Carbon structures – real and hypothetical

Authors:

Kurdyumov Alexander Vyacheslavovich, Doctor of Physics-Mathematics, Corresponding Member of the NAS of Ukraine, chief Researcher of the I. M. Frantsevich Institute for Problems of Materials Science; chief Researcher of the Solids Structural Chemistry Department of the I. M. Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine,  Kyiv, Ukraine.

 

Britun Victor Fedorovich, candidate of Physics-Mathematics, Seniour research Scientist, leading Researcher of the I. M. Frantsevich Institute for Problems of Materials Science; leading Researcher of the Solids Structural Chemistry Department of the I. M. Frantsevich Institute for Problems of Materials Science, Kyiv, Ukraine.

https://orcid.org/0000-0002-2421-536X

ResearcherID: HKW-0810-2023

 

Reviewers:

Zasimchuk Elena E., Leading Research Scientist,, Doctor of Physical and Mathematical Sciences (Solid State Physics), Professor; Head Of The Laboratory, of the G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine. Kyiv, Ukraine.

https://orcid.org/0000-0001-9023-1280

 

Grigoriev Oleg, Corresponding Member, of the NAS of Ukraine, Doctor of Physics-Mathematics; Head of department, I. M. Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine. Kyiv, Ukraine.

 

Affiliation:

Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 208

DOI:

https://doi.org/10.15407/978-966-00-1793-1

ISBN: 978-966-00-1793-1

Language: Ukrainian

How to Cite:

Kurdyumov, A., Britun, V. (2023) Carbon structures – real and hypothetical. Kyiv, Naukova Dumka. 208p. [in Ukrainian].

Abstract:

The monograph considers numerous carbon structures, both real and hypothetical, the possibility of the formation of which is not excluded in principle. In addition to the structures of diamond and graphite, such structural forms of carbon as carbon black, onions, graphene, nanotubes, fullerenes, glassy carbon and ultradispersed diamond are described in detail. Among the hypothetical structures, much attention is paid to structures, that are built only on sp2 hybridized bonds: Н-6, bct-4 and others. The hypothetical structures of carbyne and carbinoids, which contain sp1 hybridized bonds, are considered also. The large volume of material in the book is devoted to the analysis of the regularities of mutual transformations of carbon phases at high pressures and temperatures. The influence of structural defects on the mechanisms and kinetics of phase transformations is described. Particular attention is paid to the study of phase transformations of carbon structures under high-temperature shock compression. The monograph also discusses the features of crystal chemistry and phase transformations in boron nitride, which is a crystallographic analogue of carbon. A number of sections are devoted to the features of X-ray diffraction analysis of carbon structures. The book is intended for – materials scientists, physicists, as well as for university teachers, graduate students and students of relevant specialties.

Keywords:

carbon, structures, diamond,graphite, carbon black, onions, graphene, nanotubes, fullerenes, glassy carbon, hypothetical structures, transformations of phases, X-ray diffraction analysis, high pressures.

References:

References до розділу 1

1 Kurdyumov, A.V., & Pilyankevich, A.N. (1979). Fazovye prevrashhenija v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Naukova dumka.
2 Ubbelode, A.R., & Lewis, F.A. (1965). Grafit i ego kristallicheskie soedineniya [Graphite and its crystalline compounds]. Mir.
3 Shulepov, S.V. (1972). Fizika uglegrafitovih materialov [Physics of carbon-graphite materials]. Metallurgiya.
4 Boehm, H.P., & Coughlin, R.W. (1964). Enthalpy difference of hexagonal and rhombohedral graphite. Carbon. Vol.2. 1–6.
5 Biscoe, J., & Warren, B.E. (1942). X–ray study of carbon black. Journal Appl.Phys. Vol.13, 364–371.
6 Buseck, P.R., Adachi, K., Gelencser, A., Tompa, E & Mihaly, P. (2014). Ns–soot: A Material–Based Term for Strongly Light–Absorbing Carbonaceous Particles. Aerosol Science and Technology. Vol.48, 777–788.
7 Houska, C. R., & Warren, B.E. (1954). X–ray study of the graphitization of carbon black. Journal Appl. Phys. Vol.25, 1503–1509.
8 Warren, B.E., & Bodenstein, P. (1965). The diffraction pattern of fine particle carbon blacks. Acta Crystallography. Vol.18, 282–287.
9 Tesner, P.A. (1979). Obrazovanie sazhi pri gorenii [Formation of soot during combustion]. Fizika gorenija i vzryva [Physics of combustion and explosion]. (2), 3-13.
10 Bakirov, F.G., Zaharov, V.M., & Poleschuk, I.Z. (1989). Obrazovanie i vygoranie sazhi pri szhiganii uglevodorodnyh topliv [Formation and burnout of soot during combustion of hydrocarbon fuels]. Mashinostroenie.
11 Haynes, S., & Wagner, H.G. (1981). Soot formation. Progress in energy and combustion science. Vol.17, 229–273.
12 Berezkin, V.I. (2000). Fullereny kak zarodyshi sazhevyh chastic. [Fullerenes as nuclei of soot particles]. Fizika tverdogo tela [Solid state physics]. Vol.42, (3), 567-572.
13 Vander Wal, R. L., Tomasek, A.J., Street, K., Hull, D.R., & Thompson, W. (2004). Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images. Applied spectroscopy Vol.58, (2). DOI:10.1366/000370204322842986.
14 Jurkiewicz, K., Pawlyta, M. & Burian, A. (2018). Structure of Carbon Materials Explored by Local Transmission Electron Microscipy and Global Powder Diffraction Probes. Journal of Carbon Research. (4). doi:10.3390/c4040068.
15 Miki–Yoshida, M., Castillo, R., Ramos, S., Rendon, M., Tehuacanero, S., Zou, B., & Jose-Yasaman, M. (1994). High Resolution Electron Microscopy Studies in Carbon Soots. Carbon. Vol.32, (2). 231–246.
16 Ungar, T., Gubicza, J., Ribarik, G., & Pantea, C. (2002) Microstructure of carbon black determined by X–Ray diffraction profile analysis. Carbon Vol.40. 929–937.
17 Tesner, P.A. (1972). Obrazovanie ugleroda iz uglevodorodov gazovoj fazy [Formation of carbon from gas phase hydrocarbons]. Himija.
18 Fialkov, A.S. (1979). Uglegrafitovye materialy [Carbon materials]. Jenergija.
19 Jin, C.Q., Wang, Z.X., Liu, Y.X., Zhang, Y.L., Li, F.Y., & Yu, R.C. (2003). The unusual morphology, structure and magnetic property evolution of glassy carbon upon high pressure treatment. Brazilian Journal of Physics. Vol.33, (4), 723–728.
20 Franklin, R.E. (1951). Crystalline growth in grathitizing and non–grathitizing carbons. Proc. R. Cos. A Math. Phys. Eng. Sci. Vol.209, 196–218.
21 Mildner, D.F.R., & Carpenter, J.M. (1982). On the short range atomic structure of non-crystalline carbon. Journal Non Crystal Solids. Vol.47, (3), 391-402.
22 Jurkiewicz, K., Duber, S., Fischer, H.E., & Burian, A. (2017). Modelling of glass–like carbon structure and its experimental verification by neutron and X–ray diffraction. Journal Appl. Crystallogr. Vol.50, 36–48.
23 Jenkens, G.M., & Kawamura, K. (1971). Structure of glassy carbon. Nature. Vol.231, 175–176.
24 O’Malley, B., Snook, I., & McCulloch, D. (1998). Reverse Monte Carlo analysis of the structure of glassy carbon using electron microscopy data. Phys. Rev. B. Vol.57, 14148–14157.
25 Harris, P.J.F. (2004). Fullerene related structure of commercial glassy carbons. Philos.Mag. Vol.84, 3159–3167.
26 Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., & Firsov, A.A. (2004). Elektric field effect in atomically thin carbon films. Science. Vol.306, 666–669.
27 Gubin, S.P., Tkachev, S.V. (2010). Grafen i materialy na ego osnove [Graphene and materials based on it]. Radiojelektronika. Nanosistemy–Informacionnye tehnologii. Vol 2, (1/2), 99–137.
28 Dresselhaus, M.S., & Aroujo, P.T. (2010). Perspectives on the 2010 Nobel Prize in Physics for Graphene. ASC Nano. Vol.4, (11), 6297–6302.
29 Soldato, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of grapheme. Carbon. Vol.48, 2127–2150.
30 Soroko, V.A, Batrakov, K.G., & Chernozatonskij, L.A. (2014). Grafenovye lenty s zigzagoobrazno modificirovannymi krajami: struktura i jelektronnye svojstva [Graphene Ribbons with Zigzag Edges Modified: Structure and Electronic Properties]. Fizika tverdogo tela [Solid state physics]. Vol.56, (10), 2066-2075.
31 Wall, M. (2011). The raman spectroscopy of graphene and the determination of layer thickness. Thermo Fisher Scientific Madison USA. Application Note 52252, 1–5.
32 Ferrari, A.C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid state comm. Vol.143, (1/2), 47–57.
33 Ferrari, A.C., Meyer, J.C., Scardaci, V., C., Casiraghi, M., Lazzeri, F., Mauri, S., Piscanec, D., Jiang, K. S., Novoselov, S., & Geim A.K. (2006). Raman Spectra of graphene and graphene layers. Phys.Rev.Lett. Vol.97, (18), 187401. 1–4.
34 Sofo Jofge, O., Chaudhari, A. S., & Barber G. D. (2007). Graphane: A two–dimensional hydrocarbon. Phys.Rev.B. Vol.75, (15), id.153401.
35 Pumera, M., & Wong, C.H. (2013). Graphane and hydrogenated graphene. Chemical Society Reviews. Vol.42, 5987–5995.
36 Belenkova, T.E., Chernov, V.M., & Belenkov, E.A. (2016). Polimorfnye raznovidnosti grafana [Polymorphic varieties of graphane]. Radiojelektronika. Nanosistemy. Informacionnye tehnologii [Radioelectronics. Nanosystems. Information Technology]. Vol.8, (1), 49-53.
37 Iijima, S. (1991). Synthesis of Carbon Nanotubes. Nature. Vol.354, 54–58.
38 Larikov, L.N. (1998). Hiral’nost’ [Chirality]. In Jenciklopedicheskij slovar’. Fizika tverdogo tela [Encyclopedic Dictionary. Solid state physics] (V.G.Bar’jahtar, Ed.) Naukova dumka.
39 Damnjanovic, M., Milosevic, I., Vukovic, T., & Sredanovic, R. (1999). Symmetry and lattices of single–wall nanotubes. Journ. Phys. A. Vol.32, 4097. DOI 10.1088/0305-4470/32/22/310.
40 Belenkov, E.A. (2016). Trehmernaja struktura mnogoslojnyh uglerodnyh trubok [Three-dimensional structure of multilayer carbon tubes]. Cheljabinskij fiziko–matematicheskij zhurnal. Vol.1, 102-111.
41 Lozovik, Ju.E., Popov, A.M., Belikov, A.V., & Belenkov, E.A. (2003). Klassifikacija dvuhslojnyh nanotrubok s soizmerimymi strukturami sloev [Classification of two-layer nanotubes with comparable layer structures]. Fizika tverdogo tela [Solid state physics]. Vol.45, (7), 1333-1338.
42 Zaulichnyj, Ja.V., Petrovskaja, S.S., Grajvoronskaja, E.V., & Solonin, Ju.M. (2012). Uglerodnye nanomaterialy stroenie i processy strukturoobrazovanija [Carbon nanomaterials structure and processes of structure formation]. Naukova dumka.
43 Huang, J.Y., Chen, S., Wang, Z.Q., Jo, S.H., Chen, G., Dresselhaus, M.S., & Ren, Z.F. (2006). Superplastic carbon nanotubes. Nature. Vol.439, 281–308.
44 Krishnan, A., Duardin, E., Ebbesen, T.W., Yianilos, P.N., & Treacy, M.J. (1998.) Young’s modulus of single–walled nanotubes. J.Phys.Rev.B. Vol.58, 14013–14019.
45 Wong, E.W., Sheehan, P.E., & Lieber, C.M. (1997). Nonbeam Mechanics: Elasticity, Strength and Toughness of Nanorods and Nanotubes. Science. Vol.277, 1971–1975.
46 Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., & Smalley, R.E. (1985). C60 Buckminsterfullerene. Nature. Vol.318, (6042), 162–163.
47 Osawa, E. (1970). Superaromaticity. Kagaku (Science). Vol.25, 854–863.
48 Bochvar, D.A., & Gal’pern, E.G. (1973). O gipotetichnyh sistemah karbododekajedra, s–ikosajedra i karbo s–ikosajedra [About hypothetical systems of carbododecahedron, s-icosahedron and carbo s-icosahedron]. DAN SSSR [Reports of the Academy of Sciences of the USSR]. Vol 209, (3), 610-612.
49 Kratschmer, W., Lamb, L.D., Fostiropoulos, K., & Huffman, D.R. (1990). Solid C60 a new form of Carbon. Nature. Vol.347, (6291), 354–358.
50 Manolopoulos, D.E. (1992). Comment on Favourable structures for higher fullerenes. J. Chemical Physics Letters. Vol.192, (2/3), 330.
51 Gerasimov, V.I., & Trofimov, A. (2014.) Isomers of Fullerene C60. Materials Physics and Mechanics. Vol.20, 25–32.
52 Shhur, D.V., Matysina, Z.A., & Zaginajchenko, S.Ju. (2007). Uglerodnye nanomaterialy i fazovye prevrashhenija v nih [Carbon nanomaterials and phase transformations in them]. Nauka i obrazovanie [Science and education].
53 Neretin, I.S., & Slovohotov, Ju.L. (2004). Kristallohimija fullerenov. Uspehi himii [Advances in chemistry]. Vol.7,3 (5), 492-525.
54 Kozyrev, S.V., & Rotkin, V.V. (1993). Fullereny, stroenie, dinamika kristallicheskoj reshetki, jelektronnaja struktura i svojstva [Fullerenes, structure, crystal lattice dynamics, electronic structure and properties]. Fizika i tehnika poluprovodnikov [Physics and technology of semiconductors]. Vol.27, (9), 1409-1434.
55 Masterov, V.S., Prihod’ko, A.V., Stepanova, T.R., Davydov V.Ju., & Kon’kov, O.I. (1998). Kristallicheskaja struktura S60/S70 membrany [Crystal structure of C60/C70 membrane]. Fizika tverdogo tela [Solid state physics]. Vol.40, (3), 580-583.
56 Davydov, V.A., Kashevarova, L.S., Rahmanina, A.V., Dzjabchenko, A.V., Senjavin, V.M., & Agafonov, V. N. (2001). Polimernye fazy vysokogo davlenija fullerena S60: sintez, identifikacija, issledovanie svojstv [High-pressure polymeric phases of C60 fullerene: synthesis, identification, study of properties]. Rossijskij himicheskij zhurnal [Russian chemical journal]. Vol.45, (4), 25-34.
57 Sundar, C.S., Sahu, P.Ch., Sastry, V.S., Rao, G.V., Sridharan, V., Premila, M., Bharathi, A., Hariharan, Y., Radhakrishnan, T.S., Muthu, D.V., & Sood, A.K. (1996). Pressure–induced polymerization of fullerenes: A comparative study of C60 and C70. Phys. Rev. Vol.53, (13), 8180–8183.
58 Brazhkin, V. V., Lyapin, A. G., Popova, S. V., Voloshin, R. N., & Antonov, Yu. V. (1997). Metastable crystalline and amorphous carbon phases obtained from fullerite C60 by high-pressure-high-temperature treatment Phys. Rev. В 1997 Vol.56, (l), 1465-11471.
59 Ljapin, A.G., & Brazhkin, V.V. (2002). Korreljacii fizicheskih svojstv uglerodnyh faz, poluchennyh iz fullerita S60 pri vysokom davlenii [Correlations of the physical properties of carbon phases obtained from C60 fullerite at high pressure]. Fizika tverdogo tela [Solid state physics]. Vol.44, (3), 393-397.
60 Bartelmess, J., & Giordani, S. (2014). Carbon nano–onions (multi–layer fullerenes) chemistry and applications. Beilstein Journal of nanotechnology. (5), 1980–1998.
61 Dubickij, G.A., Serebrjanaja, N.R., Blank, V.D., Skryleva, E.A., Kul’nickij, B.A., Mavrin, B.N., Aksenenkov, V.V., Bagramov, R.H., Denisov, V.N., & Perezhogin, I.A. (2010). Lukovichnye struktury ugleroda: poroshki i kompakty [Onion structures of carbon: powders and compacts]. Izvestija Vysshih uchebnyh zavedenij:Himija i himicheskaja tehnologija [News of higher educational institutions: Chemistry and chemical technology]. Vol.53, (10), 49-59.
62 Ugarte, D. (1992). Curling and closure of graphitic networks under electron–beam irradiation. Nature. Vol.359, 707–709.
63 Iijima, S. (1980). Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. Journal Cryst.Growth. Vol.50, (3), 675–683.
64 Blank, V.D., Kulnitskiy, B.A., & Perezhogpn, I.A. (2009). Structural peculiarities of carbon onions, formed by four different methods. Scripta Materialia. Vol.60, 407–410.
65 Mykhaylyk, O.O., Solonin, Y.M., Batchelder, D.N., & Brydson, R. (2005). Transformation of nanodiamond into carbon onions: a comparative study by high resolution transmission electron microscopy, electron energy–loss spectroscopy, X–ray diffraction, small–angle X–ray scattering and ultraviolet Raman spectroscopy. Journal Appl. Phys. Vol.97, 074302–074318.
66 Kuznetsov, V.L., Chuvin, A.L., Butenko, Y.V., Mal’kov I., & Titov, V. (1994). Onion–like carbon from ultra–disperse diamond. Chem.Phys.Lett. Vol.222, 343–348.
67 Banhart, F., & Ajayan, P.M. (1996). Carbon onions as nanoscopic pressure cells for diamond formation. Letters to nature. Vol.382, 433–435.
68 Danilenko, V.V. (2003). Sintez i spekanie almaza vzryvom [Synthesis and sintering of diamond by explosion]. Jenergoizdat [Energoizdat].
69 Savvakin, G.I., Kotko, V.A., Ostrovskaja, N.F., & Kurdjumov, A.V. (1988). Struktura ul’tradispersnyh uglerodnyh faz, obrazujushhihsja iz uglerodsoderzhashhih soedinenij v sil’no neravnovesnyh uslovijah [The structure of ultrafine carbon phases formed from carbon-containing compounds under highly non-equilibrium conditions]. Poroshkovaja metallurgija [Powder metallurgy]. (10), 78-82.
70 Trefilov, V.I., Savvakin, G.I., Skorohod, V.V., Solonin, Ju.M., & Hrienko, A.F. (1978). Osobennosti struktury ul’tradispersnyh almazov, poluchennyh vysokotemperaturnym sintezom v uslovijah vzryva [Features of the structure of ultrafine diamonds obtained by high-temperature synthesis under explosion conditions]. DAN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.239, (4), 838-841.
71 Alekseevskij, A.E., Bajdakova, M.V., Vul’, A.Ja., & Siklickij, V.I. (1999). Struktura almaznogo nanoklastera [Structure of a diamond nanocluster]. Fizika tverdogo tela [Solid state physics]. Vol.41, 740-743.
72 Danilenko, V.V. (2010). Vzryv: Fizika, Tehnika, Tehnologija [Explosion: Physics, Engineering, Technology]. Jenergoatomizdat [Energoatomizdat].
73 Titov, V.M., Anisichkin, V.F., & Mal’kov, I.Ju. (1989). Issledovanie processa sinteza ul’tradispersnogo almaza v detonacionnyh volnah [Study of the process of synthesis of ultrafine diamond in detonation waves]. Fizika gorenija i vzryva [Physics of combustion and explosion]. (3), 117-126.
74 Vitjaz’, P.A., Zhornik, V.I., Il’jushhenko, A.F. & Senjut’, V.T. (2013). Nanoalmazy detonacionnogo sinteza: poluchenie i primenenie [Nanodiamonds of detonation synthesis: production and application]. Belarus.navuka [Belarus science].
75 Dolmatov, V.Ju. (2008). O mehanizme detonacionnogo sinteza nanoalmazov [On the mechanism of detonation synthesis of nanodiamonds]. Sverhtverdye materialy [Superhard materials]. (4), 25-34.
76 Bajdakova, M.V., Vul’, A.Ja., Siklickij, V.I., & Faleev, N.N. (1998). Fraktal’naja struktura klasterov ul’tradispersnogo almaza [Fractal structure of ultrafine diamond clusters]. Fizika tverdogo tela [Solid state physics]. Vol.40, (4), 776-780.
77 Sharkov, M.D., Bojko, M.E., Ivashevskaja, S.N., & Konnikov, S.G. (2014). Harakterizacija struktury ul’tradispersnogo almaza s pomoshh’ju metodov rentgenovskoj difraktometrii i malouglovogo rassejanija rentgenovskih luchej [Characterization of the structure of ultrafine diamond using X-ray diffractometry and small-angle X-ray scattering]. Fizika tverdogo tela [Solid state physics]. Vol.56, (11), 2265-2268.
78 Pichot, V., Comet, M., Fousson, E., Baras, C Senger, A., Normand, F.Le., & Spitzer, D. (2008). An efficient purification method for detonation nanodiamonds. Diamond & Related Materials. Vol.17, 13-22.
79 Kasatochkin, V.I., Sladkov, A.M., Kudrjavcev, Ju.P., & Korshak, V.V. (1972). Novaja kristallicheskaja forma ugleroda – karbin [A new crystalline form of carbon – carbine]. Diplom na otkrytie №107 s prioritetom ot 4 nojabrja 1960. [Diploma for opening No. 107 with priority dated November 4, 1960] Bjullet’n’ izobretenij [Bulletin of inventions]. (6), 3.
80 Kudrjavcev, Ju.P., Babaev, V.G., Guseva, M.B., & Hvostov, V. (2010). Karbin – tret’ja allotropnaja forma nanougleroda [Carbyne is the third allotropic form of nanocarbon]. Nanotehnologii: razrabotka, primenenie [Nanotechnologies: development, application]. Vol.2, (1), 37-53.
81 Shi, L., Rohringer, Ph., & Suenaga, K. (2016). Confined linear carbon chains as a route to bulk carbyne. Nature Materials. Vol.15, 634–639.
82 Kasatochkin, V.I., Korshak, V.V., Kudryavtsev, Yu.P., Sladkov, A.M., & Sterenberg, I.E. (1973). On crystalline structure of carbyne. Carbon. Vol.11, (1), 70–72.
83 Sladkov, A.M. & Kudrjavcev, Ju.P. (1969). Almaz, grafit, karbin – allotropnye formy ugleroda [Diamond, graphite, carbine are allotropic forms of carbon]. Priroda [Nature]. (5), 37-44.
84 Luo, W. & Windle, W. (2009). First principles study of the structure and stability of carbine. Carbon. Vol.47, 367–383.
85 Belenkov, E.A. & Mavrinskij ,V.V. (2008). Struktura kristallov ideal’nogo karbina [Crystal structure of ideal carbine]. Kristallografija [Crystallography]. Vol.53, (1), 83-87.
86 Kurdjumov, A.V. & Borimchuk, N.I. (1987). Mehanizm prevrashhenija rombojedricheskogo grafita v almaz [The mechanism of transformation of rhombohedral graphite into diamond]. DAN SSSR [Reports of the Academy of Sciences of the USSR], Vol.297, (3), 602-604.
87 Kurdjumov, G.V., Utevskij, L.M., & Jentin, R.I. (1977). Prevrashhenija v zheleze i stali [Transformations in iron and steel]. Nauka.
88 Kurdjumov, A.V., Britun, V.F., Borimchuk, N.I., & Jarosh, V.V. (2005). Martensitnye i diffuzionnye prevrashhenija v uglerode i nitride bora pri udarnom szhatii [Martensitic and diffusion transformations in carbon and boron nitride under shock compression]. Izdatel’stvo Kuprijanova.
89 Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2004). Bezdiffuzionnoe zarozhdenie lonsdejlita i almaza v geksagonal’nom grafite pri staticheskom szhatii [Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression]. Poroshkovaja metallurgija [Powder metallurgy]. (1), 99-107.
90 Danilenko, V.M., Kurdjumov, A.V., & Mejke, A.V. (1985). Mezhsloevoe vzaimodejstvie v grafitnyh strukturah [Interlayer interaction in graphite structures]. DAN USSR. Serija A [DAN Ukrainian SSR. Serie A]. (3), 42-45.
91 Green ,J.F., & Bolland, T.K. (1974). Lennard–Jones interaction for hexagonal layered crystals. Journal Chem. Phys. Vol.61, (5), 1637–1646.
92 Kabalkina, S.S., & Vereshhagin, L.F. (1960). Rentgenograficheskie issledovanija linejnoj szhimaemosti grafita pri davlenijah do 16000 kg/sm2 [X-ray studies of the linear compressibility of graphite at pressures up to 16000 kg/cm2]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.131, (2), 300-302.
93 Komatsu, K. (1964). Interpretation of the specific heat of various graphites at very low temperatures. Journal Chem. Phys. Solids. Vol.25, (7), 707–712.
94 Nikerov, M.V., Bochvar, D.A., & Stankevich, I.V. (1981). O novyh kristallicheskih modifikacijah ugleroda i nitrida bora [On new crystalline modifications of carbon and boron nitride]. Izvestija AN SSSR, Himija. [Proceedings of the Academy of Sciences of the USSR, Chemistry]. (5), 1177-1178.
95 Bochvar, D.A., Nikerov, M.V., & Stankevich, I.V. Otnositel’naja stabil’nost’ nekotoryh kristallicheskih modifikacij ugleroda [Relative stability of some crystalline modifications of carbon]. Zhurnal fiz. himii [Journal of Physics. chemistry]. Vol.57, (6), 1445-1449.
96 Tamor, M. A., & Hass, K. S. (1990). Hypothetical superhard carbon metal. Journal Mater. Res. Vol.5, (11), 2273–2276.
97 Hoffman, R., Hughbanks, T., & Kertesz, M. (1983). A Hypothetical Metallic Allotrope of Carbon. Journal Amer.Chem.Soc. Vol.105, 4831–4832.
98 Liu, A. J., Cohen, M. L., Hass, K. S., & Tamor, M. A. (1991). Structural properties of a three–dimensional all sp2 phase of carbon. Phys. Rev. B Vol.43, (8), 6742–6745.
99 Liu, A. J., & Cohen, M. L. (1991). Theoretical study of a hypothetical metallic phase of carbon. Phys. Rev. B. Vol.45, (9), 4579–4581.
100 Cote, M., Grossman, J.C., Cohen, M.L., & Louie, S.G. (1998). Theoretical study of a three–dimensional all–sp2 structure. Phys. Rev. B. Vol.58, (2), P.664–668.
101 Ribeiro, F.J., Tangney, P., Louie, S.G., & Cohen, M.L. (2006). Hypothetical hard structures of carbon with cubic symmetry. Phys. Rev. B. Vol.74, 172101–172104.
102 Belenkov, E.A., & Ali–Pasha, V.A. (2011). Struktura 3D grafita [3D graphite structure]. Kristallografija [Crystallography]. Vol.56, (1), 107-112.
103 Burdett, J.K., & Le,e S. (1985). The moments method and elemental structures. Journal Amer.Chem.Soc. Vol.107, 3062–3082.
104 Eaton, P.E., & Cole ,T.W. (1964). The cuban system. Jornal Amer.Chem.Soc. Vol.86, 962–964.
105 Eaton, P.E., & Cole, T.W. (1964). Cubane. Journal Amer.Chem.Soc. Vol.86, 3157–3158.
106 Greshnjakov, V.A., Belenkov, E.A., & Berezin, V.M. (2012). Kristallicheskaja struktura i svojstva uglerodnyh almazopodobnyh faz [Crystal structure and properties of carbon diamond-like phases]. JuUrGU.
107 Heimann, R.B., Evsyukov, S.E., & Kavan, L. (1999.) Carbyne and Carbynoid Structures (R.B.Heimann, Ed.) Dordrecht: Springer–Science–Business Media.
108 Heinmann, R.B., Kleimann, I., & Salansky, N.M. (1988). A unified structure approach to linean carbon polytypes. Nature. Vol.306, 5939–5940.
109 Kudryavtsev, Yu.P., Evsykov, S., & Guseva, M. (1997). Carbyne – a linear chainlike carbon allotrope. in Chemistry and Physics of Carbon. (P.A.Thrower. Ed.) Vol.25. (pp.1–69). Dekker.
110 Luo, W., & Windle, W. (2009). First principles study of the structure and stability of carbine. Carbon. Vol.47, 367–383.
111 Whittaker, Yu.P., & Wolten, G.M. (1972). Carbon a suggested new hexagonal crystal form. Science. Vol.178, (4056), 54–56.
112 Alder, B.J., & Christian, R.H. (1961). Behavior of Strongly Shocked Carbon. Phys. Rev.Lett. Vol.7, 367–369.
113 Bundy, F.P. (1963). Direct conversion of graphite to diamondin in static pressure apparatus. Journal Chem.Phys. Vol.38, (3), 631–643.
114 Vereshhagin, L.F., Jakovlev, E.N., Vinogradov, B.V. Sakun, V.P., & Stepanov, G.N. (1973). K perehodu almaza v metallicheskoe sostojanie [To the transition of diamond to a metallic state]. Pis’ma v ZhJeTF [Letters to JETF]. Vol.17, (9), 433-435.
115 Goncharov, A.F. (1987). Ustojchivost’ almaza pri vysokih davlenijah [Stability of diamond at high pressures]. Uspehi fizicheskih nauk [Advances in the physical sciences]. Vol.152, (2), 317-332.
116 Vojtkevich, G.V., Kokin, A.V., Miroshnikov, A.E., & Prohorov, V.G. (1990). Spravochnik po geohimii [Handbook of geochemistry]. Nedra.
117 Hu, J.Z., Mercle, L.D., Menoni, C.S., & Spain, I.L. (1986). Crystal data for high–pressure phases of silicon. Phys. Rev. B. Vol.34, 4679–4684.
118 Christensen, N.E., Novicov, D.L., & Methfecsel, M. (1999). The intermediate high–pressure phase of silicon. Solid state communications. Vol.110, 615–619.
119 Pfrommer, B.G., Gote, M., Louie, S.G., & Cohen, M.L. (1997). Ab initio study of silicon in the R8 phase. Phys.Rev. B. Vol.56, (11), 6662–6668.
120 Bell, P.M., Mao, H.K., & Goettel, K. (1984). Ultrahigh Pressure: Beyond 2 Megabars and the Ruby Fluorescence Scale. Science. Vol.226, (4674), 542–544.
121 Pavlovskij, M.N., & Drakin, V.P. (1966). K voprosu o metallicheskoj faze ugleroda [On the issue of the metallic phase of carbon]. Pis’ma v ZhJeTF [Letters to JETF]. Vol.4, (1), 367-369.
122 Pavlovskij, M.N. (1971). Udarnoe szhatie almaza [Impact compression of a diamond]. Fizika tverdogo tela [Solid state physics]. Vol.13, 893-895.
123 Yin, M.T., & Cohen, M.L. (1983). Will Diamond Transform under Megabar Pressures?. Phys. Rev. Lett. Vol.50, (25), 2006–2009.
124 Yin, M.T. (1984). Si–III (ВC–8) crystal phase of Si and C: Structural properties, phase stabilities and phase transition. Phys.Rev.B. Vol.30, 3210–3213.
125 Correa, A.A., Bonev, S.A., & Galli, G. (2006). Carbon under extreme conditions: Phase boundaries and electronic properties from first–principles theory. Proc.National Sci.USA. Vol.103, (5), 1204–1208.
126 Brygoo, S., Henry, E., Loubeyre, P., Eggert, J., Koenig, M., Loupias, B., Benuzzi-Mounaix, A., & Le Gloahec, M. (2007). Laser–shock compression of diamond and evidence of a negative–slope melting curve. Nat Mater. Vol.6, (4), 274–277.
127 Nagao, H., Nakamura, K. G., Kondo, K., Ozaki, N., Takamatsu, K., Ono, T., Shiota, T., Ichinose, D., Tanaka, K.A., Wakabayashi, K., Okada, K., Yoshida, M., Nakai, M., Nagai, K., Shigemori, K., Sakaiya, T., & Otani, K. (2006). Hugoniot measurement of diamond under laser shock compression up to 2TPa. Physics of Plasmas. Vol.13, (5), 052705.
128 Knudson, M.D., Dolan, D., Desjarlais, M.P. (2008). Shock– Wave Exploration of the High–Pressure phases of Carbon. Science. Vol.322, (5909), 1822–1825.
129 Matjushenko, N.N., Strel’nickij, V.E., & Gusev, V.A. (1979). Novaja plotnaja modifikacija kristallicheskogo ugleroda S8 [New dense modification of C8 crystalline carbon]. Pis’ma v ZhJeTF [Letters to JETF]. Vol.30, (4), 218-221.
130 Johnston, R.L, & Hoffmann, R. (1989). Superdense carbon, C8: supercubane or analogue of g–Si? Journal Amer.Chem.Soc. Vol.111, 810–819.
131 Stankevich, I.V., Nikerov, M.V., & Bochvar, D.A. (1984). Strukturnaja himija kristallicheskogo ugleroda: geometrija, stabil’nost’, jelektronnyj spektr [Structural chemistry of crystalline carbon: geometry, stability, electronic spectrum]. Uspehi himii [Advances in Chemistry]. Vol.53, (7), 1101-1124.
132 Bundy, F.P., Bassett, W.A., Weathers, M.S., Hemley, R., Mao, H., & Goncharov, A. (1996). The pressure–temperature phase and transformation diagram for carbon; updated through 1994. Carbon. Vol.34, (2), 141–153.

References до розділу 2.

1. Amelinckx, S., & Delavignette, P. (1960). Electron Optical Study of Basal Dislocations in Graphite. Journal of Appl. Phys. Vol.31, 2126-2135.
2. Frise, E.J., & Kelly, A. (1961). Twinning in Graphite. Proceed. of Royal Society of London, Series A, Mathematical and Physical Science. Vol.264, 269-276.
3. Heerschap, M., Delavignette, P., & Amelinckx, S. (1964). Electron Microscope Study of Interlamellar Compounds of Graphite with Bromine Iodine Monochloride and Ferric Chloride. Carbon Vol.1, 235-238.
4. Amelinckx, S., Delavignette, P., & Heerschap, M. (1966). Dislocation and Stacking Faults in Graphite. in Chemistry and Physics of Carbon, (Philip L. Ed) (Vol.1. pp.1-77). Walker.
5. Monchoux, J.P., Verdu, C., Thollet, G., Fougeres, R., & Reynaud, A. (2001). Morphological Changes of Graphite Spheroids during Heat Treatment of Ductile Cast Irons. Acta Mater. Vol.49, 4355-4362.
6. Qing, J., Richards, V.L, & Van Aken, D.C. (2017). Growth Stages and Hexagonal-Rhombohedral Structural Arrangements in Spheroidal Graphite Observed in Ductile Iron. Carbon. Vol.116, 456-469.
7. Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2003). Strukturnye osobennosti zarozhdenija plotnyh faz pri szhatii geksagonal’nogo grafita [Structural features of the nucleation of dense phases during compression of hexagonal graphite]. Sverhtverdye materialy [Superhard materials]. (5), 11-18.
8. Kurdyumov, A.V. & Pilyankevich, A.N. (1979). Fazovye prevrashhenija v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Naukova dumka.
9. Kurdjumov, A.V., Britun, V.F., Borimchuk, N.I., & Jarosh, V.V. (2005). Martensitnye i diffuzionnye prevrashhenija v uglerode i nitride bora pri udarnom szhatii [Martensitic and diffusion transformations in carbon and boron nitride under shock compression]. Izdatel’stvo Kuprijanova.
10. Kurdjumov, A.V., Malogolovec, V.G., Novikov, N.V., Piljankevich, A. N., & Shul’man, L. A. (1994). Polimorfnye modifikacii ugleroda i nitrida bora. Spravochnik [Polymorphic modifications of carbon and boron nitride. Directory]. (N.V.Novikov, Ed.). Metallurgija.
11. Golubev, A.S., Kurdjumov, A.V., & Piljankevich, A.N. (1987). Nitrid bora. Struktura, svojstva, poluchenie [Boron nitride. Structure, properties, getting]. Naukova dumka.
12. Brindli, G.V. (1965). Difrakcija rentgenovskih luchej ot sloistyh reshetok, sostojashhih iz besporjadochno smeshhennyh sloev [X-ray diffraction from layered gratings consisting of randomly shifted layers]. In Rentgenovskie metody izuchenija i struktura glinistyh mineralov [X-ray methods of studying and structure of clay minerals]. (V. A. Frank-Kameneckij. Ed.) Mir.
13. Nikolin, B.I. (1984). Mnogoslojnye struktury i politipizm v metallicheskih splavah [Multilayer structures and polytypism in metal alloys]. Naukova dumka.
14. Kurdjumov, A.V. (1972). Rentgenograficheskoe issledovanie defektov upakovki sloev v grafitovyh strukturah [X-ray study of stacking faults in graphite structures]. Kristallografija [Crystallography]. Vol.17, (3), 620-625.
15. Hendricks, S.B., & Teller, E. (1942). X-ray interference in partially ordered layer lattices. Journal Chem. Phys. Vol.10, (3), 147-167.
16. Uorren, V.E. (1963). Rentgenograficheskoe issledovanija deformirovannyh metallov. in Uspehi fiziki metallov [Advances in metal physics]. (Vol.5, pp. 172-237). Metallurgija.
17. Kurdjumov, A.V., Britun, V.F., Danilenko, A.I., & Jarosh, V.V. (2014). Vlijanie predvaritel’noj deformacii na strukturu i fazovye prevrashhenija grafita pri vysokotemperaturnom udarnom szhatii [Influence of preliminary deformation on the structure and phase transformations of graphite under high-temperature shock compression]. Poroshkovaja metallurgija [Powder metallurgy]. (9/10), 130-135.
18. Rao, P.R., & Anantharaman, (1963.) T.R. X-ray line-breadth analysis of deformed metallic structures. Z. Metallkunde. Vol.54, (3), 658-663.
19. Kelli, A., & Grovz, G. (1974). Kristallografija i defekty v kristallah [Crystallography and defects in crystals.] Mir.
20. Ubbelode, A.R., & Lewis, F.A. (1965). Grafit i ego kristallicheskie soedineniya [Graphite and its crystalline compounds]. Mir.
21. Kurdjumov, A.V., Piljankevich, A.N. (1968). Ob intensivnosti linij na rentgenogrammah grafitovyh struktur [On the intensity of lines on X-ray patterns of graphite structures]. Kristallografija [Crystallography]. Vol.13, (2), 311-315.
22. Danilenko, V.M., Kurdjumov, A.V., & Mejke, A.V. (1985). Mezhsloevoe vzaimodejstvie v grafitnyh strukturah [Interlayer interaction in graphite structures]. DAN USSR. Serija A [DAN Ukrainian SSR. Serie A]. (3), 42-45.
23. Fujimoto, H. (2003). Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon. Vol.41, 1585-1592.
24. Warren, B.Е. (1941) .X-ray diffraction in random layer lattices. Physical Review. Vol.59, 693-698.
25. Houska, C. R., & Warren, B.E. (1954). X-ray study of the graphitization of carbon black. Journal Appl. Phys. Vol.25, 1503-1509.
26. Warren, B.Е., & Bodenstein, P. (1965). The diffraction pattern of fine particle carbon blacks. Acta Crystallographica. Vol.18, 282-286.

References до розділу 3.

1. Kitajgorodskij, A.I. (1952). Rentgenostrukturnyj analiz melkokristallicheskih i amofnyh tel [X-ray diffraction analysis of fine-crystalline and amorphous bodies]. Gosizd tehnicheskoj i teoreticheskoj literatury.
2. Kitajgorodskij, A.I. (1984). Porjadok i besporjadok v mire atomov [Order and disorder in the world of atoms]. Nauka.
3. Kurdyumov, A.V., Britun, V.F., Khyzhun, O.Yu., Zaulychnyy, V., Bekenev, V.L., Dymarchuk, V.O., & Danilenko, A.I. (2011). Structure of the dense amorphous carbon phase synthesized in a mixture with diamond as a result of shock compression of carbon black. Diamond and Related Mater. Vol.20, 974-979.
4. Miki-Yoshida, M., Castillo, R., Ramos, S., Rendyn, L., Tehuacanero, S., Zou, B., & Jose-Yacaman, M. (1994). High Resolution Electron Microscopy Studies in Carbon Soots. Carbon. Vol.32, (2), 231-246.
5. Kurdjumov, A.V., Britun, V.F., Hizhun, O.Ju., Danilenko, A.I. & Jarosh, V.V. (2013). Strukturnye osobennosti lonsdejlita i plotnoj amorfnoj fazy ugleroda, obrazujushhihsja odnovremenno s almazom pri udarnom szhatii grafita i sazhi [Structural features of lonsdaleite and a dense amorphous phase of carbon formed simultaneously with diamond during shock compression of graphite and carbon black]. Nanostrukturnoe materialovedenie [Nanostructural materials science]. (3/4), 7-13.
6. Kakinoki, J., Katada, K., & Hanawa ,T. (1960). The electron diffraction study of carbon films. Acta Crystallographica. Vol.13, (3), 171-179.
7. Silva, S.P.R., Robertson, J., Milne, W.I., & Amaratunga, G.A. (1998). Amorphous Carbon: State of Art. World Scientific Publishing Co Pte. Ltd.
8. Robertson, J. (1991). Нard Amorphous (Diamond-Like) Carbons. Progress in Solid State Chemistry. Vol.21, 199-333.
9. Robertson, J. (2002). Diamond-like amorphous carbon. Materials Science and Engineering Reports. Vol.37, 129-281.
10. Dalgic, S., Gonzales, L.E., Baer, S., & Silbert, M. (2002). Modelling the structure factors and pair distribution function of amorphous germanium, silicon and carbon. Physics B: Condensed Matter. Vol.324, (1/4), 292-304.
11. Gilkes, K.W.R., Gaskell, P.H., & Robertson, J. (1995). Comparison of neutron-scattering data for tetrahedral amorphous carbon with structural models. Phys.Rev. B. Vol.51, (18), 12303-12312.
12. Borimchuk, N.I., Zeljavskij, V.B., Kurdjumov, A.V., Ostrovskaja, N.F., Trefilov, V.I., & Jarosh, V.V. (1991). Mehanizm prjamyh fazovyh prevrashhenj sazhi i uglja v almaz pri udarnom szhatii [Mechanism of direct phase transformations of soot and coal into diamond under shock compression]. DAN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.321, (1), 95-98.
13. Kurdjumov, A.V., Britun, V.F., Jarosh, V.V., Borimchuk, N.I., Danilenko, A.I., & Zeljavskij, V.B.. (2009). Fazovye prevrashhenija sazhi pri vysokotemperaturnom udarnom szhatii [Phase transformations of soot under high-temperature shock compression]. Sverhtverdye materialy [Superhard materials]. (5), 36-43.
14. Kurdjumov, A.V., Britun, V.F., Zeljavskij, V.B., Danilenko, A.I., Borimchuk, N.I., Jarosh, V.V., Kulikovskij, V.Ju., & Mihajlik, A.A. (2006). Struktura promezhutochnoj uglerodnoj fazy, obrazujushhejsja pri udarnom szhatii ul’tradispersnyh uglegrafitovyh materialov. [The structure of the intermediate carbon phase formed during shock compression of ultrafine carbon-graphite materials.]. Poroshkovaja metallurgija [Powder metallurgy]. (1/2), 104-111.
15. Borimchuk, N.I., Kurdjumov, A.V., & Jarosh, V.V. (1991, 5-12 avgust) Zakonomernosti obrazovanija plotnyh modifikacij ugleroda i nitrida bora v uslovijah udarnogo szhatija [Patterns of formation of dense modifications of carbon and boron nitride under conditions of shock compression]. Мaterialy 5-gо Vsesojuznogo soveshhanija po detonacii (sbornik dokladov) [Materials of the V All-Union Conference on Detonation (collection of reports)]. Krasnojarsk (Vol.1, pp.43-47). KrGPI.
16. Kurdjumov, A.V., Borimchuk, N.I., Britun, V.F., & Jarosh, V.V. (1999). Fizicheskie principy udarno-volnovogo sinteza sverhtverdyh faz i ih struktura [Physical principles of shock-wave synthesis of superhard phases and their structure]. Poroshkovaja metallurgija [Powder metallurgy]. (11/12), 88-97.
17. Tejlor, A. (1965). Rentgenovskaja metallografija [X-ray metallography]. Metallurgija.
18. Tamor, M.A., & Hass, K.C. (1990). Hypothetical superhard carbon metal. Journal Materials Res. Vol.5, (11), 2273-2276.
19. Liu, A. J., Cohen, M. L., Hass, K. S., & Tamor, M. A. (1991). Structural properties of a three-dimensional all sp2 phase of carbon. Phys. Rev. B. Vol.43, (8), 6742-6745.
20. Liu, A. J., & Cohen, M. L. (1992). Theoretical study of hypothetical metallic phase of carbon. Phys. Rev. B. Vol.45, (9), 4579-4581.
21. Kulikovskij, V.Ju., & Kurdjumov, A.V. (2002). Sverhtverdye uglerodnye plenki s grafitopodobnoj strukturoj [Superhard carbon films with a graphite-like structure]. Sverhtverdye materialy [Superhard materials]. (2), 26-31.
22. Skryshevskij, A.F. (1980). Strukturnyj analiz zhidkostej i amorfnyh tel [Structural analysis of liquids and amorphous bodies]. Vysshaja shkola.
23. Warren, B.Е. (1941). X-ray diffraction in random layer lattices. Phys. Rev. Vol.59, 693-698.
24. Kurdjumov, O.V., Britun, V.F., Bochko, A.V., Danilenko, A.I. & Zeljavskij, V.B. (2010). Struktura і tverdіst’ vuglecevoї keramіki na osnovі amorfnoї fazi udarno-hvil’ovogo sintezu [Structure and hardness of carbon ceramics based on the amorphous phase of shock-wave synthesis]. In Elektronna mіkroskopіja і mіcnіst’ materіalіv [Electron microscopy and strength of materials]. (pp.75-81) ІPM NANU.
25. Britun ,V.F., Gorban’, V.F., Kurdjumov, A.V., & Bochko, A.V. (2010). Jevoljucija struktury i nekotoryh svojstv sverhtverdoj uglerodnoj keramiki pri perehode ot amorfnogo k kristallicheskomu sostojaniju [Evolution of the structure and some properties of superhard carbon ceramics during the transition from amorphous to crystalline state] Nanostrukturnoe materialovedenie [Nanostructural materials science]. (1), 61-68.
26. Kurdjumov, A.V., Britun, V.F., Bochko ,A.V., Jarosh, V.V., Kirilova, V.M., & Kuzin, N.N. (2013). Mikrotverdost’ uglerodnoj keramiki, poluchennoj spekaniem nanodispersnyh poroshkov v uslovijah vysokih davlenij [Microhardness of carbon ceramics obtained by sintering nanodispersed powders under high pressure conditions]. Perspektivnye materialy [Promising Materials]. (8), 58-63. Interkontakt Nauka.
27. Bochko, A.V.,.Kuzin, N.N, Burhanov, G.S., Kirillova, V.M., Kurdjumov, A.V., Britun, V.F., Jarosh, V.V., Sedljar, G.A., & Spicyn, B.V. (2011). Struktura i nekotorye svojstva uglerodnoj nanokeramiki, izgotovlennoj pri vysokom davlenii i temperature [Structure and some properties of carbon nanoceramics fabricated at high pressure and temperature]. Perspektivnye materialy [Promising Materials]. (11), 309-315. Interkontakt Nauka.
28. Ljapin, A.G., Brazhkin, V.V. (2002). Korreljacija fizicheskih svojstv uglerodnyh faz, poluchennyh iz fullerena S60 pri vysokom davlenii [Correlation of the physical properties of carbon phases obtained from C60 fullerene at high pressure]. Fizika tverdogo tela [Solid state physics]. Vol.44, (3), 393-397.
29. Brazhkin, V.V., Ljapin, A.G., Voloshin, R.N., Popova, S.V., Kljuev, Ju.A., Naletov, A.M., Bejliss, S.K., & Sapelkin, A.V. (1999). Mehanizm formirovanija almaznogo nanokompozita v processe prevrashhenija fullerita S60 pri vysokom davlenii [The mechanism of formation of a diamond nanocomposite in the process of transformation of C60 fullerite at high pressure]. Pis’ma v ZhJeTF [Letters to JETF]. Vol.69, (11), 822-827.
30. Hirai, H., Kondo, K., Yoshizawa, N., & Shiraishi, M. (1994). Amorphous diamond from C60 fullerene. Appl. Phys. Letters. Vol.64, (14), 1797-1799.
31. Hirai, H., Terauchi, M., Tanaka, M., & Kondo, K. (1999). Band gap of essentially fourfold coordinated amorphous diamond synthesized from C60 fullerene. Phys. Rev. B. Vol.60, (9), 6357-6361.

References до розділу 4

1. Kurdyumov, A.V. & Pilyankevich, A.N. (1979). Fazovye prevrashhenija v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Naukova dumka.
2. Sumiya, H., & Irifune, T. (2007). Hardness and deformation microstructures of nano–polycrystalline diamond synthesized from various carbons under high pressure and high temperature. Journal Materials Research. Vol.22, (8), 2345–2351.
3. Britun, V.F., & Kurdjumov, A.V. (2001). Martensitnye prevrashhenija v uglerode i nitride bora [Martensitic transformations in carbon and boron nitride.] Sverhtverdye materialy [Superhard materials]. (2), 3-14.
4. Kurdjumov, A.V., Britun, V.F., Jarosh, V.V., Solonin, Ju.M., Borimchuk, N.I., Zeljavskij, V.B., & Danilenko, A.I. (2011). Udarno volnovoj sintez almaznyh nanovolokon i ih struktura [Shock wave synthesis of diamond nanofibers and their structure]. Sverhtverdye materialy [Superhard materials]. (1), 18-25.
5. Kurdyumov, A.V., Britun, V.F., Khyzhun, O.Yu., Zaulychnyy, V., Bekenev, V.L., Dymarchuk, V.O., & Danilenko, A.I. (2011). Structure of the dense amorphous carbon phase synthesized in a mixture with diamond as a result of shock compression of carbon black. Diamond and Related Mater. Vol.20, 974-979.
6. Danilenko, V.V. (2003). Sintez i spekanie almaza vzryvom [Synthesis and sintering of diamond by explosion]. Jenergoizdat.
7. Drobyshev, V.N., Anan’in, A.V., & Dremin, A.N. (2003). Issledovanie processa sinteza almaza v detonacionnoj volne. [Investigation of the process of diamond synthesis in a detonation wave]. in Fizika impul’snoj obrabotki materialov. (V.V.Sobolev, Ed.). (pp. 45-70). ART–PRESS.
8. Vyrovec, I.I., Gricyna, V.I., Dudnik, S.F., Opalev, O.A., Reshetnjak, E.N., & Strel’nickij, V.E. (2010). Nanoristallicheskie almaznye CVD–plenki: struktura, svojstva i perspektivy primenenija [Nanocrystalline diamond CVD films: structure, properties and application prospects]. Fizicheskaja inzhenerija poverhnosti [Physical engineering of the surface]. Vol.8, (1), 4-19.
9. Gracio, J.J., Fan, Q.H, & Madalena, J.C. (2010). Diamond growth by chemical vapour deposition. Journal of Physics D: Appl. Phys. Vol.43, (37), article id. 374017. (HAL–archives 00597830).
10. Alexander, H. (1906). Dislocations in Covalent Crystals. in Dislocations in Solids. (F.R.N.Nabarro, Ed.). (Vol.8, c. 35, pp.115–234). Elsevier Science Publishers.
11. Hirt, Dzh., & Lote, I. (1972). Teorija dislokacij [Dislocation theory]. Atomizdat.
12. Alexander, H., Haasen, P. (1968). Dislocation and plastic flow in the diamond structure. Journal of Physics C Solid State Physics. Vol 22, 1–27.
13. Amelinckx, S. (1979). Dislocations in particular structures. in Dislocations in Solids. (F.R.N.Nabarro, Ed.). (Vol.2, pp. 67-460) Elsevier Science.
14. Piljankevich, A.N., Britun, V.F., Olejnik, G.S., & Kotko, V.A. (1989). Jelektronnomikroskopicheskoe issledovanie substruktury deformacii almaza i almazopodobnyh faz nitrida bora i karbida kremnija [Electron microscopic study of the deformation substructure of diamond and diamond-like phases of boron nitride and silicon carbide]. In Jelektronnaja mikroskopija i prochnost’ materialov [Electron microscopy and strength of materials]. (pp. 155-164). IPM AN USSR.
15. Britun, V.F., Olejnik, G.S., & Semenenko, N.P. (1991). Deformacionnye processy, protekajushhie pri spekanii poroshkov almaza v uslovijah vysokih davlenij (soobshhenie 1) [Deformation processes occurring during sintering of diamond powders under conditions of high pressures (communication 1)]. Sverhtverdye materialy [Superhard materials]. (3), 5-10.
16. Britun, V.F., Olejnik, G.S., & Semenenko, N.P. (1991). Deformacionnye processy, protekajushhie pri spekanii poroshkov almaza v uslovijah vysokih davlenij (soobshhenie 2) [Deformation processes occurring during sintering of diamond powders under conditions of high pressures (communication 2)]. Sverhtverdye materialy [Superhard materials]. (4), 3-6.
17. Kovtun, V.I., Britun, V.F., Trefilov, V.I., Piljankevich, A.N., & Karpec, M.V. (1991). Dejstvie slabyh udarnyh voln na poroshki almaza i plotnyh modifikacij nitrida bora [Effect of weak shock waves on diamond powders and dense modifications of boron nitride]. Poroshkovaja metallurgija [Powder metallurgy]. (7), 79-83.
18. Britun, V.F., Oleynik, G.S., & Semenenko, N.P. (1992). Deformation processes during high–pressure sintering of the diamond powders prodused by catalytic synthesis. Journal of materials science. Vol.27, 4472–4476.
19. Kostikova, K.P., Alehin, V.P., & Britun, V.F. (1990). Jelektronnomikroskopicheskoe issledovanie obrazovanija i dvizhenija dislokacij v SiC v oblasti hrupkogo razrushenija [Electron microscopic study of the formation and motion of dislocations in SiC in the region of brittle fracture]. Metallofizika [Metal Physics]. Vol. 12, (3), 111-114.
20. Ergun, S., & Alexander, L.E. (1962). Crystalline forms of carbon: a possible hexagonal polymorph of diamond. Nature. Vol.195, (4843), 765–767.
21. Frondel, C., & Marvin, U.B. (1967). Lonsdaleite a hexagonal polymarth of diamond. Nature. Vol.214, (5088), 687–689.
22. Hanneman, R.E., Strong, H.M., & Bundy, F.P. (1967). Hexagonal diamonds in meteorites. Science. Vol.155, (3755), 965–967.
23. Bundy, F.P., & Kasper, I.S. (1967). Hexagonal diamond – a new form of carbon. Journal Chem.Phys. Vol.46, (9), 3437–3446.
24. Lonsdale, K. (1971). Formation of lonsdaleit from single–crystal of graphite. The Amer.Mineralogist. Vol.56. 333–336.
25. Kurdjumov, A.V., Ostrovskaja, N.F., Golubev, A.S. (1989). Mehanizm obrazovanija, stabil’nost’ i real’naja struktura lonsdejlita [Mechanism of formation, stability and real structure of lonsdaleite]. Sverhtverdye materialy [Superhard materials]. (4), 17-25.
26. Kurdjumov, A.V., Slesarev, V.N., Ostrovskaja, N.F., Golubev, A.S., Dubickij, G.A., & Pilipenko, V.A. (1980). Osobennosti struktury i mehanizm obrazovanija lonsdejlita [Features of the structure and mechanism of formation of lonsdaleite]. DAN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.255, (6), 1382-1385.
27. Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2003). Strukturnye osobennosti zarozhdenija plotnyh faz pri szhatii geksagonal’nogo grafita [Structural features of the nucleation of dense phases during compression of hexagonal graphite]. Sverhtverdye materialy [Superhard materials]. (5), 11-18.
28. Danilenko, V.M., & Kurdjumov, A.V. (1983). Intensivnost’ linij na rentgenogrammah lonsdejlita s odnomerno razuporjadochennoj strukturoj [Intensity of lines in X-ray diffraction patterns of lonsdaleite with a one-dimensionally disordered structure]. Sverhtverdye materialy [Superhard materials]. (2), 6-11.
29. Uorren, B. (1963). Rentgenograficheskoe izuchenie deformirovannyh metallov [X-ray study of deformed metals]. in Uspehi fiziki metallov [Advances in metal physics]. (Vol.5, pp. 172-237). Metallurgija. [Metallurgy].
30. Gosk, J.B. (2001). Investigation of One–Dimensionally Disordered Structures of A2B6 Crystals by Monte Carlo Technique. 2H Structure with Different Kinds of Faults. Cryst. Res.Technol. Vol.36, (2), 197–213.
31. Kurdjumov, A.V., Britun, V.F., Jarosh, V.V., Danilenko, A.I., & Zeljavskij, V.B. (2012). Vlijanie uslovij udarnogo szhatija na prevrashhenija grafita v lonsdejlit i almaz [Effect of shock compression conditions on the transformation of graphite into lonsdaleite and diamond]. Sverhtverdye materialy [Superhard materials]. (1), 27-37.
32. Riter, I.R. (1970). Interpretation of diamond and graphite compressibility data using molecular force constants. Journal Chem.Phys. Vol.52, (10), 5008–5012.
33. Kurdjumov, A.V., & Ostrovskaja, N.F. (1992). Mehanizmy obrazovanija sverhtverdyh faz ugleroda i nitrida bora pri vysokih davlenijah [Mechanisms of formation of superhard phases of carbon and boron nitride at high pressures]. Fizika i tehnika vysokih davlenij [Physics and technology of high pressures]. Vol.2, (3), 5-18.
34. Kurdjumov, A.V. & Borimchuk, N.I. (1987). Mehanizm prevrashhenija rombojedricheskogo grafita v almaz [The mechanism of transformation of rhombohedral graphite into diamond]. DAN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.297, (3), 602-604.
35. Britun, V.F. (2002). Strukturnye osobennosti martensitnyh prevrashhenij grafita v lonsdejlit i almaz [Structural features of martensitic transformations of graphite into lonsdaleite and diamond]. Sverhtverdye materialy [Superhard materials]. (2), 32–37.
36. Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2003). Dislokacionnaja model’ bezdiffuzionnogo zarozhdenija geksagonal’nogo i kubicheskogo almaza [Dislocation model of diffusionless nucleation of hexagonal and cubic diamond.] Doklady NAN Ukrainy [Reports of the National Academy of Sciences of Ukraine]. (9), 102–107.
37. Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2004). Bezdiffuzionnoe zarozhdenie lonsdejlita i almaza v geksagonal’nom grafite pri staticheskom szhatii [Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression]. Poroshkovaja metallurgija [Powder metallurgy]. (1/2), 99–107.
38. Solov’ev, V.A. (1976). Mehanizmy obrazovanija novoj fazy na defektah upakovki. Kineticheskie tipy ih dejstvija [Mechanisms of new phase formation at stacking faults. Kinetic types of their action]. Fizika metallov i metallovedenie [Physics of metals and metallurgy]. Vol.41, (5), 942–950.
39. Dubickij, G.A., Golubev, A.S., Slesarev, V.N., & Plotjanskaja, S.A. (1981). Fazovye prevrashhenija lonsdejlita pri vysokih staticheskih davlenijah i temperaturah [Phase transformations of lonsdaleite at high static pressures and temperatures]. In Issledovanie i primenenie sverhtverdyh i tugoplavkih materialov [Research and application of superhard and refractory materials]. (pp. 23-25). ISM AN Ukrainy.
40. Britun, V.F., & Kurdyumov, A.V. (1999). Crystal defect generation during diffusionless transformations of boron nitride by puckering mechanism. Journal of Materials Science. Vol.34, 5677– 5680.
41. Kurdjumov, A.V., Malogolovec, V.G., Novikov, N.V., Piljankevich, A.N., & Shul’man, L. A. (1994). Polimorfnye modifikacii ugleroda i nitrida bora. Spravochnik [Polymorphic modifications of carbon and boron nitride. Directory]. (N.V.Novikov, Ed). Metallurgija.
42. Bundy, F.P. (1980). The P,T phase and reaction diagram for elemental carbon. Journal Geophys.Res.B. Vol.85, (12), 6930–6936.
43. Kurdjumov, A.V., & Britun, V.F. (2013) Strukturno–kineticheskie osobennosti prevrashhenij v uglerode pri udarnom szhatii [Structural and kinetic features of transformations in carbon under shock compression]. In Fiziko–tehnicheskie problemy sovremennogo materialovedenija [Physical and technical problems of modern materials science]. (I.K. Pohodnja, Ed.). (Vol.2, pp. 283–299). Akademperiodika.
44. Britun, V.F., & Kurdjumov, A.V. (2001). Analiz vlijanija uslovij szhatija na martensitnye prevrashhenija grafita v lonsdejlit i almaz [Analysis of the effect of compression conditions on martensitic transformations of graphite into lonsdaleite and diamond]. Fizika i tehnika vysokih davlenij [Physics and technology of high pressures]. Vol.11, (3), 34–42.
45. Britun, V.F., & Kurdjumov, A.V. (2002.) Analiz vlijanija negidrostatichnosti uslovij szhatija na prjamye fazovye prevrashhenija v uglerode [Analysis of the effect of non-hydrostatic compression conditions on direct phase transformations in carbon]. Poroshkovaja metallurgija [Powder metallurgy]. (7/8), 92–99.
46. Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2003). Vlijanie uslovij nagruzhenija na prjamye fazovye prevrashhenija v nitride bora pri vysokih davlenijah [Influence of loading conditions on direct phase transformations in boron nitride at high pressures]. Fizika i tehnika vysokih davlenij [Physics and technology of high pressures]. Vol.13, (3), 11–17.
47. Britun, V.F., & Kurdjumov, A.V. (2004). Analiz uslovij razvitija atermicheskih prevrashhenij v uglerode i nitride bora [Analysis of conditions for the development of athermal transformations in carbon and boron nitride]. Fizika i tehnika vysokih davlenij [Physics and technology of high pressures]. Vol.14, (2), 101–108.
48. Vereshhagin, L.F., Jakovlev, E.N., Buchnev, L.M., & Dymov, B.K. (1977). Uslovija termodinamicheskogo ravnovesija almaza s razlichnymi uglerodnymi materialami [Conditions of thermodynamic equilibrium of diamond with various carbon materials]. Teplofizika vysokih temperatur [Thermophysics of high temperatures]. Vol.15, (2), 316–321.
49. Fahy, S., Lauie, S., & Cohen, M.L. (1987). Theoretical total–energy of the transformation of graphite into hexagonal diamond. Physical Rev. B. Vol.35, (14), 7623–7626.
50. Majer, K. (1972). Fiziko – himicheskaja kristallografija [Physico-chemical crystallography]. Nauka.
51. Rojtburd, A.L. (1983). Modificirovannoe uravnenie Klapejrona – Klauziusa dlja gisterezisa fazovyh prevrashhenij v tverdyh telah [Modified Clausius-Clapeyron equation for the hysteresis of phase transformations in solids]. Fizika tverdogo tela [Solid state physics]. Vol.25, (1), 33–40.
52. Shulepov, S.V. (1972). Fizika uglegrafitovyh materialov [Physics of carbon-graphite materials]. Metallurgija.
53. Shul’man, L.A. (1984). Debaevskie temperatury lonsdejlita i vjurcitnoj modifikacii nitrida bora [Debye temperatures of lonsdaleite and wurtzite modification of boron nitride]. Sverhtverdye materialy [Superhard materials]. (4), 30–33.
54. Naj, Dzh. (1967). Fizicheskie svojstva kristallov [Physical properties of crystals]. Mir.
55. Lynch, R.W., & Drickamer, H.G. (1966). Effect of High Pressure on the Lattice Parameters of Diamond, Graphite and Hexagonal Boron Nitride. Journal of Chem. Phys. Vol.44, (1), 181–184.
56. Kristian, Dzh. (1978). Teorija prevrashhenij v metallah i splavah [Theory of transformations in metals and alloys] Vol.1, Mir.
57. Kurdjumov, A.V., Ostrovskaja, N.F., & Piljankevich, A.N. (1988). Real’naja struktura almazov dinamicheskogo sinteza [The real structure of dynamic synthesis diamonds]. Poroshkovaja metallurgija [Powder metallurgy]. (1), 34-40.
58. Kurdjumov, A.V., Britun, V.F., Jarosh, V.V., & Danilenko, A.I. (2012). Vlijanie strukturnogo sostojanija uglegrafitovyh materialov na ih fazovye prevrashhenija pri ularnom szhatii [Influence of the structural state of carbon-graphite materials on their phase transformations under ular compression]. Poroshkovaja metallurgija [Powder metallurgy]. (11/12), 151-161.
59. Kurdjumov, A.V., & Britun, V.F. (2018). Udarno–volnovoj sintez nanostrukturnyh sverhtverdyh i tugoplavkih faz [Shock-wave synthesis of nanostructured superhard and refractory phases]. In Fіziko–tehnіchnі problemi suchasnogo materіaloznavstva [Physical and technical problems of modern material science]. (pp. 219-241). Akademperіodika.
60. Britun, V.F., & Kurdjumov, A.V. (1999). Vlijanie dispersnosti i razuporjadochennosti grafitopodobnyh struktur na ih martensitnye prevrashhenija pri vysokih davlenijah [Effect of dispersion and disorder of graphite-like structures on their martensitic transformations at high pressures]. Poroshkovaja metallurgija [Powder metallurgy]. (3/4), 96-102.
61. Fahy, S., Louie, S.G., & Cohen, M.L. (1986). Pseudopotential total energy study of the transition from rhombohedral graphite to diamond. Physical Review B. Vol.34, (2), 1191–1199.
62. Wentzcovitch, R.M., Fahy, S., Cohen, M.L., & Louie, S.G. (1988). Ab initio study of graphite–diaminod–like transition in BN. Physical Review B. Vol.38, (9), 6191–6195.
63. Zhu, Y.Q., Sekine, T., Kobayashi, T., Takazawa, E., Terrones, M., & Terrones, H. (1998). Collapsing carbon nanotubes and diamond formation under shock waves. Chemical Phys. Letters. Vol.287, (5/6), 689–693.
64. Drennov, O.B., Osipov, R.S., Plaksin, I.E., & Serova, T.E. (1998). Patent Rossijskoj Federacii №2122050. Sposob poluchenija iskusstvennyh almazov. [Patent R.F. No. 2122050. Method for obtaining artificial diamonds]. Zajavka [Request from] 11.02.97. Opublikovan [Publication] 20.11.1998.
65. Britun, V.F., Kurdjumov, A.V., Solonin, Ju.M., & Jarosh, V.V. (2009). Ispol’zovanie metoda vysokotemperaturnogo udarnogo szhatija dlja sinteza almaznyh nanovolokon [Using the high-temperature shock compression method for the synthesis of diamond nanofibers]. Dopovіdі NAN Ukraїni [Reports of the National Academy of Sciences of Ukraine]. (11), 86-90.
66. Borimchuk, N.I., Kurdjumov, A.V., & Jarosh, V.V.(1991, 5-12 avgust). Zakonomernosti obrazovanija plotnyh modifikacij ugleroda i nitrida bora v uslovijah udarnogo szhatija [Patterns of formation of dense modifications of carbon and boron nitride under conditions of shock compression]. Мaterialy 5-gо Vsesojuznogo soveshhanija po detonacii (sbornik dokladov) [Materials of the V All-Union Conference on Detonation (collection of reports)]. Krasnojarsk (Vol.1, pp.43-47). KrGPI.
67. Jong, K.P., & Geus, J.W. (2000). Carbon nanofibers: Catalytic synthesis and Applications. Catalysis Reviews – Science and Engineering. Vol.42, (4), 481–510.
68. Franklin, R.E. (1951). The structure of graphitic carbons. Acta Crystallography. Vol.4, (2), 253–261.
69. Kurdjumov, A.V. (1972). Rentgenograficheskoe issledovanie defektov upakovki sloev v grafitovyh strukturah [X-Ray Study of Stacking Faults in Graphite Structures]. Kristallografija [Crystallography]. Vol.17, (3), 620-625.

References до розділу 5

1. Nelson, J.B., & Rilay, D.P. (1945). Thermal expansion of graphite from 15 to 800oC. Proc. Phys. Soc. Vol.57, (324), 477-495.
2. Kurdymov, A.V., Solozhenko, V.L., & Zelyavski, W.B. (1995). Lattice Parameters of Boron Nitride Polymorphous Modifications as Function of their Crystal Structure Perfection. Journal Appl. Cryst. Vol.28, 540-545.
3. Bosak, A., Krisch, M., Mohr, M., Maultzsch, J., & Thomsen, C. (2007). Elasticity of single-crystalline graphite: Inelastic x-ray scattering study. Physical Review B. Vol.75, (15), 53408-1-153408-4.
4. Bosak, A., Serrano, J., Krisch, M., Watanable, K., Taniguchi, T., & Kanda ,H. (2006). Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements. Physical Review B. Vol.73, (4), 041402-1-041402-4.
5. Abdullaev, N.A. (2006). Osobennosti uprugih svojstv sloistyh kristallov [Peculiarities of elastic properties of layered crystals]. Fizika tverdogo tela [Solid state physics]. Vol.48, (4), 623-629.
6. Nikol’skaja, I.V., Prezman, L. M., & Zorkij, P.M. (1969.) Nekotorye voprosy polimorfnyh prevrashhenij na primere ugleroda i nitrida bora [Some questions of polymorphic transformations on the example of carbon and boron nitride]. Zhurnal fiz. himii [Journal of Physics. chemistry]. Vol.43, 2948-2951.
7. Danilenko, V.M., Kurdjumov, A.V., & Mejke, A.V. (1981). Jenergija mezhsloevogo vzaimodejstvija i otnositel’naja stabil’nost’ promezhutochnyh struktur grafitopodobnogo nitrida bora [Interlayer interaction energy and relative stability of intermediate structures of graphite-like boron nitride]. Kristallografija [Crystallography]. Vol.26, (2), 337-340.
8. Danilenko, V.M., Kurdjumov, A.V., & Mejke, A.V. (1985). Mezhsloevoe vzaimodejstvie v grafitnyh strukturah [Interlayer interaction in graphite structures]. DAN USSR Serija A [DAN Ukrainian SSR. Serie A]. (3), 42-45.
9. Green, J.F., Bolland, T.K., & Rojjand, J.W. (1976). Theoretical elastic behavior for hexagonal boron nitride. Journal Chem. Phys. Vol.64, (2), 656-661.
10. Kurdjumov, A.V., Britun, V.F., Borimchuk, N.I., & Jarosh, V.V. (2005). Martensitnye i diffuzionnye prevrashhenija v uglerode i nitride bora pri udarnom szhatii [Martensitic and diffusion transformations in carbon and boron nitride under shock compression]. Izdatel’stvo Kuprijanova.
11. Hsing, Ch.R., Cheng, Ch., Chou, J.P., Chang, C.M., Wei, C. (2014). Van der Waals interaction in a boron nitride bilayer. New Journal of Physics. Vol.16. 113015.
12. Kurdjumov, A.V. (1975). O defektah upakovki v grafitopodobnom nitride bora [On stacking faults in graphite-like boron nitride] Kristallografija [Crystallography]. Vol.20, (5), 969-973.
13. Kurdjumov, A.V., Zeljavskij, V.B., & Ostrovskaja, N.F. (1994). Osobennosti real’noj struktury grafitopodobnogo BN i ego prevrashhenija v vjurcitnuju modifikaciju pri udarnom szhatii [Features of the real structure of graphite-like BN and its transformation into a wurtzite modification under shock compression]. Poroshkovaja metallurgija [Powder metallurgy]. (9/10), 62-66.
14. Franklin, R.E. (1951). The structure of graphitic carbons. Acta. Crystallogr. Vol.4, (2), 253-261.
15. Kurdjumov, A.V., Britun, V.F., Garbuz, V.V., Tomila, T.V., Jarosh, V.V., Ljashenko, V.I., & Zeljavskij, V.B. (2009). O primesjah v nanokristallicheskih poroshkah grafitopodobnogo nitrida bora i ih roli v processe faz ovyh prevrashhenij pri udarnom szhatii [On impurities in nanocrystalline powders of graphite-like boron nitride and their role in the process of phase transformations under shock compression]. Nanostrukturnoe materialovedenie [Nanostructural materials science]. (2), 25-32.
16. Kurdjumov, A.V., & Britun, V.F. (2010). Turbostratnyj nitrid bora: osobennosti struktury i fazovyh prevrashhenij [Turbostratic boron nitride: features of the structure and phase transformations]. Nanostrukturnoe materialovedenie [Nanostructural materials science]. (1), 3-8.
17. Kurdyumov, A.V. & Pilyankevich, A.N. (1979). Fazovye prevrashhenija v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Naukova dumka.
18. Samsonov, G.V. (1969). Nemetallicheskie nitridy [Non-metallic nitrides]. Metallurgija.
19. Britun, V.F., Kurdjumov, A.V., Borimchuk, N.I., & Jarosh, V.V. (2005). Razvitie metoda vysokotemperaturnogo udarnogo szhatija poroshkovyh smesej dlja poluchenija kubicheskogo nitrida bora [Development of the method of high-temperature shock compression of powder mixtures for the production of cubic boron nitride]. Poroshkovaja metallurgija [Powder metallurgy]. (7/8), 107-118.
20. Suniya, H., Tseki, T., & Onodera, A. (1983). High pressure synthesis of cubic boron nitride from amorphous state. Mat.Res.Bull. Vol.18, (10), 1203-1207.
21. Taniguchi, T., Kimoto, K., Tansho, M., Horiuchi, S., & Yamaoka, S. (2003). Phase Transformation of Amorphous Boron Nitride under High Pressure. Chemistry of Materials. Vol.15, (14), 2744-2751.
22. Bundy, F.P. (1963). Direct conversion of graphite to diamond in static pressure apparatus. Journal Chem. Phys. Vol.38, (3), 631-643.
23. Bundy, F.P., & Wentorf, R.H.Jr. (1963) Direct transformations of hexagonal boron nitride to denser forms. Journal Chem. Phys. Vol.38, (5), 1144-1149.
24. Berman, R., & Simon, F. (1955). On the graphite-diamond equilibrium. Z. Electrochem. Vol.59, (2), 333-338.
25. Bundy, F.P. (1963). Melting of graphite at very high pressure. Journal Chem. Phys. Vol.38, (3), 618-630.
26. Wentorf, R.H.Jr. (1959). Condensed systems at high pressures and temperatures. Journal Phys. Chem. Vol.63, (5), 1434-1440.
27. Bundy, F.P., Bassett, W.A., Weathers, M.S. Hemley, R., Mao, H., & Goncharov, A. (1996). The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon. Vol.34, (2), 141-153.
28. Fel’dgun, L.I., & Davidenko, V.B. (1975). Termodinamicheskij raschet krivoj ravnovesija geksagonal’nyj nitrida bora – kubicheskij nitrid bora [Thermodynamic calculation of the equilibrium curve of hexagonal boron nitride – cubic boron nitride]. Abrazivy [Abrasives]. (12), 1-5.
29. Sirota, N.N., & Kofman, N.A. (1979). Polimorfnoe α→β-prevrashhenie nitrida bora [Polymorphic α→β-transformation of boron nitride]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.249, (6), 1346-1348.
30. Wentorf, R.H. Jr. (1961). Synthesis of the cubic form of boron nitride. Journal Chem. Phys. Vol.34, (3), 809-812.
31. Fel’dgun, L.I., & Krylov, V.N. (1968). Issledovanie krivoj ravnovesija geksagonal’nyj nitrida bora – kubicheskij nitrid bora [Study of the equilibrium curve of hexagonal boron nitride – cubic boron nitride]. Trudy VNIIASh [Proceedings of VNIIASH]. (7), 13-15.
32. Sirota, N.N., & Mazurenko, A.M. (1978). Kinetika prevrashhenija grafitopodobnogo nitrida bora v kubicheskuju modifikaciju [Kinetics of the transformation of graphite-like boron nitride into a cubic modification]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.241, (4), 884-887.
33. Solozhenko, V.L. (1988). O fazovoj diagramme nitrida bora [About the phase diagram of boron nitride]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR]. Vol.301, (1), 147-149.
34. Leonidov, V.Ja., Timofeev, I.V., Solozhenko, V.L., & Radionov, I.V. (1987). Jental’pija obrazovanija kubicheskogo nitrida bora [Enthalpy of formation of cubic boron nitride]. Zhurnal fiz. himii [Journal of Physics. chemistry]. Vol.61, (10), 2851-2852.
35. Glushko, V.P. (RED). (1981) Termodinamicheskie svojstva individual’nyh veshhestv [Thermodynamic properties of individual substances]. Vol.3, book 2. Nauka.
36. Britun, V.F., Kurdjumov, A.V., Zeljavskij, V.B., & Petrusha, I.A. (2001). Rentgenograficheskoe issledovanie jevoljucii tekstury CVD-BN v processe fazovyh prevrashhenij rombojedricheskoj modifikacii pri vysokih davlenijah i temperaturah [X-ray study of the evolution of the CVD-BN texture during phase transformations of the rhombohedral modification at high pressures and temperatures]. Sverhtverdye materialy [Superhard materials]. (4), 7-14.
37. Britun, V.F., Kurdyumov, A.V., & Petrusha, I.A. (1993). Structural features of boron nitride dense phase formation from rhombohedral modification under high static pressure. Journal of materials science. Vol.28, (24), 6575-6581.
38. Kurdyumov, A.V., Britun, V.F., & Petrusha, I.A. (1996). Structural mechanisms of rhombohedral BN transformations into diamond-like phases. Diamond and related materials. Vol5, (11), 1229-1235.
39. Britun, V.F., Kurdjumov, A.V., & Petrusha, I.A. (2000). Kristalloorientirovannye prevrashhenija BNr – BNg – BNv – BNsf v piroliticheskom BN [Crystal-oriented transformations of BNp – BNg – BNw – BNsf in pyrolytic BN]. Sverhtverdye materialy [Superhard materials]. (2), 3-7.
40. Britun, V.F., & Kurdjumov, A.V (2001). Martensitnye prevrashhenija v uglerode i nitride bora [Martensitic transformations in carbon and boron nitride]. Sverhtverdye materialy [Superhard materials]. (2), 3-14.
41. Britun, V.F., Kurdjumov, A.V., & Danilenko, A.I. (2008). Inversionnye domeny v vjurcitnom nitride bora [Inversion domains in wurtzite boron nitride]. In Jelektronnaja mikroskopija i prochnost’ materialov. Trudy Instituta problem materialovedenija NAN Ukrainy [Electron microscopy and strength of materials. Proceedings of the Institute for Problems in Materials Science of the National Academy of Sciences of Ukraine]. ((15), pp. 114-119).
42. Kurdjumov, A.V., & Britun, V.F. (2008). Udarno-volnovoj sintez nanostrukturnyh sverhtverdyh faz ugleroda i nitrida bora [Shock wave synthesis of nanostructured superhard phases of carbon and boron nitride]. In Aktual’nye problemy sovremennogo materialovedenija [Actual problems of modern materials science]. (Vol.2, pp.287-299). Akademperiodika.
43. Kurdjumov, A.V., & Solozhenko, V.L. (1999). Sintez i struktura trojnyh faz v sisteme B-C-N [Synthesis and structure of triple phases in the B-C-N system]. Sverhtverdye materialy [Superhard materials]. (6), 3-17.
44. Badjan, A., Nemyski, T., Appenhejmer, S., & Ol’kusnik, Je. (1972). Kristallicheskaja struktura v sisteme bor-uglerod-azot [Crystal structure in the boron-carbon-nitrogen system]. In Himicheskaja svjaz’ v poluprovodnikah i polumetallah [Chemical bonding in semiconductors and semimetals] (pp.362-366) Nauka i tehnika. [Science and technology].
45. Kaner, R.B, Kouvetakis, J., Warble, C. R., Sattler, M.L., & Bartlett, N. (1987). Boron-carbon-nitrogen materials of graphite-like structure. Mater. Res. Bull. Vol.22, (3), 399-404.
46. Kawaguchi, M., Kawashima, Т., & Nakajima, Т. (1996). Synthesis and structures of new graphite-like materials of composition BCN(H) and BC3N(H). Chemistry of Materials. Vol.8, 1197-1201.
47. Kouvetakis, J., Sasaki, Т., Shen, C. Hagiwara, R., Lerner, M., Krishnan, K.M., & Bartlett, N. (1989). Novel aspects of graphite intercalation by fluorine and fluorides and new B/N, C/N and B/C/N materials based on the graphite network. Synthetic Metals. Vol.34, 1-7.
48. Hubacek, M., & Sato, T. (1995). Preparation and Properties of a Compound in the B-C-N System. Journal of Solid State Chemistry. Vol.114, 258-264.
49. Nozaki, H., & Itoh, S. (1996.) Structural Stability of BC2N. Journal Phys. Chem. Solids Vol.57, (1).41-49.
50. Liu, A.Y., Wentzcovitch, R.M., & Cohen, M.L. (1989). Atomic arrangement and electronic structure of BC2N. Phys Rev. B. Vol.39, (3), 1760-1765.
51. Nakano, S., Akaishi, M., Sasaki, Т., & Jamaoka, S. (1994). Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7,7 GPa. Chemistry of Materials. Vol.6, 2246-2251.
52. Bando, J., Nakano, S., & Karashima, K. (1996). A new cubic В-С-N compound revealed by high-resolution analytical electron microscopy. Journal Electron Microscopy. Vol.45, (2), 135-142.
53. Komatsu, Т., Nomura, M., Kakudate, J., & Fujiwara, S. (1996). Synthesis and characterization of a shock-synthesized cubic В-N-C solid solution of composition BC2,5N. Journal Mater. Chem. Vol.6, (11), 1799-1803.
54. Solozhenko, V.L. (2002). Synthesis of Novel Superhard Phases in the B-C-N System. High Pressure Research. Vol.22, (3/4), 519-524.
55. Kurdjumov, A.V., Solozhenko, V.L., & Gubachek, M. (2000). Udarno-volnovoj sintez trojnyh almazopodobnyh faz v sisteme B-C-N [Shock-wave synthesis of triple diamond-like phases in the B-C-N system]. Poroshkovaja metallurgija [Powder metallurgy]. (9/10), 53-61.
56. Kurdjumov, A.V., Zeljavskij, V.B., & Ostrovskaja, N.F. (1998). Osobennosti kolichestvennogo rentgenofazovogo analiza poroshkovyh slabopogloshhajushhih ob’ektov s defektnoj strukturoj [Peculiarities of Quantitative X-Ray Phase Analysis of Powder Weakly Absorbing Objects with Defective Structure]. Poroshkovaja metallurgija [Powder metallurgy]. (11/12), 103-109.
57. Tejlor, A. (1965). Rentgenovskaja metallografija [X-ray metallography] Metallurgija.
58. Lambrecht, W. R., & Segall, B. (1993). Anomalous band-gap behavior and phase stability of cBN-diamond alloys. Phys. Rev. B. Vol.47, 9289-9296.
59. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., & Zettl, A. (1995). Boron Nitride Nanotubes. Science. Vol.269, (5226), 966-967.
60. Deepak, F.L., Vinod, C.P., Mukhopadhyay, K., Govindaraj, A., & Rao, CNR. (2002). Boron nitride nanotubes and nanowires. Chemical Physics letters. Vol.353, (5/6), 345-352.
61. Loiseau, A., Willaime, F., Demoncy, N., Schremonenko, N., & Hug, G. (1998). Boron Nitride Nanotubes. Carbon. Vol.36, (5/6), 743-752.
62. Takanori, T.O., Kuno, H.M., Koichi, T.K., & Suganuma, N.K. (2000). Synthesis, atomic structure and properties of carbon and boron nitride fullerene materials. Materials Science and Engineering B. Vol.74, (1/3), 206-217.
63. Golberg, D., Bando, Y., Stephan, O., & Kurashima, K. (1998). Octahedral boron nitride fullerenes formed by electron beam irradiation. Applied Physics Letters. Vol.73, (17), 2441-2443.
64. Pokropivnyj, V.V., & Ivanovskij, A.L. (2008). Novye formy ugleroda i nitrida bora [New forms of carbon and boron nitride]. Uspehi himii [Advances in chemistry]. Vol.77, (10), 899-937.
65. Pokropivny, V.V., Skorokhod, V.V., Kurdyumov, A.V., Oleinik, G.S., Bartnitskaya, T.S., Pokropivny, A.V., Sisonyuk, A.G., & Sheichenko, D.M. (2000). Boron Nitride Analogs of Fullerenes (the Fulborenes), Nanotubes and Fullerites (the Fulborenites). Journal of Solid State Chemistry. Vol.154, (1), 214-222.

References до розділу 6

1. Kurdjumov, A.V., Zeljavskij, V.B., & Gromyko, S.N. (1998). Precizionnoe opredelenie parametrov reshetki v polimorfnyh modifikacijah nitrida bora [Precise determination of lattice parameters in polymorphic modifications of boron nitride]. Poroshkovaja metallurgija [Powder metallurgy]. (5/6), 100-105.
2. Kurdjumov, A.V., Zeljavskij, V.B., & Ostrovskaja, N.F. (1998). Osobennosti kolichestvennogo rentgenofazovogo analiza poroshkovyh slabopogloshhajushhih ob’ektov s defektnoj strukturoj [Peculiarities of Quantitative X-Ray Phase Analysis of Powder Weakly Absorbing Objects with Defective Structure]. Poroshkovaja metallurgija [Powder metallurgy]. (11/12), 103-109.
3. Kurdjumov, A.V. (2000). Osobennosti rentgenovskih difraktogramm slabopogloshhajushhih ob#ektov pri s#emkah na otrazhenie [Peculiarities of X-ray diffraction patterns of weakly absorbing objects in reflection surveys]. Kristallografija [Crystallography]. Vol.45, (2), 199-201.
4. Hejker, D.M., & Zevin, A.S. (1963). Rentgenovskaja difraktometrija [X-ray diffractometry]. Fizmatgiz,
5. Kurdyumov, A.V., Solozhenko, V.L., & Zelyavski,V.B. (1995). Lattice Parameters of Boron Nitride Polymorphous Modifications as a Function of their Crystal-Structure Perfection. Jounal Appl.Cryst. Vol.28, 540-545.
6. Tejlor, A. (1965). Rentgenovskaja metallografija [X-ray metallography]. Metallurgija.
7. Rusakov, A.A. (1977). Rentgenografija metallov [Radiography of metals]. Atomizdat.
8. Brindli, N.I. (1965). Kolichestvennyj analiz smesej glinistyh mineralov [Quantitative analysis of mixtures of clay minerals]. In Rentgenovskie metody issledovanija struktury glinistyh mineralov [X-ray methods for studying the structure of clay minerals] (pp. 553-579. Mir.
9. Kurdyumov, A.V. & Pilyankevich, A.N. (1979). Fazovye prevrashhenija v uglerode i nitride bora [Phase transformations in carbon and boron nitride]. Naukova dumka.
10. Borimchuk, N.I., Kurdjumov, A.V., & Jarosh, V.V.(1991, 5-12 avgust) Zakonomernosti obrazovanija plotnyh modifikacij ugleroda i nitrida bora v uslovijah udarnogo szhatija [Patterns of formation of dense modifications of carbon and boron nitride under conditions of shock compression]. Мaterialy 5-gо Vsesojuznogo soveshhanija po detonacii (sbornik dokladov) [Materials of the V All-Union Conference on Detonation (collection of reports)]. Krasnojarsk (Vol.1, pp.43-47). KrGPI.
11. Warren, B.E. (1941). Diffraction in random layer lattices. Phys. Rev. Vol.59, (9), 693-698.
12. Kurdjumov, A.V. (1995). Strukturnyj aspekt sinteza sverhtverdyh faz pri vysokih davlenijah [Structural aspect of the synthesis of superhard phases at high pressures]. Poroshkovaja metallurgija [Powder metallurgy]. (7/8), 83-92.

References до додатку

1. Kurdjumov, A.V., Britun, V.F., Borimchuk, N.I., & Jarosh, V.V. (2005). Martensitnye i diffuzionnye prevrashhenija v uglerode i nitride bora pri udarnom szhatii [Martensitic and diffusion transformations in carbon and boron nitride under shock compression]. Izdatel’stvo Kuprijanova.

 

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top