, V.A., & Dziubyk, A.R. (2003). Vyznachennia zalyshkovykh napruzhen v okoli kiltsevoho zvarnoho ziednannia trub z urakhuvanniam strukturnykh zmin v zoni termichnoho vplyvu (Determination of residual stresses in the vicinity of the annular welded joint of pipes, taking into account structural changes in the zone of thermal influence). Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch (Exploration and development of oil and gas deposits), 1(6), 77—81.
90. Dragilev, A.V., Banakhevich, Yu.V., Osadchuk, V.A., & Kichma, A.A. Opredelenie ostatochnikh napryazhenii v truboprovodakh okolo montazhnikh svarnikh shvov (Determination of residual stresses in pipelines near field welds). In Materiali XIV Mezhdunarodnoi delovoi vstrechi “Diagnostika-2004” (Proceedings of the 14th International business meeting “Diagnostics-2004”), Arabskaya respublika Yegipet, 2004 (Vol. 2, pp. 83—86).
91. Banakhevych, Y.V., Ivanchuk, O.O., & Osadchuk, V.A. (2009). Method for analysis of the influence of residual technological stresses on the safety margin of welded joints of pipelines. In Preseedings of the International conference “Pipeline Technology 2009”, Ostend, Belgium, 2009, (pp. 50—54).
92. Dragilyev, A.V., Kychma, A.O., & Lokhman, I.V. (2009). The estimation of the influence of residual stresses near circumferential welded bead on the longevity of the pipeline. In Preseedings of the International conference “Pipeline Technology 2009”, Ostend, Belgium, 2009 (pp. 35—38).
93. Ivanchuk, O., Banachevych, Y., Osadchuk, V., & Kychma, A. (2007). Diagnostics of technological residual stresses in different thickness circumferential welded joints of pipelines. In Preseedings of the International conference “Defektoskopie 2007”, Prague, Czech Republic, 2007, (pp. 97—104).
94. Osadchuk, V.A., Banakhevych, Yu.V., & Tsymbaliuk, L.I. (2008). Vplyv shyryny zony plastychnykh deformatsii na rozpodil tryvisnykh zalyshkovykh napruzhen u plyti z bahatosharovym priamoliniinym zvarnym shvom (The influence of the width of the zone of plastic deformations on the distribution of triaxial residual stresses in a plate with a multilayer rectilinear weld). Mashynoznavstvo (Mechanical Engineering), 2, 3—7.
95. Terletska, Z.O. (1998). Vyznachennia periodu dokrytychnoho rostu koroziino-vtomnykh trishchyn u truboprovodakh (Determination of the period of precritical growth of corrosion-fatigue cracks in pipelines). In Mekhanika i fizyka ruinuvannia budivelnykh materialiv ta konstruktsii (Mechanics and physics of destruction of building materials and structures) (pp. 642—646). Kameniar.
96. Szata, M., & Terletska, Z. (2000). An assessment of durability of thick wall structure elements with cracks. In Proceedings of the Conference “Life assessment and management for structural components”, Kiev, Ukraine, 2000, (Vol. 1, pp. 331—336).
97. Shata, M., & Terletska, Z.O. (1999). Enerhetychnyi pidkhid u mekhanitsi vtomnoho poshyrennia makrotrishchyny (Energy approach in the mechanics of fatigue propagation of a macrocrack). In Mekhanika ruinuvannia i mitsnist konstruktsii (Mechanics of destruction and strength of structures) (рр.141—148). Kameniar.
98. Banahevych, Yu.V., Andreykiv, O.E., & Kit, M.B. (2009). Prediction of residual pipeline resource taking into account the operation loading conditions. Strength of Materials, 41(1), 32—38.
99. Andreikiv, O.E., & Tym’yak, N.I. (1995). Electrochemical model of local corrosion at the tip of a loaded crack. Materials Science, 30(1), 19—24.
100. Andreikiv, O.Ie., & Hembara, O.V. (2008). Mekhanika ruinuvannia ta dovhovichnist metalevykh materialiv u vodnevmisnykh seredovyshchakh (Fracture mechanics and durability of metallic materials in hydrogen-containing environments). Naukova dumka.
101. Keshe, G. (1982). Korroziya metallov. Fiziko-khimicheskie printsipi i aktualnie problemi (Corrosion of metals. Physical and chemical principles and topical problems). Metallurgiya.
102. Zakorchimski, G. (1983). Proniknovenie elektroliticheskogo vodoroda v zhelezo i stali i yego vliyanie na mekhanicheskie svoistva metallov (Penetration of electrolytic hydrogen into iron and steel and its effect on the mechanical properties of metals). Zashchita metallov (Metal protection), 5, 733—739.
103. Bamford, W.H. (1977). The effect of pressurized water reactor environment on fatigue crack propagation of pressure vessel steels. In Proceedings of the conference on the influence of environment on fatigue, London, Institution of Mechanical Engineers, UK, 18—19 May 1977 (pp. 51—56).
104. Vosikovsky, O. (1979). Frequency, stress ratio, potential effects on fatigue crack growth of HY 130 steel in salt water. Journal of Testing and Evaluation, 6(3), 175—182.
105. Zhuk, N.P. (1966). Kurs korrozii i zashchiti metallov (Corrosion and metal protection course). Metallurgiya.
106. Hembara, O.V., Terlets’ka, Z.O., & Chepil, O.Ya. (2007). Determination of electric fields in electrolyte-metal systems. Materials Science, 43(2), 222—229.
107. Tym’yak, N.I., & Andreikiv, O.E. (1996). Evaluation of crack-growth rate under conditions of simultaneous action of static loading and corrosive media. Materials Science, 2, 219—225.
108. Andreikiv, O.Ye. (2003). Dovhovichnist metalichnykh metalichnykh materialiv u vodnevmisnykh seredovyshchakh (Durability of metallic metallic materials in hydrogen-containing environments). In Prohresyvni materialy i tekhnolohii (Progressive materials and technologies). (241—257). Naukova dumka.
109. Cherepanov, G.P. (1974). Mekhanika khrupkogo razrusheniya (Brittle Fracture Mechanics). Nauka.
110. Romaniv, O.N., & Nikiforchin, G.N. (1986). Mekhanika korrozionnogo razrusheniya konstruktsionnikh splavov (Mechanics of corrosion destruction of structural alloys). Metallurgiya.
111. Gabetta, G., Nykyforchyn, H.M., Lunarska, E., Zonta, P.P., Tsyrulnyk, O.T., Nikiforov. K., Hredil, M.I., Petryna, D.Yu., & Vuherer, T. (2008). Determination of electric fields in electrolyte-metal systems. Materials Science, 44(1), 104—119.
112. Andreikiv, O.E., & Kit, M.B. (2008). Residual service life of thin-walled structural elements under biaxial cyclic loading. Materials Science, 44(1), 10—21.
113. Andreikiv, O.Ye., & Kit, M.B. (2006). Vyznachennia periodu dokrytychnoho rostu trishchyn v elementakh konstruktsii pry yikh dvokhchastotnomu navantazhenni (Determination of the period of subcritical growth of cracks in structural elements under their two-frequency loading). Mashynoznavstvo (Mechanical Engineering), 2, 3—9.
114. Hembara, O.V., & Andreikiv, O.E. (2012). Effect of hydrogenation of the walls of oil-and-gas pipelines on their soil corrosion and service life. Materials Science, 47(5), 598—607.
115. Korniienko S., & Korbutiak O. (2009). Problemy vplyvu gruntovoho seredovyshcha na koroziiu mahistralnykh hazoprovodiv Ukrainy. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Heolohiya (Bulletin of Taras Shevchenko Kyiv National University. Geology), 46, 42—43.
116. Pritula, V.A. (1958). Elektricheskaya zashchita ot korrozii podzemnikh metallicheskikh sooruzhenii (Electrical protection against corrosion of underground metal structures). Gosenergoizdat.
117. Bekman, V., & Shvenk, V. (1984). Katodnaya zashchita ot korrozii (Cathodic corrosion protection). (E.K. Bukhman, I.V. Stirezhevskogo, A.A. Sharapov, Trans.). Vozrozhdenie.
118. Yukhnevich, R., Bogdanovich, K., Valashkovskii, Ye., & Vidukhovskii, A. (1980). Tekhnika borbi s korroziei (Anti-corrosion technology). (A.M. Sukhotina, Trans.). Khimiya.
119. Petrov, L.N., Kalinkov, A.Yu., & Magdenko, A.N. (1986). Effect of deformation and hydrogenation on the corrosion of 12KhN-type steel in a galvanic couple. Fiziko-khimicheskaya mekhanika materialov, 22(3), 34–37.
120. Khaldeev, G.V., Knyazeva, V.F.,  Kuznetsov, V.V. (1978). Korrozionnoe elektrokhimicheskoe povedenie navodorozhennogo zheleza v sernokislikh sredakh (Corrosive electrochemical behavior of hydrogenated iron in sulfuric acid media). Seminar “Vodorod v metallakh”: sbornik dokladov (Seminar “Hydrogen in metals”: collection of reports). MDNTP.
121. Timonin, V.A., & Belova, T.G. (1976). Issledovanie intensifikatsii anodnogo protsessa v rezultate navodorozhivaniya metalla primenitelno k probleme korrozionnogo rastreskivaniya stalei (Investigation of the intensification of the anodic process as a result of metal hydrogenation in relation to the problem of corrosion cracking of steels). Zashchita metallov (Metal protection), 12(4), 427—429.
122. Khaldeev, G.V., Reshetnikov, S.M., Knyazeva, V.F., & Kuznetsov, V.V. (1980). Anodnoe rastvorenie navodorozhennogo zheleza v sernokislikh elektrolitakh, soderzhashchikh galogenidioni (Anodic dissolution of hydrogenated iron in sulfate electrolytes containing halide ions). Zhurnal prikladnoi khimii (Journal of Applied Chemistry), 53(6), 1298—1303.
123. Markosyan, G.N., Pchelnikov, A.P., & Losev, V.V. (1997). Korrozionnoe povedenie navodorozhennogo nikelya i gidrida nikelya v rastvore sernoi kisloti (Corrosive behavior of hydrogenated nickel and nickel hydride in sulfuric acid solution). Zashchita metallov (Metal protection), 33(5), 503—505.
124. Raichenko, A.I. (1981). Matematicheskaya teoriya diffuzii v prilozheniyakh (Mathematical theory of diffusion in applications). Naukova dumka.
125. Hembara, O.V., Terlets’ka, Z.O., & Chepil’, O.Ya. (2008). Hydrogen concentration near the tip of a corrosion crack. Materials Science, 44(1), 133—137.
126. Capelle, J., Dmytrakh, I., & Pluvinage, G. (2010). Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength. Corrosion Science, 52, 1554—1559.
127. Capelle, J., Gilgert, J., Dmytrakh, I., & Pluvinage, G. (2011). The effect of hydrogen concentration on fracture of pipeline steels in presence of a notch. Engineering Fracture Mechanics, 78, 364—373.
128. Geld, P.V., & Ryabov, R.A. (1974). Vodorod v metallakh (Hydrogen in metals). Metallurgiya.
129. Choo, W.Y., Lee, I.Y., Cho, C.G., & Hwang, S.H. (1981). Hydrogen solubility in pure iron and effects of alloying elements on the solubility in the temperature range 20 to 500°C. Journal of Materials Science, 16(5), 1285—1292.
130. Lychkovskii, E.I. (1987). The question of simulation of the electrochemical processes at a crack tip. Soviet Materials Science, 23(3), 259—261.
131. Lavrenko, V.A., & Shvets, V.A. (1992). Determination of the corrosion activity of soil in relation to steel by the polarization resistance method. Soviet Materials Science, 28(3), 308—310.
132. Andreikiv, O.E., Hembara, O.V., Tsyrul’nyk, O.T., & Nyrkova, L.I. (2012). Evaluation of the residual lifetime of a section of a main gas pipeline after long-term operation. Materials Science, 48(2), 231—238.
133. Chuvildeev, V.N., & Viryasova, N.N. (2010). Deformatsiya i razrushenie konstruktsionnikh materialov: problemi stareniya i resursa (Deformation and destruction of structural materials: problems of aging and resource) (V. N. Chuvildeev, Eds). Publishing House Nizhegorodskogo gosudarstvennogo universiteta im. N.I. Lobachevskogo.
134. Andreikiv, O.E., Dolins’ka, I.Ya., Kukhar, V.Z., & Shtoiko, I.P. (2016). Influence of hydrogen on the residual service life of a gas pipeline in the maneuvering mode of operation. Materials Science, 51(4), 500—508.
135. Andreikiv, О.E., Nykyforchyn, H.М., & Shtoiko, І.P. (2017). Evaluation of the residual life of a pipe of oil pipe line with a nexternal surface stress-corrosion crack for a laminar flow of oil with repeated hydraulic shocks. Materials Science, 53(2), 216—226.
136. Andreikiv, О.E., Shtoiko, І.P., & Raiter, О.K. (2018). Determination of the Period of Subcritical Growth of an Internal Surface Stress-Corrosion Crack in a Pipe of Pipeline for the Turbulent Flow of Oil with Hydraulic Shocks. Materials Science, 53(6), 842—848.
137. Andreykiv, O., Hembara, O., Dolinska, I., Sapuzhak, Y., & Yadzhak, N. (2021). Prediction of Residual Service Life of Oil Pipeline Under Non-stationary Oil Flow Taking into Account Steel Degradation. In Bolzon, G., Gabetta, G., Nykyforchyn, H. (Eds.), Degradation Assessment and Failure Prevention of Pipeline Systems (pp. 203—216). Springer.
138. Andreikiv, O.Ye., Dolins’ka, I.Ya., Shtoiko, I.P., Raiter, O.K., & Matviiv, Yu.Ya. (2019). Evaluation of the Residual Service Life of Main Pipelines with Regard for the Action of Media and Degradation of Materials. Materials Science, 54(5), 638–646.
139. Andreikiv, O.E., & Sas, N.B. (2008). Subcritical growth of a plane crack in a three-dimensional body under the conditions of high-temperature creep. Materials Science, 44(2), 163—174.
140. Nikiforchin, G.N., Tsirulnik, O.T., Zvirko, O.I., Gredil, M.I.,  Voloshin, V.A. (2013). Otsenka korrozionno-vodorodnoi degradatsii stalei dlitelno ekspluatiruemikh magistralnikh gazoprovodov (Physical and chemical mechanics of materials. Special editionEvaluation of corrosion-hydrogen degradation of steels of long-term operated main gas pipelines). Zavodskaya laboratoriya (Factory Laboratory), 79(9), 48—55.
141. Tsyrulnyk, O., Slobodian, Z., Hredil, M., Zvirko, O.,  Zaverbnyi, D. (2006). Elektrokhimichni pokaznyky ekspluatatsiinoi dehradatsii stalei nafto- ta hazohoniv. Fizyko-khimichna mekhanika materialiv. Spetsialnyi vypusk (Physico-chemical mechanics of materials. Special issue),5, 284—289.
142. Dormand, J.R., & Prince, P.J. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6, 19—26.
143. Shampine, L.F., & Reichelt, M.W. (1997). The MATLAB ODE Suite. Journal on Scientific Com¬putting, 18, 1—22.
144. Andreikiv, O.E., Skal’s’kyi, V.R., Dolins’ka, I.Y., & Dzyubyk, А.R. (2018). Influence of corrosive hydrogenating media on the residual service life of structural elements in the maneuvering mode of operation. Materials Science, 54(1), 61—68.
145. Andreikiv, O.Ye., Dolinska, I.Ya., Kukhar, V.Z., & Matviiv, Yu.Ya. (2012). Rozrakhunkova model dlia vyznachennia periodu dokrytychnoho rostu trishchyn povzuchosti v elementakh konstruktsii za dovhotryvalymy statychno-rozryvnymy navantazhenniamy (Calculation model for determining the period of subcritical growth of creep cracks in structural elements under long-term static-rupturing loads). Dopovidi Natsionalnoi akademii nauk Ukrainy (Reports of the National Academy of Sciences of Ukraine), 4, 50—56.
146. Andreikiv, O.E., Dolins’ka, I.Y., & Yavors’ka, N.V. (2012). Growth of creep cracks in structural elements under long-term loading. Materials Science, 48(3), 266—273.
147. Andreikiv, O.E., Dolins’ka, I.Y., & Kukhar, V.Z. (2013). A mathematical model for determining the lifetime of plates with systems of cracks under long-term static breaking loads high temperatures. Journal of Mathematical Science (United States), 192(5), 555—564.
148. Andreikiv, O.E., Babii, A.V., Dolinska, I.Y., & Matviiv, Yu.Ya. (2020). Determination of the Residual Life of the Spraying Boom of a Field Sprinkler in the Maneuvering Loading Mode. Materials Science, 56(1), 112–118.
149. Kudryavtsev, L.D. (1981). Kurs matematicheskogo analiza (Course of mathematical analysis). Visshaya shkola.
150. Pokhodnya, I.K. (1998). Problemy svarki vysokoprochnykh nizkolegirovannykh stalei (Problems of welding high-strength low-alloy steels). In Suchasne materіaloznavstvo XXI storіchchya (Modern materials science of the 21th century) (pp. 31—69). Naukova dumka.
151. Lobanov, L.M. (Eds.). (1993). Svarnie stroitelnie konstruktsii: T. 1. Osnovi proektirovaniya konstruktsii (Welded building structures: V. 1. Fundamentals of structural design). Naukova dumka.
152. Karzov, G.P., Leonov, V.P., & Timofeev, B.T. (1982). Svarnie sosudi visokogo davleniya: Prochnost i dolgovechnost (Welded Pressure Vessels: Strength and Durability). Mashinostroenie.
153. Kholl, U. Dzh., Kikhara, Kh., Zut, V., & Uells, A.A. (1974). Khrupkie razrusheniya svarnikh konstruktsii (Brittle fracture of welded structures). Mashinostroenie.
154. Pokhodnya, I.K. (2003). Svarochnie materiali: sostoyanie i tendentsii razvitiya (Welding consumables: state and development trends). In Progresivnii materіal і tekhnologії (Progressive material and technology) (pp. 7—32). Akademperіodika.
155. Zemzin, V.N., & Shron, R.Z. (1978). Termicheskaya obrabotka i prochnost svarnikh soedinenii (Heat treatment and strength of welded joints). Mashinostroenie.
156. Klikov, N.A. (1984). Raschet kharakteristik soprotivleniya ustalosti svarnikh soedinenii (Calculation of fatigue resistance characteristics of welded joints). Mashinostroenie.
157. Livshits, L.S., & Khakimov, A.N. (1989). Metallovedenie svarki i termicheskaya obrabotka svarnikh soedinenii (Metal science of welding and heat treatment of welded joints). Mashinostroenie.
158. Sivtsev, M.N., & Sleptsov, O.I. (1998). Otsenka soprotivlyaemosti ZTV visokoprochnikh stalei zamedlennomu razrusheniyu po kriteriyam treshchinostoikosti (Evaluation of HAZ resistance of high-strength steels to delayed fracture according to crack resistance criteria). In Trudi Mezhdunar. konf. “Svarka i rodstvennie tekhnologii — v 21 vek” (Proceedings of the International conf. “Welding and related technologies — into the 21st century). Kiev, IES im. Ye.O. Patona, Ukraine, 1998. (pp. 168)
159. Karzov, G.P., Karkhin, V.A., Leonov, V.P., & Margolin, B.Z. (1983). Propagation of fatigue cracks in tee welded joints taking into account welding stresses. Strength of Materials, 15(11), 1596–1600.
160. Karzov, G.P., Karkhin, V.A., Leonov, V.P., & Margolin, B.Z. (1986). Vliyanie ostatochnykh napryazhenii na traektoriyu i skorost rasprostraneniya treshchiny pri tsiklicheskom nagruzhenii svarnykh soedinenii (Influence of residual stresses on the trajectory and rate of crack propagation under cyclic loading of welded joints). Avtomaticheskaya svarka (Automatic welding), 3, 5—10.
161. Osadchuk, V.A., & Shelestovs’ka, M.Ya. (1998). Distribution of residual welding stresses in think plates with circular welds. Materials Science, 34(3), 323—328.
162. Trufyakov, V.I., Mikheev, P.P., & Kuzmenko, A.Z. (1977). Vliyanie ostatochnykh svarochnykh napryazhenii na razvitie ustalostnykh treshchin v konstruktsionnoi stali (Influence of residual welding stresses on the development of fatigue cracks in structural steel). Avtomaticheskaya svarka (Automatic welding), 10, 6—7.
163. Paton, E.O. (1961). Izbrannie trudi (Selected works). (Vols. 1—3). Publishing house of the Academy of Sciences of the Ukrainian SSR.
164. Trufyakov, V.I. (Eds.). (1990). Prochnost svarnikh soedinenii pri peremennikh zagruzkakh (Strength of welded joints under variable loads). Naukova dumka.
165. Lobanov, L.M., Makhnenko, V.I., & Trufyakov, V.I. (1998). Razvitie raschetnikh i tekhnologicheskikh metodov povisheniya prochnosti, dolgovechnosti i tochnosti izgotovleniya svarnikh konstruktsii (Development of computational and technological methods for increasing the strength, durability and accuracy of manufacturing welded structures). In Trudi Mezhdunar. konf. “Svarka i rodstvennie tekhnologii — v 21 vek” (Proceedings of the International conf. “Welding and related technologies — into the 21st century). Kiev, IES im. Ye.O. Patona, Ukraine, 1998. (pp. 137—157).
166. Makhnenko, V.I., & Mosenkis, R.Yu. (1991). Raschetnaya otsenka vliyaniya ostatochnikh napryazhenii na malotsiklovuyu ustalost svarnikh soedinenii (Calculation assessment of the influence of residual stresses on low-cycle fatigue of welded joints). Avtomaticheskaya svarka (Automatic welding), 1, 17—22.
167. Makhnenko, V.I. (1976). Raschetnie metody issledovaniya kinetiki svarochnykh napryazhenii i deformatsii (Computational methods for studying the kinetics of welding stresses and deformations). Naukova dumka.
168. Osadchuk, V.A., Drahiliev, A.V., Banakhevych, Yu.V., & Porokhovskyi, V.V. (2003). Diahnostuvannia zalyshkovykh napruzhen u naftohazoprovodakh v okoli kiltsevykh zvarnykh shviv rozrakhunkovo–eksperymentalnym metodom (Diagnostics of residual stresses in oil and gas pipelines in the vicinity of annular welds by calculation and experimental method). Mashynoznavstvo (Mechanical Engineering), 11, 23—27.
169. Banakhevych, Yu.V., Andreikiv, O.Ye, & Kit, M.B. (2007). Vyznachennia zalyshkovoho resursu naftoprovodu z trishchynoiu poblyzu zvarnoho shva (Determining the residual life of an oil pipeline with a crack near the weld). Mashynoznavstvo (Mechanical Engineering), 2, 19—22.
170. Banakhevych, Yu.V., Andreikiv, O. Ye, & Kit, M.B. (2007). Vplyv roztashuvannia vidnosno zvarnoho shva poverkhnevoi trishchyny v stintsi truby na zalyshkovu dovhovichnist zvarnoho ziednannia (The influence of the location of the surface crack in the pipe wall relative to the weld on the residual durability of the welded joint). Naukovyi visnyk Ivano-Frankivskoho tekhnichnoho universytetu nafty i hazu (Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas), 2(16), 108—112.
171. Banakhevych, Yu.V., Andreikiv, O.Ye, & Kit, M.B. (2008). Vyznachennia zalyshkovoho resursu zvarnoho z`iednannia truboprovodu z poverkhnevoiu trishchynoiu (Determination of the residual lifetime of a welded joint of a pipeline with a surface crack). Mashynoznavstvo (Mechanical Engineering), 12, 11—14.
172. Pokhmurskyi, V.I., Melekhov, R.K., Krutsan, H.M., & Zdanovskyi, V.T. (1995). Koroziino-mekhanichne ruinuvannia zvarnykh konstruktsii (Corrosion-mechanical fracture of welded structures). Naukova dumka.
173. Matchenko, T.I., Shamis, L.B., Matchenko, P.T., & Pervushova, L.F. (2010). Metodyka otsinky koroziinoho resursu zvarnykh ziednan konstruktsiinykh stalei (Methods of assessing the corrosion resource of welded joints of structural steels). Problemy bezpeky atomnykh elektrostantsii i Chornobylia (Safety problems of nuclear power plants and Chernobyl), 14, 78—84.
174. Slobodyan, Z.V., Kyryliv, V.I., Mahlatyuk, L.A., & Kupovych, R.B. (2009). Influence of the inhibitor treatment on the corrosion resistance of different zones of welded joints. Materials Science, 45(1), 136–139.
175. Nykyforchyn, H.M., Student, O.Z., Dzioba, I.R., Stepanyuk S.M., Markov, A.D., & Onyshchak, Ya.D. (2004). Degradation of welded joints of steam pipelines of thermal electric power plants in hydrogenating media. Materials Science, 40(6), 836—843.
176. Hredil, M., Tsyrulnyk, O., Zvirko, O., & Voloshyn, V. (2011). Dehradatsiia mekhanichnykh vlastyvostei metalu zvarnoho ziednannia ekspluatovanoho mahistralnoho hazoprovodu. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu (Bulletin of the Ternopil National Technical University), Special issue, 63—66.
177. Andreikiv, O.Ye., Hembara, O.V., Tsyrulnyk, O.T., & Nyrkova, L.I. (2012). Otsinka lokalnoho poshkodzhennnia trub mahistralnykh hazoprovodiv v umovakh hruntovoi korozii (Assessment of local damage to pipes of main gas pipelines in conditions of soil corrosion). Fizyko-khimichna mekhanika materialiv (Physico-chemical mechanics of materials), Special issue, 9, 636—641.
178. Andreikiv, O.E., & Hembara, O.V. (2013). Influence of soil corrosion and transported products on the service life of welded joints of oil and gas pipelines. Materials Science, 49(2), 189–198.
179. Tsyrul’nyk, O.T., Slobodyan, Z.V., Zvirko, O.I., Hredil, M.I., Nykyforchyn, H.M., & Gabetta, G. (2008). Degradation of properties of the metal of welded joints in operating gas mains. Materials Science, 44(5), 619—629.
180. Tsyrul’nyk, O.T., Voloshyn, V.A., Petryna, D.Yu., Hredil, M.I., & Zvirko, O.I. (2011). Degradation of properties of the metal of welded joints in operating gas mains. Materials Science, 46(5), 628—632.
181. Andreikiv, O.Ie., Kushnir, R.M., & Tsyrulnyk, O.T. (2012). Metody otsinky zalyshkovoho resursu i kharakterystyk zvarnykh ziednan trub mahistralnykh truboprovodiv (Methods of assessing the residual life and characteristics of welded joints of pipes of main pipelines). In Problemy resursu i bezpeky ekspluatatsii konstruktsii, sporud ta mashyn (Problems of resources and safety of operation of structures, buildings and machines) (pp. 399—403). E.O. Paton Electric Welding Institute (PWI).
182. Tsyrulnyk, O.T. (2013). Elektrokhimichni metody diahnostuvannia konstruktsiinykh stalei, tryvalo ekspluatovanykh u korozyvno-navodniuvalnykh seredovyshchakh (Electrochemical methods of diagnosis of structural steels, long-term operated in corrosive-wetting environments). (Doctor’s thesis). Karpenko Physico-mechanical Institute of National Academy of Sciences.
183. Nakayama, T., & Takano, M. (1986). Application of slip dissolution cracking of AISI 304 stainless steel in a boiling 42 % MgCl2 solution. Corrosion-NACE, 1, 10—15.
184. Dawson, J.L. (1996). Electrochemical noise measurement for corrosion application. In J.R. Kearns, J.R. Scully, P.R. Ronerge, D.L. Reichert, J.L. Dawnson (Eds.), ASTM STP 1277 (pp. 3—24). American Society for Testing and Materials.
185. Romanov, V.V. (1960). Korrozionnoe rastreskivanie metallov (Corrosion cracking of metals). Mashgiz.
186. Mao, X., & Li, D. (1995). Slip-step dissolution and micromechanical analysis to model stress-corrosion crack growth of type 321 stainless steel in boiling MgCl2. Metallurgical and materials transactions A, (26A),641—646.
187. Magnin, T., Chambreul, A., & Bayle, B. (1996). The corrosion-enhanced plasticity model for stress corrosion cracking in ductile alloys. Acta Metarialia, (4), 1457—1470.
188. Kronshtal’, O.V., & Kharin, V.S. (1992). Effect of heterogeneity of materials and heat cycles on diffusion of hydrogen as a factor of the risk of development of hydrogen degradation of metals. Soviet Materials Science, 28(6), 475—486.
189. Deev, G.F., & Patskevich, I.R. (1984). Defekty svarnykh shvov (Weld defects). Naukova dumka.
190. Kunin, L.P., Golovin, A.M., Surovoi, Yu.N., & Khokhrin, V.M. (1972). Problemi degazatsii metallov (fenomenologicheskaya teoriya) (Problems of metal degassing (phenomenological theory). Nauka Publishing House.
191. Andreikiv, O.Ye., Rudavskyi, D.V., & Hembara, O.V. (2002). Rozrakhunkova model poshyrennia vtomnykh trishchyn u navodnenykh zvarnykh ziednanniakh (Calculation model of fatigue crack propagation in flooded welded joints). In V.V. Panasiuka (Eds.), Mekhanika ruinuvannia materialiv i mitsnist konstruktsii. Karpenko Physico-mechanical Institute of National Academy of Sciences, 6, 18—24.
192. Pokhodnya, I.K., Demchenko, V.F., & Demchenko, L.I. (1979). Matematicheskoe modelirovanie povedeniya gazov v svarnykh shvakh (Mathematical modeling of the behavior of gases in welds). Naukova dumka.
193. Pokhodnya, I.K., & Shvachko, V.I. (1996). Cold cracks in welded joints of structural steels. Materials Science, 32(1), 45—55.
194. Zenkevich, O., & Morgan, K. (1986). Konechnie elementy i approksimatsii (Finite Elements and Approximations). Mir.
195. Samarskii, A.A. (1977). Teoriya raznostnikh skhem (Theory of difference schemes). Nauka.
196. Banakhevych, Yu.V. (2010). Vyznachennia zalyshkovoho resursu truby balkovoho perekhodu hazoprovodu pry vitrovomu navantazhenni (Determination of the residual resource of the pipe of the beam transition of the gas pipeline under wind load). Mashynoznavstvo (Mechanical Engineering), 3, 151—154.
197. Banakhevych, Yu.V., & Sakara, A. (2009). Vyznachennia periodu zarodzhennia vtomnykh trishchyn bilia kontsentratoriv napruzhen. Mashynoznavstvo (Mechanical Engineering), 5, 31—33.
198. Pisarenko, G.S., Yakovlev, A.P., & Matveev, V.V. (1988). Spravochnik po soprotivleniyu materialov (Handbook of Strength of Materials), Naukova dumka.
199. Andreikiv, O.Ye., Pustovyi, V.M., Rudavskyi, D.V., Dolinska, I.Ya.,  Semenov, P.O. (2017). Metody otsiniuvannia zalyshkovoi mitsnosti ta dovhovichnosti elementiv konstruktsii za danymy neruinivnoho kontroliu. In Nazarchuk Z.T. (Eds.). Tekhnichna diahnostyka materialiv i konstruktsii (Technical diagnosis of materials and structures). (Vol. 8). Prostir-M.
200. Kryzhanivskyi, Ye.I., & Taraievskyi, O.S. (2004). Vplyv nerivnomirnosti hazospozhyvannia na napruzhenyi stan truboprovodu (The effect of unevenness of gas consumption on the stressed state of the pipeline). Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch (Exploration and development of oil and gas deposits), 3(12), 31—34.
201. Shtoyko, I., Toribio, J., Kharin, V., & Hredil, M. (2021). Determination of the residual lifetime of gas pipeline with surface crack under internal pressure and soil corrosion. In G. Bolzon, G. Gabetta, & H. Nykyforchyn (Eds.), Degradation Assessment and Failure Prevention of Pipeline Systems (pp. 71—76). Springer.
202. Voloshyn, V.A. (2020). Cyclic Corrosion Crack Resistance of an Exploited Welded Joint of 17G1S Pipe Steel. Materials Science, 56(1), 119—124.
203. Rascheti i ispitaniya na prochnost. Metodi skhematizatsii sluchainikh protsessov nagruzheniya elemontov mashin i konstruktsii i statisticheskogo predstavleniya rezultatov (Calculations and strength tests. Methods for Schematization of Random Processes of Loading Machine and Structure Elements and Statistical Presentation of Results). (1983). GOST 25.101-83. Izdatelstvo standartov.
204. Bendat, Dzh., & Pirsol, A. (1989). Prikladnoi analiz sluchainikh dannyakh. (Applied random data analysis). Mir.
205. Osadchuk, V.A. (2003). Diahnostuvannia zalyshkovykh tekhnolohichnykh napruzhen v elementakh konstruktsii rozrakhunkovo-eksperymentalnym metodom (Diagnosis of residual technological stresses in structural elements by calculation and experimental method). Matematychni metody ta fizyko-mekhanichni polia (Mathematical methods and physical and mechanical fields), 46(1), 88—104.
206. Darchuk, O.I., & Drahiliev, A. (2005). Modeliuvannia vplyvu zalyshkovykh napruzhen na shvydkist rostu vtomnykh trishchyn v zvarnykh ziednanniakh (Modeling the effect of residual stresses on the growth rate of fatigue cracks in welded joints). Mashynoznavstvo (Mechanical Engineering), 3, 7—12.
207. Darchuk, O.I. (2003). Application of the probabilistic mechanics of fatigue fracture to the evaluation of the reliability of welded structures. Materials Science, 39(4), 481—491.
208. Panasiuk, V.V., & Dmytrakh, I.M. (1999). Vplyv koroziinykh seredovyshch na lokalne ruinuvannia metaliv bilia kontsentratoriv napruzhen (Influence of corrosive environments on the local fracture of metals near stress concentrators). Karpenko Physico-mechanical Institute of National Academy of Sciences.
209. Troshchenko, V.T. (1981). Deformirovanie i razrushenie metallov pri malotsiklovom nagruzhenii. Deformation and fracture of metals under low-cycle loading. Naukova dumka.
210. Andrea Carpinteri. (Eds.). (1994). Handbook of Fatigue Crack Propagation in Metallic Structures. Elsevir.
211. Andreikiv, O.Ye., Dolinska, I.Ya., & Yavorska, N.V. (2011). Vtomne ruinuvannia tonkostinnykh elementiv konstruktsii z vytiahnutymy otvoramy za vysokykh temperatur (Fatigue destruction of thin-walled structural elements with bent holes at high temperatures). Naukovi notatky: mizhvuzivskyi zbirnyk (Scientific notes: interuniversity collection), 32, 15—19.
212. Andreikiv, O.E., Dolins’ka, I.Ya., & Yavors’ka, N.V. (2011). Estimation of the periods of initiation and propagation of creep-fatigue cracks in thin-walled structural elements. Materials Science, 47(3), 273—283.
213. Andreikiv, O.Ye., & Dolinska, I.Ya. (2011). Vplyv vysokotemperaturnoi povzuchosti na zarodzhennia vtomnykh trishchyn v tilakh bilia kontsentratoriv napruzhen (The influence of high-temperature creep on the nucleation of fatigue cracks in bodies near stress concentrators). Dopovidi Natsionalnoi akademii nauk Ukrainy (Reports of the National Academy of Sciences of Ukraine), 4, 48—53.

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top