Ed. V. Shulga
Affiliation:
Project: Ukrainian scientific book in a foreign language
Year: 2014
Publisher: PH “Akademperiodyka”
Pages: 356
DOI:
http://doi.org/10.15407/akademperiodyka.253.356
ISBN: 978-966-360-239-4; 978-966-360-253-0
Language: English
How to Cite:
Abstract:
Keywords:
References:
1. E. Agol, B. Jones, O. Blaes, Keck Mid-Infrared imaging of QSO 2237 + 0305, Astrophys. J. 545 (2000), 657-663. https://doi.org/10.1086/317847
2. E. Agol, S.M. Gogarten, V. Gorjian, A. Kimball, Spitzer observations of a gravitationally lensed quasar, QSO 2237 + 0305, Astrophys. J. 697 (2009), 1010- 1019. https://doi.org/10.1088/0004-637X/697/2/1010
3. D. Alcalde, E. Mediavilla, O. Moreau, J.A. Munoz, C. Libbrecht, L.J. Goicoechea, J. Surdej, E. Puga, Y. De Rop, R. Barrena, R. Gil-Merino, B.A. McLeod, V. Motta, A. Oscoz, M. Serra-Ricart, QSO 2237 + 0305 VR light curves from gravitational LensES international time project optical monitoring, Astrophys. J. 572 (2002), 729-734. https://doi.org/10.1086/340343
4. T. Anguita, R.W. Schmidt, E.L. Turner, J. Wambsganss, R.L. Webster, K.A. Loomis, D. Long, R. McMillan, The multiple quasar Q 2237 + 0305 under a microlensing caustic, Astron. Astrophys. 480 (2008), 327-334. https://doi.org/10.1051/0004-6361:20078221
5. T. Anguita, C. Faure, A. Yonehara, J. Wambsganss, J. Kneib, G. Covone, D. Alloin, Integral field spectroscopy of four lensed quasars: analysis of their neighborhood and evidence for microlensing, Astron. Astrophys. 481 (2008), 615-627. https://doi.org/10.1051/0004-6361:20077306
6. R. Antonucci, Unified models for active galactic nuclei and quasars, Ann. Rev. Astron. Astrophys. 31 (1993), 473-521. https://doi.org/10.1146/annurev.aa.31.090193.002353
7. R. Barkana, Analysis of time delays in the gravitational lens PG 1115+ 080, Astrophys. J. 489 (1997), 21-28. https://doi.org/10.1086/304766
8. N. Bate, R. Webster, J. Wyithe, Smooth matter and source size in microlensing simulations of gravitationally lensed quasars, Mon. Not. R. Astron. Soc. 381 (4) (2007), 1591-1596. https://doi.org/10.1111/j.1365-2966.2007.12330.x
9. R. Blandford, R. Narayan, Fermat’s principle, caustics, and the classification of gravitational lens images, Astrophys. J. 310 (1986), 568-582. https://doi.org/10.1086/164709
10. P. Bliokh, A. Minakov, Gravitational lenses (Kiev, Naukova Dumka, 1989), (in Russian).
11. M. Bradaˇc, P. Schneider, M. Steinmetz, M. Lombardi, L.J. King, R. Porcas, B 1422 + 231: The influence of mass substructure on strong lensing, Astron. Astrophys. 388 (2002), 373-382. https://doi.org/10.1051/0004-6361:20020559
12. I. Burud, R. Stabell, P. Magain, F. Courbin, R. Ostensen, S. Refsdal, M. Remy, J. Teuber, Three photometric methods tested on ground-based data of Q 2237 + 0305, Astron. Astrophys. 339 (1998), 701-708.
13. D. Chelouche, Gravitational microlensing and the structure of quasar outflows, Astrophys. J. 629 (2005), 667-672.https://doi.org/10.1086/430900
14. A. Chernin, Dark energy and universal antigravitation, Phys. Usp. 51 (3) (2008), 253-282. https://doi.org/10.1070/PU2008v051n03ABEH006320
15. M. Chiba, Probing dark matter substructure in lens galaxies, Astrophys. J. 565 (2002), 17-23. https://doi.org/10.1086/324493
16. M. Chiba, Deciphering cold dark matter substructure with subaru, Astronomical Herald 98 (2005), 783-789.
17. C.A. Christian, D. Crabtree, P. Waddell, Detection of the lensing galaxy in PG 1115 + 080, Astrophys. J. 312 (1987), 45-49. https://doi.org/10.1086/164847
18. D. Clowe, M. Bradaˇc, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. Let. 648 (2006), L109-L113. https://doi.org/10.1086/508162
19. A.B. Congdon, C.R. Keeton, Multipole models of four-image gravitational lenses with anomalous flux ratios, Mon. Not. R. Astron. Soc. 364 (2005), 1459-1466.https://doi.org/10.1111/j.1365-2966.2005.09699.
20. A.B. Congdon, C.R. Keeton, S.J. Osmer, Microlensing of an extended source by a power-law mass distribution, Mon. Not. R. Astron. Soc. 376 (2007), 263-272. https://doi.org/10.1111/j.1365-2966.2007.11426.x
21. J.H. Cooke, R. Kantowski, Time delay for multiply imaged quasars, Astrophys. J. Let. 195 (1975), L11-L14. https://doi.org/10.1086/181697
22. R.T. Corrigan, M.J. Irwin, J. Arnaud, G.G. Fahlman, J.M. Fletcher, P.C. Hewett, J.N. Hewitt, O. Le Fevre, R. McClure, C.J. Pritchet, D.P. Schneider, E.L. Turner, R.L. Webster, H.K.C. Yee, Initial light curve of Q 2237 + 0305, Astron. J. 102 (1991), 34-40. https://doi.org/10.1086/115856
23. F. Courbin, P. Magain, C. R. Keeton, C.S. Kochanek, C. Vanderriest, A.O. Jaunsen, J. Hjorth, The geometry of the quadruply imaged quasar PG 1115 + 080: implications for H0, Astron. Astrophys. 324 (1997), L1-L4.
24. X. Dai, G. Chartas, G.P. Garmire, M.W. Bautz, Chandra observations of the gravitational lenses PG 1115 + 080 and APM 08279 + 5255; determination of a time-delay and constraints on H0, in: American Astronomical Society, 199th AAS Meeting; Bulletin of the American Astronomical Society, 33 (2001), 1334.
25. N. Dalal, C.S. Kochanek, Direct detection of cold dark matter substructure, Astrophys. J. 572 (2002), 25-33https://doi.org/10.1086/340303
26. W.H. de Vries, R.H. Becker, R.L. White, C. Loomis, Structure function analysis of long-term quasar variability, Astron. J. 129 (2005) 615-629.https://doi.org/10.1086/427393
27. A. Eigenbrod, F. Courbin, G. Meylan, E. Agol, T. Anguita, R.W. Schmidt, J. Wambsganss, Microlensing variability in the gravitationally lensed quasar QSO 2237 + 0305: the einstein cross II. energy profile of the accretion disk, Astron. Astrophys. 490 (2008), 933-943. https://doi.org/10.1051/0004-6361:200810729
28. A. Eigenbrod, F. Courbin, D. Sluse, G. Meylan, E. Agol, Microlensing variability in the gravitationally lensed quasar QSO 2237 + 0305: the einstein cross I. spectrophotometric monitoring with the VLT, Astron. Astrophys. 480 (2008), 647-661. https://doi.org/10.1051/0004-6361:20078703
29. M. Elvis, A structure for quasars, Astrophys. J. 545 (2000), 63-76. https://doi.org/10.1086/317778
30. M.V. Gorenstein, I.I. Shapiro, E.E. Falco, Degeneracies in parameter estimates for models of gravitational lens systems, Astrophys. J. 327 (1988), 693-711. https://doi.org/10.1086/166226
31. E.E. Falco, J. Lehar, R.A. Perley, J. Wambsganss, M.V. Gorenstein, VLA observations of the gravitational lens system Q 2237 + 0305, Astron. J. 112 (1996), 897-901. https://doi.org/10.1086/118062
32. W.L. Freedman, B.F. Madore, B.K. Gibson, L. Ferrarese, D.D. Kelson, S. Sakai, J.R. Mould, R.C. Kennicutt, H.C. Ford, J.A. Graham, J.P. Huchra, S.M.G. Hughes, G.D. Illingworth, L.M. Macri, P.B. Stetson, Final results from the hubble space telescope key project to measure the hubble constant, Astrophys. J. 553 (2001), 47-72. https://doi.org/10.1086/320638
33. R. Gil-Merino, J. Gonz’alez-Cadelo, L.J. Goicoechea, V.N. Shalyapin, G.F. Lewis, Is there a caustic crossing in the lensed quasar Q 2237 + 0305 observational data record?, Mon. Not. R. Astron. Soc. 371 (2006) 1478-1482. https://doi.org/10.1111/j.1365-2966.2006.10782.x
34. U. Giveon, D. Maoz, S. Kaspi, H. Netzer, P.S. Smith, Long-term optical variability properties of the Palomar-Green quasars, Mon. Not. R. Astron. Soc. 306 (1999), 637-654. https://doi.org/10.1046/j.1365-8711.1999.02556.x
35. Gopal-Krishna, C.S. Stalin, R. Sagar, P.J. Wiita, Clear evidence for intranight optical variability in radio-quiet quasars, Astrophys. J. Let. 586 (2003), L25- L28. https://doi.org/10.1086/374655
36. C.E. Grant, M.W. Bautz, G. Chartas, G.P. Garmire, Detection of X-Rays from galaxy groups associated with the gravitationally lensed systems PG 1115 + 080 and B 1422 + 231, Astrophys. J. 610 (2004), 686-690. https://doi.org/10.1086/421863
37. J.P. Henry, J.N. Heasley, High-resolution imaging from mauna kea – the triple quasar in 0.3-arc s seeing, Nature 321 (1986), 139-142. https://doi.org/10.1038/321139a0
38. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source, Nature 217 (1968) 709-713. https://doi.org/10.1038/217709a0
39. D.W. Hogg, Distance measures in cosmology, e-print arXiv: 9905116v4 (1999).
40. C.D. Impey, E.E. Falco, C.S. Kochanek, J. Leh’ar, B.A. McLeod, H. Rix, C.Y. Peng, C.R. Keeton, An infrared einstein ring in the gravitational lens PG 1115 + 080, Astrophys. J. 509 (1998), 551-560. https://doi.org/10.1086/306521
41. M. Jaroszynski, J. Wambsganss, B. Paczynski, Microlensed light curves for thin accretion disks around schwarzschild and kerr black holes, Astrophys. J. Let. 396 (1992), L65-L68. https://doi.org/10.1086/186518
42. M.J. Jee, H.C. Ford, G.D. Illingworth, R.L. White, T.J. Broadhurst, D.A. Coe, G.R. Meurer, A. van der Wel, N. Bentez, J.P. Blakeslee, R.J. Bouwens, L.D. Bradley, R. Demarco, N.L. Homeier, A.R. Martel, S. Mei, Discovery of a ringlike dark matter structure in the core of the galaxy cluster Cl 0024 + 17, Astrophys. J. 661 (2007), 728-749. https://doi.org/10.1086/517498
43. R. Kayser, S. Refsdal, R. Stabell, Astrophysical applications of gravitational micro-lensing, Astron. Astrophys. 166 (1986), 36-52.
44. R. Kayser, S. Refsdal, Detectability of gravitational microlensing in the quasar QSO 2237 + 0305, Nature 338 (1989), 745-746. https://doi.org/10.1038/338745a0
45. R. Kayser, P. Helbig, T. Schramm, A general and practical method for calculating cosmological distances, Astron. Astrophys. 318 (1997) 680-686.
46. D.J. Kedziora, H. Garsden, G.F. Lewis, Gravitational microlensing as a probe of the electron-scattering region in Q 2237 + 0305, Mon. Not. R. Astron. Soc. 415 (2011), 1409-1418. https://doi.org/10.1111/j.1365-2966.2011.18787.x
47. C.R. Keeton, Cold dark matter and strong gravitational lensing: Concord or conflict?, Astrophys. J. 561 (2001), 46-60. https://doi.org/10.1086/323237
48. C.R. Keeton, B.S. Gaudi, A.O. Petters, Identifying lenses with Small-Scale structure. I. cusp lenses, Astrophys. J. 598 (2003), 138-161. https://doi.org/10.1086/378934
49. C.R. Keeton, B.S. Gaudi, A.O. Petters, Identifying lenses with Small-Scale structure. II. fold lenses, Astrophys. J. 635 (2005), 35-59. https://doi.org/10.1086/497324
50. C.R. Keeton, L.A. Moustakas, A new channel for detecting dark matter substructure in galaxies: Gravitational lens time delays, Astrophys. J. 699 (2009), 1720-1731. https://doi.org/10.1088/0004-637X/699/2/1720
51. C.R. Keeton, C.S. Kochanek, Determining the hubble constant from the gravitational lens PG 1115 + 080, Astrophys. J. 487 (1997), 42-54.https://doi.org/10.1086/304583
52. C.R. Keeton, C.S. Kochanek, U. Seljak, Shear and ellipticity in gravitational lenses, Astrophys. J. 482 (1997), 604-620. https://doi.org/10.1086/304172
53. S.M. Kent, E.E. Falco, A model for the gravitational lens system 2237 + 0305, Astron. J. 96 (1988), 1570-1574. https://doi.org/10.1086/114906
54. M. Kishimoto, R. Antonucci, O. Blaes, A. Lawrence, C. Boisson, M. Albrecht, C. Leipski, AGN accretion disks as spatially resolved by polarimetry, J. Phys. Conf. Ser. 131 (2008), 012039. https://doi.org/10.1088/1742-6596/131/1/012039
55. A. Klypin, S. Gottloeber, A.V. Kravtsov, A.M. Khokhlov, Galaxies in N-Body simulations: Overcoming the overmerging problem, Astrophys. J. 516 (1999), 530-551. https://doi.org/10.1086/307122
56. C.S. Kochanek, C.R. Keeton, B.A. McLeod, The importance of einstein rings, Astrophys. J. 547 (2001), 50-59. https://doi.org/10.1086/318350
57. C.S. Kochanek, What do gravitational lens time delays measure?, Astrophys. J. 578 (2002), 25-32. https://doi.org/10.1086/342476
58. C.S. Kochanek, Quantitative interpretation of quasar microlensing light curves, Astrophys. J. 605 (2004), 58-77. https://doi.org/10.1086/382180
59. C.S. Kochanek, N. Dalal, Tests for substructure in gravitational lenses, Astrophys. J. 610 (2004), 69-79. https://doi.org/10.1086/421436
60. C.S. Kochanek, P.L. Schechter, The hubble constant from gravitational lens time delays, in: Measuring and Modeling the Universe, from the Carnegie Observatories Centennial Symposia. Published by Cambridge University Press, as part of the Carnegie Observatories Astrophysics Series, 2004, p. 117.
61. C.S. Kochanek, The implications of lenses for galaxy structure, Astrophys. J. 373 (1991), 354-368. https://doi.org/10.1086/170057
62. J. Kristian, E.J. Groth, E.J. Shaya, D.P. Schneider, J.A. Holtzman, W.A. Baum, B. Campbell, A. Code, D.G. Currie, G.E. Danielson, S.P. Ewald, J.J. Hester,R.M. Light, C.R. Lynds, E.J. O’Neil, P.K. Seidelmann, J.A. Westphal, Imaging of the gravitational lens system PG 1115 + 080 with the hubble space telescope, Astron. J. 106 (1993), 1330-1336.https://doi.org/10.1086/116729
63. G.F. Lewis, R. Gil-Merino, Quasar microlensing: When compact masses mimic smooth matter, Astrophys. J. 645 (2006), 835-840. https://doi.org/10.1086/504579
64. G.F. Lewis, M.J. Irwin, The statistics of microlensing light curves – I. amplification probability distributions, Mon. Not. R. Astron. Soc. 276 (1995), 103-114.
65. G.F. Lewis, M.J. Irwin, The statistics of microlensing light curves. II. Temporal analysis., Mon. Not. R. Astron. Soc. 283 (1996), 225-240. https://doi.org/10.1093/mnras/283.1.225
66. G.F. Lewis, M.J. Irwin, P.C. Hewett, C.B. Foltz, Microlensing-induced spectral variability in Q 2237 + 0305, Mon. Not. R. Astron. Soc. 295 (1998), 573-586. https://doi.org/10.1046/j.1365-8711.1998.01317.x
67. J. Lovegrove, R.E. Schild, D. Leiter, Discovery of universal outflow structuresabove and below the accretion disc plane in radio-quiet quasars, Mon. Not. R.Astron. Soc. 412 (2011), 2631-2640. https://doi.org/10.1111/j.1365-2966.2010.18082.x
68. S. Mao, Y. Jing, J.P. Ostriker, J. Weller, Anomalous flux ratios in gravitationallenses: For or against cold dark matter?, Astrophys. J. Let. 604 (2004), L5-L8. https://doi.org/10.1086/383413
69. S. Mao, Gravitational microlensing by a single star plus external shear, Astrophys. J. 389 (1992), 63-67. https://doi.org/10.1086/171188
70. S. Mao, P. Schneider, Evidence for substructure in lens galaxies?, Mon. Not. R.Astron. Soc. 295 (1998), 587-594. https://doi.org/10.1046/j.1365-8711.1998.01319.x
71. E. Mediavilla, S. Arribas, C. del Burgo, A. Oscoz, M. Serra-Ricart, D. Alcalde, E.E. Falco, L.J. Goicoechea, B. Garcia-Lorenzo, J. Buitrago, Two-dimensional spectroscopy reveals an arc of extended emission in the gravitational lens system Q 2237 + 0305, Astrophys. J. Let. 503 (1998), L27-L30. https://doi.org/10.1086/311533
72. R.B. Metcalf, P. Madau, Compound gravitational lensing as a probe of dark matter substructure within galaxy halos, Astrophys. J. 563 (2001) 9-20. https://doi.org/10.1086/323695
73. R.B. Metcalf, H. Zhao, Flux ratios as a probe of dark substructures in QuadrupleImage gravitational lenses, Astrophys. J. Let. 567 (2002), L5-L8. https://doi.org/10.1086/339798
74. A.A. Minakov, R.E. Schild, V.G. Vakulik, G.V. Smirnov, V.S. Tsvetkova, Microlensing events in gravitationally lensed quasar Q 2237 + 0305: stars or dark matter, in: Problems of Practical Cosmology, Proceedings of the International Conference held at Russian Geographical Society, 23-27 June, 2008 in St. Petersburg, 2008, pp. 180-186.
76. M. Miranda, P. Jetzer, Substructures in lens galaxies: PG 1115 + 080 and B 1555 + 375, two fold configurations, Astrophys. Space Sci. 312 (2007), 203- 214.https://doi.org/10.1007/s10509-007-9677-3
77. B. Moore, C. Calc’aneo-Rold’an, J. Stadel, T. Quinn, G. Lake, S. Ghigna, F. Governato, Dark matter in draco and the local group: Implications for direct detection experiments, Phys. Rev. D 64 (2001), 63508. https://doi.org/10.1103/PhysRevD.64.063508
78. O. Moreau, C. Libbrecht, D. Lee, J. Surdej, Accurate photometric light curves of the lensed components of Q 2237 + 0305 derived with an optimal image subtraction technique: Evidence for microlensing in image a, Astron. Astrophys. 436 (2005), 479-492. https://doi.org/10.1051/0004-6361:20041887
79. C.W. Morgan, C.S. Kochanek, X. Dai, N.D. Morgan, E.E. Falco, X-Ray and optical microlensing in the lensed quasar PG 1115 + 080, Astrophys. J. 689 (2008), 755-761. https://doi.org/10.1086/592767
80. M.J. Mortonson, P.L. Schechter, J. Wambsganss, Size is everything: Universal features of quasar microlensing with extended sources, Astrophys. J. 628 (2005), 594-603. https://doi.org/10.1086/431195
81. A.M. Mosquera, J.A. Munoz, E. Mediavilla, Detection of chromatic microlensing in Q 2237 + 0305 A, Astrophys. J. 691 (2009) 1292-1299. https://doi.org/10.1088/0004-637X/691/2/1292
82. M. Oguri, Gravitational lens time delays: A statistical assessment of lens model dependences and implications for the global hubble constant, Astrophys. J. 660 (2007), 1-15. https://doi.org/10.1086/513093
83. B. Paczynski, Gravitational microlensing by the galactic halo, Astrophys. J. 304 (1986), 1-5. https://doi.org/10.1086/164140
84. B. Paczynski, Gravitational microlensing at large optical depth, Astrophys. J. 301 (1986), 503-516. https://doi.org/10.1086/163919
85. T. Page, Qso’s, the brightest things in the universe (quasi-stellar objects), Astron. Soc. Pacif. Leaflets 9 (1964), 161-166.
86. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, 1993).
87. B.M. Peterson, Reverberation mapping of active galactic nuclei, Publ. Astron.Soc. Pac. 105 (1993), 247-268. https://doi.org/10.1086/133140
88. D. Pooley, J.A. Blackburne, S. Rappaport, P.L. Schechter, W.-f. Fong, A strong X-Ray flux ratio anomaly in the quadruply lensed quasar PG 1115 + 080, Astrophys. J. 648 (2006), 67-72. https://doi.org/10.1086/505860
89. D.A. Pooley, X-Ray and optical flux ratio anomalies in quadruply lensed quasars, in: American Astronomical Society Meeting 210; Bulletin of the American Astronomical Society, Vol. 38, 2007, p. 238.
90. D. Pooley, S. Rappaport, J. Blackburne, P.L. Schechter, J. Schwab, J. Wambsganss, The dark-matter fraction in the elliptical galaxy lensing the quasar PG 1115 + 080, Astrophys. J. 697 (2009), 1892-1900. https://doi.org/10.1088/0004-637X/697/2/189
91. M. Rabbette, B. McBreen, N. Smith, S. Steel, A search for rapid optical variability in radio-quiet quasars, Astron. Astrophys. Suppl. Ser. 129 (1998), 445-454. https://doi.org/10.1051/aas:1998197
92. R. Racine, Continuum and semiforbidden C III microlensing in Q 2237 + 0305 and the quasar geometry, Astrophys. J. Let. 395 (1992), L65-L67. https://doi.org/10.1086/186489
93. J.I. Read, P. Saha, A.V. Macci’o, Radial density profiles of Time-Delay lensing galaxies, Astrophys. J. 667 (2007), 645-654. https://doi.org/10.1086/520714
94. S. Refsdal, On the possibility of determining hubble’s parameter and the masses of galaxies from the gravitational lens effect, Mon. Not. R. Astron. Soc. 128 (1964), 307-310. https://doi.org/10.1093/mnras/128.4.307
95. H. Rix, D.P. Schneider, J.N. Bahcall, Hubble space telescope wide field camera imaging of the gravitational lens 2237 + 0305, Astron. J. 104 (1992), 959-967. https://doi.org/10.1086/116289
96. P. Saha, L.L.R. Williams, Gravitational lensing model degeneracies: Is steepness All-Important?, Astrophys. J. 653 (2006), 936-941. https://doi.org/10.1086/508798
97. P. Saha, L.L.R. Williams, Non-parametric reconstruction of the galaxy lens in PG 1115 + 080, Mon. Not. R. Astron. Soc. 292 (1997), 148-156. https://doi.org/10.1093/mnras/292.1.148
98. A.B. Saust, Determining the size of the emission line region in Q 2237 + 031 from microlensing, Astron. Astrophys. Suppl. Ser. 103 (1994) 33-37.
99. P.L. Schechter, J. Wambsganss, Quasar microlensing at high magnification and the role of dark matter: Enhanced fluctuations and suppressed saddle points, Astrophys. J. 580 (2002), 685-695. https://doi.org/10.1086/343856
100. P.L. Schechter, J. Wambsganss, G.F. Lewis, Qualitative aspects of quasar microlensing with two mass components: Magnification patterns and probability distributions, Astrophys. J. 613 (2004), 77-85. https://doi.org/10.1086/422907
101. P.L. Schechter, J. Wambsganss, The dark matter content of lensing galaxies at 1.5 Re, in: International Astronomical Union Symposium no. 220, held 21-25 July, 2003 in Sydney, Australia, 2004, p. 103. https://doi.org/10.1017/S0074180900182944
102. C.S. Kochanek, P.L. Schechter, The hubble constant from gravitational lens time delays, in: Measuring and Modeling the Universe, from the Carnegie Observatories Centennial Symposia. Published by Cambridge University Press, as part of the Carnegie Observatories Astrophysics Series, 2004, p. 117.
103. P.L. Schechter, C.D. Bailyn, R. Barr, R. Barvainis, C.M. Becker, G.M. Bernstein, J.P. Blakeslee, S.J. Bus, A. Dressler, E.E. Falco, R.A. Fesen, P. Fischer, K. Gebhardt, D. Harmer, J.N. Hewitt, J. Hjorth, T. Hurt, A.O. Jaunsen, M. Mateo, D. Mehlert, D.O. Richstone, L.S. Sparke, J.R. Thorstensen, J.L. Tonry, G. Wegner, D.W. Willmarth, G. Worthey, The quadruple gravitational lens PG 1115 + 080: Time delays and models, Astrophys. J. Let. 475 (1997), L85- L88. https://doi.org/10.1086/310478
104. R. Schild, V. Vakulik, Microlensing of a ring model for quasar structure, Astron. J. 126 (2003), 689-695. https://doi.org/10.1086/376472
105. R. Schmidt, R.L. Webster, G.F. Lewis, Weighing a galaxy bar in the lens Q 2237 + 0305, Mon. Not. R. Astron. Soc. 295 (1998), 488-496.https://doi.org/10.1046/j.1365-8711.1998.01326.x
106. P. Schneider, An analytically soluble problem in fully nonlinear statistical gravitational lensing, Astrophys. J. 319 (1987), 9-13. https://doi.org/10.1086/165428
107. P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer-Verlag: Berlin, Heidelberg, New York, 1992). https://doi.org/10.1007/978-1-4612-2756-4
108. P. Schneider, A. Weiss, The gravitational lens equation near cusps, Astron. Astrophys. 260 (1992), 1-13.
109. N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance, Astron. Astrophys. 24 (1973), 337-355.https://doi.org/10.1007/978-94-010-2585-0_13
110. V.N. Shalyapin, L.J. Goicoechea, D. Alcalde, E. Mediavilla, J.A. Munoz, R. GilMerino, The nature and size of the optical continuum source in QSO 2237 + 0305, Astrophys. J. 579 (2002), 127-135. https://doi.org/10.1086/342753
111. D. Sluse, R. Schmidt, F. Courbin, D. Hutsem’ekers, G. Meylan, A. Eigenbrod, T. Anguita, E. Agol, J. Wambsganss, Zooming into the broad line region of the gravitationally lensed quasar QSO 2237 + 0305 the einstein cross. III. determination of the size and structure of the c iv and c iii] emitting regions using microlensing, Astron. Astrophys. 528 (2011) 100-117. https://doi.org/10.1051/0004-6361/201016110
112. D.N. Spergel, R. Bean, O. Dor’e, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H.V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Three-Year wilkinson microwave anisotropy probe (WMAP) observations: Implications for cosmology, Astrophys. J. Suppl. Ser. 170 (2007), 377-408. https://doi.org/10.1086/513700
113. Y. Taniguchi, N. Anabuki, The electron-scattering region in seyfert nuclei, Astrophys. J. Let. 521 (1999), L103-L106.https://doi.org/10.1086/312201
114. J.L. Tonry, Redshifts of the gravitational lenses B 1422 + 231 and PG 1115 + 080, Astron. J. 115 (1998), 1-5.https://doi.org/10.1086/300170
115. T. Treu, L.V.E. Koopmans, The internal structure of the lens PG 1115 + 080: breaking degeneracies in the value of the hubble constant, Mon. Not. R. Astron. Soc. 337 (2002), L6-L10. https://doi.org/10.1046/j.1365-8711.2002.06107.x
116. V.S. Tsvetkova, V.M. Shulga, V.G. Vakulik, G.V. Smirnov, V.N. Dudinov, A.A. Minakov, Search for dark matter using the phenomenon of strong gravitational lensing, Kinemat. Phys. Celest. Bod. 25 (2009) 28-37. https://doi.org/10.3103/S0884591309010048
117. V.S. Tsvetkova, V.G. Vakulik, V.M. Shulga, R.E. Schild, V.N. Dudinov, A.A. Minakov, S.N. Nuritdinov, B.P. Artamonov, A.Y. Kochetov, G.V. Smirnov, A.A. Sergeyev, V.V. Konichek, I.Y. Sinelnikov, A.P. Zheleznyak, V.V. Bruevich, R. Gaisin, T. Akhunov, O. Burkhonov, PG 1115 + 080: variations of the A2/A1 flux ratio and new values of the time delays, Mon. Not. R. Astron. Soc. 406 (2010), 2764-2776. https://doi.org/10.1111/j.1365-2966.2010.16882.x
118. V.G. Vakulik, R.E. Schild, V.N. Dudinov, A.A. Minakov, S.N. Nuritdinov, V.S. Tsvetkova, A.P. Zheleznyak, V.V. Konichek, I.Y. Sinelnikov, O.A. Burkhonov, B.P. Artamonov, V.V. Bruevich, Color effects associated with the 1999 microlensing brightness peaks in gravitationally lensed quasar Q 2237 + 0305, Astron. Astrophys. 420 (2004), 447-457. https://doi.org/10.1051/0004-6361:20034104
119. V. Vakulik, R. Schild, V. Dudinov, S. Nuritdinov, V. Tsvetkova, O. Burkhonov, T. Akhunov, Observational determination of the time delays in gravitational lens system Q 2237 + 0305, Astron. Astrophys. 447 (2006), 905-913. https://doi.org/10.1051/0004-6361:20053574
120. V.G. Vakulik, R.E. Schild, G.V. Smirnov, V.N. Dudinov, V.S. Tsvetkova, Q 2237 + 0305 source structure and dimensions from light-curve simulation, Mon. Not. R. Astron. Soc. 382 (2007), 819-825. https://doi.org/10.1111/j.1365-2966.2007.12422.x
121. V.G. Vakulik, V.M. Shulga, R.E. Schild, V.S. Tsvetkova, V.N. Dudinov, A.A. Minakov, S.N. Nuritdinov, B.P. Artamonov, A.Y. Kochetov, G.V. Smirnov, A.A. Sergeyev, V.V. Konichek, I.Y. Sinelnikov, V.V. Bruevich, T. Akhunov, O. Burkhonov, Time delays in PG 1115 + 080: new estimates, Mon. Not. R. Astron. Soc. 400 (2009), L90-L93. https://doi.org/10.1111/j.1745-3933.2009.00770.x
122. V.G. Vakulik, V.N. Dudinov, A.P. Zheleznyak, V.S. Tsvetkova, P. Notni, V.N. Shalyapin, B.P. Artamonov, VRI photometry of the einstein cross Q 2237 + 0305 at maidanak observatory, Astron. Nachr. 318 (1997) 73-80. 123. C. Vanderriest, G. Wlerick, G. Lelievre, J. Schneider, H. Sol, D. Horville, L. Renard, B. Servan, Variability of the gravitational mirage PG 1115 + 080, Astron. Astrophys. 158 (1986), L5-L8. https://doi.org/10.1002/asna.2113180202
124. D. Walsh, R.F. Carswell, R.J. Weymann, 0957 + 561 A, B – twin quasistellar objects or gravitational lens, Nature 279 (1979), 381-384. https://doi.org/10.1038/279381a0
125. J. Wambsganss, B. Paczynski, N. Katz, A microlensing model for QSO 2237 + 0305, Astrophys. J. 352 (1990), 407-412. https://doi.org/10.1086/168546
126. J. Wambsganss, B. Paczynski, P. Schneider, Interpretation of the microlensing event in QSO 2237 + 0305, Astrophys. J. Let. 358 (1990) L33-L36. https://doi.org/10.1086/185773
127. J. Wambsganss, B. Paczynski, Expected color variations of the gravitationally microlensed QSO 2237 + 0305, Astron. J. 102 (1991), 864-868. https://doi.org/10.1086/115916
128. J. Wambsganss, Probability distributions for the magnification of quasars due to microlensing, Astrophys. J. 386 (1992), 19-29. https://doi.org/10.1086/170987
129. J. Wambsganss, B. Paczynski, Parameter degeneracy in models of the quadruple lens system Q 2237 + 0305, Astron. J. 108 (1994), 1156-1162. https://doi.org/10.1086/117144
130. J. Wambsganss, T. Kundic, Gravitational microlensing by random motion of stars: Analysis of light curves, Astrophys. J. 450 (1995), 19-26. https://doi.org/10.1086/176114
131. R.B. Wayth, M. O’Dowd, R.L. Webster, A microlensing measurement of the size of the broad emission-line region in the lensed quasar QSO 2237 + 0305, Mon. Not. R. Astron. Soc. 359 (2005), 561-566. https://doi.org/10.1111/j.1365-2966.2005.08919.x
132. R.L. Webster, A.M.N. Ferguson, R.T. Corrigan, M.J. Irwin, Interpreting the light curve of Q 2237 + 0305, Astron. J. 102 (1991), 1939-1945.https://doi.org/10.1086/116015
133. R.J. Weymann, D. Latham, J. Roger, P. Angel, R.F. Green, J.W. Liebert, D.A. Turnshek, D.E. Turnshek, J.A. Tyson, The triple QSO PG 1115 + 08 – another probable gravitational lens, Nature 285 (1980), 641-643. https://doi.org/10.1038/285641a0
134. B.C. Wilhite, D.E. Vanden Berk, R.G. Kron, D.P. Schneider, N. Pereyra, R.J. Brunner, G.T. Richards, J.V. Brinkmann, Spectral variability of quasars in the sloan digital sky survey I. wavelength dependence, Astrophys. J. 633 (2005), 638-648. https://doi.org/10.1086/430821
135. L.L.R. Williams, P. Saha, Pixelated lenses and H0 from Time-Delay quasars, Astron. J. 119 (2000), 439-450. https://doi.org/10.1086/301234
136. H.J. Witt, S. Mao, C.R. Keeton, Analytic time delays and H0 estimates for gravitational lenses, Astrophys. J. 544 (2000), 98-103. https://doi.org/10.1086/317201
137. H.J. Witt, S. Mao, Interpretation of microlensing events in Q 2237 + 0305, Astrophys. J. 429 (1994), 66-76. https://doi.org/10.1086/174302
138. J.S.B. Wyithe, R.L. Webster, E.L. Turner, Interpretation of the OGLE Q 2237 + 0305 microlensing light curve (1997-1999), Mon. Not. R. Astron. Soc. 318 (2000), 1120-1130. https://doi.org/10.1046/j.1365-8711.2000.03747.x
139. J.S.B. Wyithe, R.L. Webster, E.L. Turner, A small source in Q 2237 + 0305?, Mon. Not. R. Astron. Soc. 318 (2000), 762-768. https://doi.org/10.1046/j.1365-8711.2000.03748.x
140. J.S.B. Wyithe, R.L. Webster, E.L. Turner, The distribution of microlensed lightcurve derivatives: the relationship between stellar proper motions and transverse velocity, Mon. Not. R. Astron. Soc. 312 (2000) 843-852. https://doi.org/10.1046/j.1365-8711.2000.03203.x
141. J.S.B. Wyithe, E.L. Turner, Determining the microlens mass function from quasar microlensing statistics, Mon. Not. R. Astron. Soc. 320 (2001), 21-30. https://doi.org/10.1046/j.1365-8711.2001.03917.x
142. A. Yonehara, Evidence for a source size of less than 2000 AU in quasar 2237 + 0305, Astrophys. J. Let. 548 (2001), L127-L130. https://doi.org/10.1086/319090
143. A. Yonehara, H. Hirashita, P. Richter, Origin of chromatic features in multiple quasars. variability, dust, or microlensing, Astron. Astrophys. 478 (2008), 95-109. https://doi.org/10.1051/0004-6361:20067014
144. J. Yoo, C.S. Kochanek, E.E. Falco, B.A. McLeod, The lens galaxy in PG 1115 + 080 is an ellipse, Astrophys. J. 626 (2005), 51-57. https://doi.org/10.1086/429959
145. J. Yoo, C.S. Kochanek, E.E. Falco, B.A. McLeod, Halo structures of gravitational lens galaxies, Astrophys. J. 642 (2006), 22-29. https://doi.org/10.1086/500968
146. P. Young, R.S. Deverill, J E. Gunn, J.A. Westphal, J. Kristian, The triple quasar Q1115 + 080A, B, C – a quintuple gravitational lens image, Astrophys. J. 244 (1981), 723-735.https://doi.org/10.1086/158750
147. A. Zakharov, Gravitational lenses and microlenses (Moscow, Yanus-K, 1997) (in Russian).
148. H. Zhao, D. Pronk, Systematic uncertainties in gravitational lensing models: a semi-analytical study of PG 1115 + 080, Mon. Not. R. Astron. Soc. 320 (2001), 401-416.https://doi.org/10.1046/j.1365-8711.2001.03844.x
CHAPTER 2.
1. D. Alcalde, E. Mediavilla, O. Moreau, J.A. Munoz, C. Libbrecht et al., QSO 2237 + 0305 VR Light Curves from Gravitational Lenses International Time Project Optical Monitoring, Astrophys. J. 572 (2002), 729-734. https://doi.org/10.1086/340343
2. C. Alcock, C.W. Akerlof, R.A. Allsman, Possible gravitational microlensing of a star in the Large Magellanic Cloud Nature 365, Iss. 6447 (1993), 621-623. https://doi.org/10.1038/365621a0
3. A.N. Alexandrov, S.M. Koval, V.I. Zhdanov, Asymptotic relations for high magnification events in presence of the dark matter, Visnyk Kyivskogo Universytetu, Astronomiya, Iss. 49 (2012), 17-20.
4. A.N. Alexandrov, S.M. Koval, V.I. Zhdanov, Gravitational lens equation: critical solutions and magnification near folds and cusps, Advances in Astron. and Space Phys. 2(2) (2012), 184-187.
5. A.N. Alexandrov, V.I. Zhdanov, Asymptotic expansions and amplification of a gravitational lens near a fold caustic, Mon. Not. R. Astron. Soc. 417 (2011), 541-554. https://doi.org/10.1111/j.1365-2966.2011.19296.x
6. A.N Alexandrov, V.I Zhdanov, E.V. Fedorova, Asymptotic formulas for the magnification of a gravitational lens system near a fold caustic, Astronomy Letters 36 (2010) 329. https://doi.org/10.1134/S1063773710050038
7. A.N. Alexandrov, V.I. Zhdanov, E.V. Fedorova, Analytical relations for gravitational lens mapping in the vicinity of a critical curve. Visnyk Kyivskogo Universytetu, Astronomiya, 39-40 (2003), 52-59 (in Ukrainian).
8. A.N. Alexandrov, V.I. Zhdanov, V.M. Sliusar, Caustic Crossing Events and Source Models in Gravitational Lens Systems, Ukrainian J. Phys. 56 (2011), 389-400.
9. T. Anguita, R.W. Schmidt, E.L. Turner, J. Wambsganss, R.L. Webster et al., The multiple quasar Q 2237 + 0305 under a microlensing caustic, Astron. Astrophys. 480 (2008) 327-334. https://doi.org/10.1051/0004-6361:20078221
10. E. Aubourg, P. Bareyre, S. Brehin et al. The EROS Search for Dark Halo Objects, The Messenger 72 (1993) 20-27.
11. H. Bateman, A. Erd’elyi, Higher Transcendental Functions, Vol. 1. New York, McGraw-Hill, 1953.
12. V.A. Belokurov, N.W. Evans, Astrometric microlensing with the GAIA satellite, Mon. Not. Roy. Astron. Soc. 331 (2002), 649-665. https://doi.org/10.1046/j.1365-8711.2002.05222.x
13. D.P. Bennett, C. Akerlof, C. Alcock, The First Data from the MACHO Experiment, Texas/PASCOS ’92: Relativistic Astrophysics and Particle Cosmology. Eds.: Carl W. Akerlof and Mark A. Srednicki, Annals of the New York Academy of Sciences 688 (1993), 612. https://doi.org/10.1111/j.1749-6632.1993.tb43945.x
14. D. Bennett, S. Rhie, A. Becker, N. Butler, J. Dann et al., Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System, Nature 402 (1999), 57-67. https://doi.org/10.1038/46990
15. J.A. Blackburne, C.S. Kochanek, The Effect of a Time-varying Accretion Disk Size on Quasar Microlensing Light Curves, Astrophys. J. 718 (2010), 1079-1084. https://doi.org/10.1088/0004-637X/718/2/1079
16. P.V. Bliokh, A.A. Minakov, Gravitational lenses (in Russian) Kiev, NaukovaDumka, 1989.
17. M.B. Bogdanov, A.M. Cherepashchuk, Reconstruction of the Strip Brightness Distribution in a Quasar Accretion Disk from Gravitational Microlensing Data, Astronomy Repts. 46 (2002), 626-633. https://doi.org/10.1134/1.1502222
18. V. Bozza, Trajectories of the images in binary microlensing, Astron. Astrophys. 274 (2001), 13-27. https://doi.org/10.1051/0004-6361:20010699
19. K. Chang, S. Refsdal, Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path. Nature 282 (1979), 561-564. https://doi.org/10.1038/282561a0
20. K. Chang, S. Refsdal, Star disturbances in gravitational lens galaxies, Astron. Astrophys. 132 (1984) 168-178 [Erratum: Astron. Astrophys. 132 (1984), 168- 178.
21. F. Chollet, A new method of measuring stellar masses, Academie des Sciences (Paris), Comptes Rendus. Sciences Physiques B 288 (1979), 163-165 (in French).
22. D. Clowe, A. Gonzalez, M. Markevitch, Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: direct evidence for the existence of dark matter, Astrophys. J. 604 (2004), 596-603. https://doi.org/10.1086/381970
23. D. Clowe, M. Bradac, A. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109-L113. https://doi.org/10.1086/508162
24. A.B. Congdon, C.R. Keeton, S.J. Osmer, Microlensing of an extended source by a power-law mass distribution, Mon. Not. R. Astron. Soc. 376 (2007), 263-272. https://doi.org/10.1111/j.1365-2966.2007.11426.x
25. A.B. Congdon, C.R. Keeton, C.E. Nordgren, Analytic relations for magnifications and time delays in gravitational lenses with fold and cusp configurations, Mon. Not. R. Astron. Soc. 389 (2008), 398-406. https://doi.org/10.1111/j.1365-2966.2008.13604.x
26. X. Dai, E. Agol, M.W. Bautz, G.P. Garmire, Chandra Observations of QSO 2237 + 0305, Astrophys. J. 589 (2003) 100-110. https://doi.org/10.1086/374548
27. S. Deguchi , W.D. Watson, Diffraction in gravitational lensing for compact objects of low mass, Astrophys. J. 307 (1986), 30-37. https://doi.org/10.1086/164389
28. J. Diemand, M. Kuhlen, P. Madau et al., Clumps and streams in the local dark matter distribution, Nature 454 (2008), 735-738. https://doi.org/10.1038/nature07153
29. J. Diemand, B. Moore, J. Stadel, Earth-mass dark-matter haloes as the first structures in the early Universe, Nature 433, Iss. 7024 (2005), 389-391. https://doi.org/10.1038/nature03270
30. M. Dominik, Revealing stellar brightness profiles by means of microlensing fold caustics, Mon. Not. R. Astron. Soc. 353 (2004), 118-132. https://doi.org/10.1111/j.1365-2966.2004.08052.x
31. M. Dominik, K. Sahu, Astrometric Microlensing of Stars, Astron. J. 534 (2000), 213-226. https://doi.org/10.1086/308716
32. S. Dong, I.A. Bond, A. Gould, S. Kozlowski, N. Miyake et al., Microlensing Event MOA-2007-BLG-400: Exhuming the Buried Signature of a Cool, JovianMass Planet, Astrophys. J. 698 (2009), 1826-1837. https://doi.org/10.1088/0004-637X/698/2/1826
33. S. Dong, D.L. DePoy, B.S. Gaudi, A. Gould, C. Han et al., Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343, Astrophys. J. 642 (2006), 842-860. https://doi.org/10.1086/501224
34. A.L. Erickcek, N.M. Law Astrometric microlensing by local dark matter subhalos, Astrophys. J. 729 (2011), 49. https://doi.org/10.1088/0004-637X/729/1/49
35. E. Fedorova, Binary gravitational microlensing of extragalactic sources, Visnyk Kyivskogo Universytetu. Astronomiya 45 (2009), 33-39.
36. E.V. Fedorova, V.I. Zhdanov, A.N. Alexandrov, Motion of source image in Chang-Refsdal lens, Journal of Phys. Studies 4 (2002), 465-468. https://doi.org/10.30970/jps.06.465
37. E.V. Fedorova, V.I. Zhdanov, C. Vignali, G.G.C. Palumbo, Q 2237 + 0305 in Xrays: spectra and variability with XMM-Newton, Astron. Astrophys. 490 (2008), 989-994. https://doi.org/10.1051/0004-6361:20078730
38. C.J. Fluke, R.L. Webster, Investigating the geometry of quasars with microlensing, Mon. Not. R. Astron. Soc. 302 (1999), 68-74. https://doi.org/10.1046/j.1365-8711.1999.02109.x
39. B.S. Gaudi, D. Bennett, A. Udalski, A. Gould, G. Christie et al., Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing, Science 319 (2008), 927-937. https://doi.org/10.1126/science.1151947
40. B.S. Gaudi, A.O. Petters, Gravitational Microlensing near Caustics. I. Folds, Astrophys. J. 574 (2002), 970-984. https://doi.org/10.1086/341063
41. B.S. Gaudi, A.O. Petters, Gravitational Microlensing near Caustics. II. Cusps, Astrophys. J. 580 (2002), 468-489. https://doi.org/10.1086/343114
42. I.M. Gel’fand, G.E. Shilov, Generalized Functions, Vol. 1, New York, AcademicPress, 1964.
43. R. Gil-Merino, J. Gonzalez-Cadelo, L.J. Goicoechea, V.N. Shalyapin, G.F. Lewis, Is there a caustic crossing in the lensed quasar Q 2237 + 0305 observational data record?, Mon. Not. R. Astron. Soc. 371 (2006), 1478-1482. https://doi.org/10.1111/j.1365-2966.2006.10782.x
44. L.J. Goicoechea, D. Alcalde, E. Mediavilla, J.A. Mu˜noz, Determination of the properties of the central engine in microlensed QSOs, Astron. Astrophys. 397 (2003), 517-525. https://doi.org/10.1051/0004-6361:20021535
45. A. Gould, C. Han, Astrometric Resolution of Severely Degenerate Binary Microlensing Events, Astrophys. J. 538 (2000), 653-656. https://doi.org/10.1086/309180
46. A. Gould, A. Loeb, Discovering planetary systems through gravitational microlenses, Astrophys. J. 396 (1992) 104-114. https://doi.org/10.1086/171700
47. A. Gould, A. Udalski, D. An, D.P. Bennett, A.-Y. Zhou et al., Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common, Astrophys. J. 644 (2006) L37-L40. https://doi.org/10.1086/505421
48. B. Grieger, R. Kayser, S. Refsdal, Gravitational micro-lensing as a clue to quasar structure, Astron. Astrophys. 194 (1988), 54-64. https://doi.org/10.1007/978-94-009-3035-3_40
49. K. Griest, N. Safizadeh, The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets, Astrophys. J. 500 (1998), 37. https://doi.org/10.1086/305729
50. C. Han, On the Astrometric Behavior of Binary Microlensing Events, Mon. Not. Roy. Astron. Soc. 325 (2001), L1281-L1287. https://doi.org/10.1046/j.1365-8711.2001.04179.x
51. C. Han, M. Chun, K. Chang, Astrometric properties of gravitational binarymicrolens events and their applications, Astrophys. J. 526 (1999), 405-410. https://doi.org/10.1086/307996
52. C. Han, S. Park, Y. Lee, Distribution of caustic-crossing intervals for galactic binary-lens microlensing events, Mon. Not. R. Astron. Soc. 314 (2000), 59-64. https://doi.org/10.1046/j.1365-8711.2000.03293.x
53. A. Heavens, Weak lensing: Dark Matter, Dark Energy and Dark Gravity, Nucl. Phys. Proceedings Suppl. 194 B (2009), 76-81. https://doi.org/10.1016/j.nuclphysbps.2009.07.005
54. J.F. Hennawi, N. Dalal, P. Bode, Statistics of Quasars Multiply Imaged by Galaxy Clusters, Astrophys. J. 654, Is. 1 (2007), 93-98. https://doi.org/10.1086/509094
55. J.S. Heyl, Diffractive microlensing – I. Flickering planetesimals at the edge of the Solar system, Mon. Not. Roy. Astron. Soc. (Letters) 402 (2010), L39-L43. https://doi.org/10.1111/j.1745-3933.2009.00795.x
56. J.S. Heyl, Diffractive microlensing – II. Substellar disc and halo objects, Mon. Not. Roy. Astron. Soc. 411 (2011), 1780-1786. https://doi.org/10.1111/j.1365-2966.2010.17806.x
57. H. Hoekstra, D. Jain, Weak Gravitational Lensing and its Cosmological Applications, Ann. Rev. Nucl. Part. Sci. 58 (2008), 99-123. https://doi.org/10.1146/annurev.nucl.58.110707.171151
58. E. Hog, I.D. Novikov, A.G. Polnarev, MACHO photometry and astrometry, Astron. Astrophys. 294 (1995), 287-294.
59. M. Hosokawa, K. Ohnishi, T. Fukushima, Astrometric Microlensing and Degradation of Reference Frames, In: Highlights of Astronomy, Vol. 13, Proc. XXVth General Assembly of the IAU-2003. Ed. by O. Engvold. (San Francisco, CA: Astronomical Society of the Pacific, 2005), p. 602.
60. M. Hosokawa, K. Ohnishi, T. Fukushima, M. Takeuti, Parallactic variation of gravitational lensing and measurement of stellar mass, Astron. Astrophys. 278 (1993), L27-L30.
61. W. Hu, Power Spectrum Tomography with Weak Lensing, Astrophys. J. 522 (1999), L21-L24. https://doi.org/10.1086/312210
62. J. Huchra, V. Gorenstein, S. Kent, I. Shapiro, G. Smith et al., 2237 + 0305: A new and unusual gravitational lens, Astron. J. 90 (1985), 691-696. https://doi.org/10.1086/113777
63. D. Huterer, Weak lensing, dark matter and dark energy, General Relativity and Gravitation, 42, Iss. 9 (2010), 2177-2195. https://doi.org/10.1007/s10714-010-1051-z
64. M.J. Irwin, R.L. Webster, P.C. Hewett, R.T. Corrigan, R.I. Jedrzejewski, Photometric variations in the Q 2237 + 0305 system – First detection of a microlensing event, Astron. J. 98 (1989), 1989-1994. https://doi.org/10.1086/115272
65. J. Janczak, A. Fukui, S. Dong, B. Monard, S. Kozlowski et al., Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely to be in the Galactic Bulge, Astrophys. J. 711 (2010), 731-743. https://doi.org/10.1088/0004 637X/711/2/731
66. M. Jaroszynski, B. Paczynski, A Possible Planetary Event OGLE-2002-BLG055, Acta Astron. 52 (2002) 361-367.
67. M. Jaroszynski, J. Skowron, Microlensing of Q 2237 + 0305: Simulations and Statistics, Acta Astron. 56 (2006), 171-182.
68. N. Kaiser, Weak gravitational lensing of distant galaxies, Astrophys. J. 388 (1992), 272-286. https://doi.org/10.1086/171151
69. N. Kaiser, G. Squires, Mapping the dark matter with weak gravitational lensing, Astrophys. J. 404 (1993) 441-450. https://doi.org/10.1086/172297
70. N.S. Kardashev, Cosmological proper motion, Astronomicheskii Zhurnal. 63 (1986), 845-849.
71. C.R. Keeton, B.S. Gaudi, A.O. Petters, Identifying Lenses with Small-Scale Structure. II. Fold Lenses, Astrophys. J. 635 (2005), 35-59. https://doi.org/10.1086/497324
72. S.A. Klioner, A practical relativistic model for microarcsecond astrometry in space, Astron. J. 125 (2003), 1580-1597. https://doi.org/10.1086/367593
73. C.S. Kochanek, What Do Gravitational Lens Time Delays Measure?, Astrophys. J. 578, Iss. 1 (2002) 25-32. https://doi.org/10.1086/342476
74. C.S. Kochanek, Gravitational Lens Time Delays in Cold Dark Matter, Astrophys. J. 583, Iss. 1 (2003) 49 57. https://doi.org/10.1086/345342
75. C.S. Kochanek, Quantitative Interpretation of Quasar Microlensing Light Curves, Astrophys. J. 605 (2004) 58-77. https://doi.org/10.1086/382180
76. C.S. Kochanek, E.E. Falco, C. Impey, J. Lehar, B. McLeod, H.-W. Rix, CASTLES Survey, http://www.cfa.harvard.edu/castles/
77. C.S. Kochanek, P. Schneider, J. Wambsganss, Gravitational Lensing: Strong, Weak & Micro, Proceedings of the 33rd Saas-Fee Advanced Course. Edited by G. Meylan, P. Jetzer, P. North. (Springer-Verlag: Berlin, 2006).
78. J. Kovalevsky, F. Mignard, M. Froschle, Space astrometry prospects and limitations, Proc. IAU Symp. 114, eds. J. Kovalevsky and V.A. Brumberg (1979), 369-382. https://doi.org/10.1017/S0074180900148399
79. A.A. De Laix, T. Vachaspati, Gravitational lensing by cosmic string loops, Phys. Rev. D. 54 (1996), 4780 4791. https://doi.org/10.1103/PhysRevD.54.4780
80. L.D. Landau, E.M. Lifshitz, Fluid mechanics (Pergamon, New York, 1959).
81. C.-H. Lee, S. Seitz, A. Riffeser, R. Bender, Finite-source and finite-lens effects in astrometric microlensing, Mon. Not. R. Astron. Soc. 407 (2010), 1597-1608. https://doi.org/10.1111/j.1365-2966.2010.17049.x
82. G.F. Lewis, R.A. Ibata, Quasar Image Shifts Resulting from Gravitational Microlensing, Astrophys. J. 501 (1998), 478-485. https://doi.org/10.1086/305860
83. A.V. Mandzhos, The Mutual Coherence of Gravitational Lens Images, Pis’ma Astron. Zh. 7 (1981), 387-389 (in Russian).
84. A.V. Mandzhos, Mutual coherence properties of images of a quasar observed through a gravitational lens, Microlensing by a double star. Astronomicheskii Zh. 68 (1991), 236-243 (in Russian)
85. A.V. Mandzhos, Mutually-Interferometric and structural properties of the images of an object in the vicinity of the gravitational lens cusp: The degree of mutual coherence of the images, Astronomicheskii Zh. 72 (1995), 153-160 (in Russian).
86. S. Mao, Y. Jing, J.P. Ostriker, J. Weller, Anomalous Flux Ratios in Gravitational Lenses: For or against Cold Dark Matter?, Astrophys. J. 604, Issue 1 (2004), L5-L8. https://doi.org/10.1086/383413
87. S. Mao, B. Paczynski, Gravitational microlensing by double stars and planetary systems, Astrophys. J. 374 (1991), L37-L40. https://doi.org/10.1086/186066
88. S. Mao, H.J. Witt, Extended source effects in astrometric gravitational microlensing, Mon. Not. Roy. Astron. Soc. 300 (1998), 1041-1046. https://doi.org/10.1046/j.1365-8711.1998.01969.x
89. N. Matsunaga, K. Yamamoto, The finite source size effect and the wave optics in gravitational lensing. Journal of Cosmology and Astroparticle Physics, 01 (2006), 023. https://doi.org/10.1088/1475-7516/2006/01/023
90. A.A. Minakov, V.N. Shalyapin, Effect of the gravitational field of the Galaxy on the apparent position, brightness and spatial density of remote radiation sources. I. A lens model of the Galaxy and deflection angles of rays, Kinematics and Physics of Celestial Bodies 6 (1990), 49-59.
91. A.A. Minakov, V.G. Vakulik, Statistical analysis of gravitational microlensing (in Russian), Kiev, Naukova Dumka, 2010.
92. M. Miyamoto, Y. Yoshii, Astrometry for Determining the MACHO Mass and Trajectory, Astron. J. 110 (1995), 1427-1432. https://doi.org/10.1086/117616
93. M.J. Mortonson, P.L. Schechter, J. Wambsganss, Size Is Everything: Universal Features of Quasar Microlensing with Extended Sources, Astrophys. J. 628 (2005), 594-603. https://doi.org/10.1086/431195
94. A.M. Mosquera, C.S. Kochanek, The Microlensing Properties of a Sample of 87 Lensed Quasars, Astrophys. J. 738 (2011), article id. 96. https://doi.org/10.1088/0004-637X/738/1/96
95. D. Munshi, P. Valageas, L. Van Waerbeke, A. Heavens, Cosmology with Weak Lensing Surveys, Phys. Rept. 462 (2008), 67-121. https://doi.org/10.1016/j.physrep.2008.02.003
96. M. Oguri, How many arcminute-separation lenses are expected in the 2dF QSO Survey, Mon. Not. Roy. Astron. Soc. 339, Iss. 2 (2003), L23-L27 https://doi.org/10.1046/j.1365-8711.2003.06384.x
97. K. Ohnishi, M. Hosokawa, T. Fukushima, Secular Component of Apparent Proper Motion of QSOs Induced by Gravitational Lens of the Galaxy, ASP Conf. Proc. 289 (2003), 461-464.
98. L. Miller, A. Lopes, R. Smith, S. Croom, B. Boyle, T. Shanks, P. Outram, Possible arcminute-separation gravitational lensed QSOs in the 2dF QSO Survey, Mon. Not. Roy. Astron. Soc. 348, Is. 2. (2004) L395-L405. https://doi.org/10.1111/j.1365-2966.2004.07303.x
99. B. Paczynski, Gravitational microlensing by the galactic halo, Astrophysical Journ. 304, Iss. 1 (1986) 1-5. https://doi.org/10.1086/164140
100. O. Pejcha, D. Heyrovsk’y, Extended-Source Effect and Chromaticity in TwoPoint-Mass Microlensing, Astrophys. J. 690 (2009), 1772-1796. https://doi.org/10.1088/0004-637X/690/2/1772
101. A.O. Petters, H. Levine, J. Wambsganss, Singularity Theory and Gravitational Lensing (Birkhauser, Boston, 2001). https://doi.org/10.1007/978-1-4612-0145-8
102. S. Poindexter, C.S. Kochanek, The Transverse Peculiar Velocity of the Q 2237 + 0305 Lens Galaxy and the Mean Mass of Its Stars, Astrophys. J. 712 (2010), 658-667. https://doi.org/10.1088/0004-637X/712/1/658
103. S. Poindexter, C.S. Kochanek, Microlensing Evidence that a Type 1 Quasar is Viewed Face-On, Astrophys. J. 712 (2010), 668-673. https://doi.org/10.1088/0004-637X/712/1/668
104. S. Poindexter, N. Morgan, C.S. Kochanek, The Spatial Structure of an Accretion Disk, Astrophys. J. 673 (2008), 34-38. https://doi.org/10.1086/524190
105. S. Proft, M. Demleitner, J. Wambsganss, Prediction of astrometric microlensing events during the Gaia mission, Astron. Astrophys. 536 (2011), A50, 11P. https://doi.org/10.1051/0004-6361/201117663
106. K.A. Pyragas, V.I. Zhdanov, V.V. Zhdanova, I.T. Zhuk, Light propagation in a weak gravitational field of a stochastic system of pointlike sources, Soviet Physics Journal 29, Iss. 12 (1986), 1019-1023 (Izvestiya Vuzov. Fizika. No. 12, 1986, p. 79) https://doi.org/10.1007/BF00896008
107. S. Refsdal, On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect, Mon. Not. Roy. Astron. Soc. 128 (1964) 307-310. https://doi.org/10.1093/mnras/128.4.307
108. S. Refsdal, On the possibility of determining the distances and masses of stars from the gravitational lens effect, Mon. Not. Roy. Astron. Soc., 134 (1966), 315-319. https://doi.org/10.1093/mnras/134.3.315
109. K.C. Sahu, Microlensing towards the Magellanic Clouds: nature of the lenses and implications on dark matter. In: The Dark Universe: Matter Energy and Gravity, M. Livio (ed.), (Cambridge Univ. Press: Cambridge), (2003), p. 14, also astro-ph/0302325. https://doi.org/10.1017/CBO9780511536298.004
110. S.A. Salata, V.I. Zhdanov, Statistical Astrometric Microlensing of Extended Sources, Astron. J. 125 (2003) 1033-1037. https://doi.org/10.1086/339185
111. M.V. Sazhin, A fundamental limit to the accuracy of astrometric measurements, Pis’ma Astron. Zh. 22 (1996) 573-577.
112. M.V. Sazhin, O.S. Sazhina, M.S. Pshirkov, Apparent motions of quasars due to microlensing, Astronomy Reports, 55 (2011), 954-961.https://doi.org/10.1134/S1063772911110084
113. M.V. Sazhin, V.E. Zharov, A.V. Volynkin, T.A. Kalinina, Microarcsecond instability of the celestial reference frame, Mon. Not. R. Astron. Soc. 300 (1998), 287-291. https://doi.org/10.1046/j.1365-8711.1998.01908.x
114. R. Schild, I.S. Masnyak, B.I. Hnatyk, V.I. Zhdanov, Anomalous fluctuations in observations of Q 0957 + 561 A,B: Smoking gun of a cosmic string? Astron. Astrophys. 422 (2004) 477-482. https://doi.org/10.1051/0004-6361:20040274
115. R. Schmidt, R.L. Webster, F.G. Lewis, Weighing a galaxy bar in the lens Q 2237 + 0305, Mon. Not. Roy. Astron. Soc. 295 (1998), 488. https://doi.org/10.1046/j.1365-8711.1998.01326.x
116. P. Schneider, J. Ehlers, E.E. Falko, Gravitational Lenses (Springer, New York, 1992). https://doi.org/10.1007/978-1-4612-2756-4
117. P. Schneider, A. Weiss, A gravitational lens origin for AGN-variability? Consequences of microlensing, Astron. Astrophys. 171 (1987), 49-65.
118. P. Schneider, A. Weiss, The gravitational lens equation near cusps, Astron. Astrophys. 260 (1992) 1-13
119. N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance, Astron. Astrophys. 24 (1973), 337-355. https://doi.org/10.1007/978-94-010-2585-0_13
120. V.N. Shalyapin, Caustic Crossing in the Gravitational Lens Q 2237 + 0305, Astron. Lett. 27 (2001) 150-155. https://doi.org/10.1134/1.1351558
121. V.N. Shalyapin, L.J. Goicoechea, D. Alcalde, E. Mediavilla, J.A. Mu˜noz, R. Gil-Merino, The Nature and Size of the Optical Continuum Source in QSO 2237 + 0305, Astrophys. J. 579 (2002), 127-135. https://doi.org/10.1086/342753
122. D. Sluse, J. Surdej, J.-F. Claeskens, D. Hutsemekers, C. Jean, F. Courbin, T. Nakos, M. Billeres, S.V. Khmil, A quadruply imaged quasar with an optical Einstein ring candidate: 1RXS J113155.4-123155, Astron. Astrophys. 406 (2003), L43-L46.https://doi.org/10.1051/0004-6361:20030904
123. R. Takahashi, T. Suyama, S. Michikoshi, Scattering of gravitational waves by the weak gravitational fields of lens objects, Astron. Astrophys. 438, Iss. 1 (2005), L5-L8. https://doi.org/10.1051/0004-6361:200500140
124. P. Tisserand, L. Le Guillou, C. Afonso et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds, Astron. Astrophys. 469 (2007), 387-404. https://doi.org/10.1051/0004-6361:20066017
125. M. Treyer, J. Wambsganss, Astrometric microlensing of quasars. Dependence on surface mass density and external shear, Astron. Astrophys. 416 (2004), 19-34.https://doi.org/10.1051/0004-6361:20034284
126. Y. Tsapras, K. Horne, S. Kane, K. Carson, Microlensing limits on numbers and orbits of extrasolar planets from the 1998-2000 OGLE events, Mon. Not. Roy. Astron. Soc. 343 (2003), 1131-1144. https://doi.org/10.1046/j.1365-8711.2003.06720.x
127. J.A. Tyson, R.A. Wenk, F. Valdes, Detection of systematic gravitational lens galaxy image alignments. Mapping dark matter in galaxy clusters, Astrophys. J. (Part 2 – Letters) 349 (1990), L1-L4. https://doi.org/10.1086/185636
128. J.A. Tyson, F. Valdes, J.E. Jarvis, A.P. Mills (Jr.), Galaxy mass distribution from gravitational light deflection, Astrophys J. 281(1984), L59-L62. https://doi.org/10.1086/184285
129. A. Udalski, M. Szymanski, J. Kaluzny et al. The Optical Gravitational Lensing Experiment, Acta Astronomica 42, No. 4 (1992), 253-284.
130. A. Udalski, M.K. Szymanski, M. Kubiak, G. Pietrzynski, I. Soszynski et al., The Optical Gravitational Lensing Experiment. OGLE-III Long Term Monitoring of the Gravitational Lens QSO 2237 + 0305, Acta Astron. 56 (2006) 293-305.
131. V. Vakulik, R. Schild, V. Dudinov, S. Nuritdinov, V. Tsvetkova et al., Observational determination of the time delays in gravitational lens system Q 2237 + 0305, Astron. Astrophys. 447 (2006), 905-913. https://doi.org/10.1051/0004-6361:20053574
132. V. Vakulik, R. Schild, G. Smirnov, V. Dudinov, V. Tsvetkova, Q 2237 + 0305 source structure and dimensions from light-curve simulation, Mon. Not. Roy. Astron. Soc. 382 (2007), 819-825. https://doi.org/10.1111/j.1365-2966.2007.12422.x
133. M.A. Walker, Microlensed Image Motions, Astrophys. J. 453 (1995), 37-39. https://doi.org/10.1086/176367
134. D. Walsh, R.F. Carswell, R.J. Weymann, 0957 + 561 A, B – Twin quasistellar objects or gravitational lens?, Nature 279 (1979), 381-384. https://doi.org/10.1038/279381a0
135. J. Wambsganss, Gravitational microlensing. Part 4 of “Gravitational Lensing: Strong, Weak, and Micro”, Saas-Fee Advanced Course 33. Edited by G. Meylan, P. North, P. Jetzer (Berlin, Springer, 2006), p. 453-540. https://doi.org/10.1007/978-3-540-30310-7_4
136. J. Wang, M.C. Smith, Using microlensed quasars to probe the structure of the Milky Way, Mon. Not. Roy. Astron. Soc. 410, Iss. 2 (2011) 1135-1144.https://doi.org/10.1111/j.1365-2966.2010.17511.x
137. P.R. Woz’niak, C. Alard, A. Udalski, M. Szyma’nski, M. Kubiak et al., The Optical Gravitational Lensing Experiment Monitoring of QSO 2237 + 0305, Astrophys. J 529 (2000), 88-92. https://doi.org/10.1086/308258
138. J.S. Wyithe, E.L. Turner, Determining the microlens mass function from quasar microlensing statistics, Mon. Not. Roy. Astron. Soc. 320 (2001), 21-30. https://doi.org/10.1046/j.1365-8711.2001.03917.x
139. J.S. Wyithe, R.L. Webster, E.L. Turner, A measurement of the transverse velocity of Q 2237 + 0305, Mon. Not. Roy. Astron. Soc. 309 (1999), 261-272. https://doi.org/10.1046/j.1365-8711.1999.02844.x
140. J.S. Wyithe, R.L. Webster, E.L. Turner, Interpretation of the OGLE Q 2237 + 0305 microlensing light curve (1997-1999), Mon. Not. R. Astron. Soc. 318 (2000) 1120-1130. https://doi.org/10.1046/j.1365-8711.2000.03747.x
141. J.S. Wyithe, R.L. Webster, E.L. Turner, D.J. Mortlock, A gravitational microlensing determination of continuum source size in Q 2237 + 0305, Mon. Not. Roy. Astron. Soc. 315 (2000), 62-68. https://doi.org/10.1046/j.1365-8711.2000.03361.x
142. L. Wyrzykowski, S. Kozlowski, J. Skowron et al., The OGLE view of microlensing towards the Magellanic Clouds. I. A trickle of events in the OGLE-II LMC data, Mon. Not. Roy. Astron. Soc. 397 (2009), 1228-1242. https://doi.org/10.1111/j.1365-2966.2009.15029.x
143. L. Wyrzykowski, S. Kozlowski, J. Skowron, et al., The OGLE view of microlensing towards the Magellanic Clouds. II. OGLE-II Small Magellanic Cloud data, Mon. Not. Roy. Astron. Soc. 407 (2010), 189-200. https://doi.org/10.1111/j.1365-2966.2010.16936.x
144. L. Wyrzykowski, S. Kozlowski, J. Skowron et al., The OGLE View of Microlensing microlensing toward the Magellanic Clouds. III. Ruling out OGLE-III LMC data, Mon. Not. Roy. Astron. Soc. 413 (2011), 493-508. https://doi.org/10.1111/j.1365-2966.2010.18150.x
145. A. Yonehara, Evidence for a Source Size of Less than 2000 AU in Quasar 2237 + 0305, Astrophys. J. 548 (2001) L127-L130. https://doi.org/10.1086/319090
146. S.A. Zabel, J.B. Peterson, Extended Source Diffraction Effects near Gravitational Lens Fold Caustics, Astrophys. J. 594 (2003), 456-463. https://doi.org/10.1086/376896
147. A.F. Zakharov, Gravitational lenses and microlenses (Yanus-K, Moscow, 1997) (in Russian).
148. A.F. Zakharov, M.V. Sazhin, Non-compact astronomical objects as microlenses, Astron. Astrophys. 18 (1999), 27-38. https://doi.org/10.1080/10556799908203030
149. V.I. Zhdanov, The General Relativistic Potential of Astrometric Studies at Microarcsecond Level, in: Astronomical and Astrophysical Objectives of SubMilliarcsecond Optical Astrometry, Eds. E. Hog, P.K. Seidelmann (Dordrecht: Kluwer, 1995), P. 295-300. https://doi.org/10.1017/S0074180900228234
150. V.I. Zhdanov, Autocorrelation function of microlensed radio emission, Astronomy Lett. 25, Iss. 12 (1999), 793-796.
151. V.I. Zhdanov, A.N. Alexandrov, E.V. Fedorova, V.M. Sliusar, Analytical methods in gravitational microlensing, ISRN Astron. Astrophys. 2012 (2012), ID 906951, 21 p. https://doi.org/10.5402/2012/906951
152. V.I. Zhdanov, A.N. Alexandrov, S.A. Salata, Motion of images of microlensed extended sources: analytical relations and numerical estimates for moderate optical depths, Kinematika i Fizika Nebesnykh Tel. 16 (2000), 336-345 (in Russian).
153. V.I. Zhdanov, E.V. Fedorova, A.N. Alexandrov, Gravitational dragging of distant source images caused by Galaxy stars, Kinematika i Fizika Nebesnykh Tel. 20 (2004), 422-429 (in Russian).
154. V.I. Zhdanov, S.A. Salata, Motion of the image of a distant object microlensed by stars in a foreground galaxy, Kinematics Phys. Celest. Bodies. 14 (1998), 156-161.
155. V.I. Zhdanov, S.A. Salata, E.V. Fedorova, Background field effects in astrometric microlensing, Astron. Lett. 27 (2001), 562-567. https://doi.org/10.1134/1.1397737
156. V.I. Zhdanov, J. Surdej, Quasar pairs with arcminute angular separations, Astron. Astrophys. 372 (2001), 1-7. https://doi.org/10.1051/0004-6361:20010283
157. V.I. Zhdanov, V.V. Zhdanova, Analytical relations for time-dependent statistical microlensing, Astron. Astrophys. 299 (1995), 321-325.
158. A. Zitrin, T. Broadhurst, Y. Rephaeli, S. Sadeh, The Largest Gravitational Lens: MACS J 0717.5 + 3745 (z = 0.546), Astrophys. J. Lett. 707 (2009), L102-L106.
https://doi.org/10.1088/0004-637X/707/1/L102
CHAPTER 3.
1. C. Allende Prieto, M. Asplund, P. Fabiani Bendicho, Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations, Astron. And Astrophys. 423 (2004), 1109-1117. https://doi.org/10.1051/0004-6361:20047050
2. D. Alloin, S. Collin-Souffrin, M. Joly, L. Vigroux, Nitrogen and oxygen abundances in galaxies, Astron. and Astrophys. 78 (1979), 200-216.
3. N.V. Asari, R. Cid Fernandes, G. Stasi’nska et al., The history of star-formingalaxies in the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 381 (2007), 263-279. https://doi.org/10.1111/j.1365-2966.2007.12255.x
4. M. Asplund, N. Grevesse, A.J. Sauval, C. Allende Prieto, D. Kiselman, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance, Astron. and Astrophys. 417 (2004), 751-768. https://doi.org/10.1051/0004-6361:20034328
5. J.A. Baldwin, M.M. Phillips, R. Terlevich, Classification parameters for the emission-line spectra of extragalactic objects, Publ. Astron. Soc. Pacific. 93 (1981), 5-19. https://doi.org/10.1086/130766
6. A. Boselli, J. Lequeux, G. Gavazzi, Molecular gas in normal late type galaxies, Astron. and Astrophys. 384 (2002), 33-47. https://doi.org/10.1051/0004-6361:20011747
7. F. Bresolin, D.R. Garnett, R.C. Kennicutt, Jr., Abundances of metal-rich H II regions in M 51, Astrophys. J. 615 (2004), 228-241. https://doi.org/10.1086/424377
8. F. Bresolin, D. Schaerer, R.M. Gonz’alez Delgado, G. Stasi’nska, A VLT study of metal-rich extragalactic H II regions. I. Observations and empirical abundances, Astron. and Astrophys. 441 (2005), 981-997. https://doi.org/10.1051/0004-6361:20053369
9. F. Bresolin, The oxygen abundance in the inner H II regions of M 101. Implications for the calibration of strong-line metallicity indicators, Astrophys. J. 656 (2007), 186-197. https://doi.org/10.1086/510380
10. F. Bresolin, W. Gieren, R.-P. Kudritzki, G. Pietrzy’nski, M.A. Urbaneja, G. Carraro, Etragalactic chemical abundances: do H II regions and young stars tell the same story? The case of the spiral galaxy NGC 300, Astrophys. J. 700 (2009), 309-330. https://doi.org/10.1088/0004-637X/700/1/309
11. J. Brinchmann, S. Charlot, S.D.M. White, C. Tremonti, G. Kauffmann, T. Heckman, J. Brinkmann, The physical properties of star-forming galaxies in the lowredshift Universe, Mon. Not. Roy. Astron. Soc. 351 (2004), 1151-1179. https://doi.org/10.1111/j.1365-2966.2004.07881.x
12. F. Calura, A. Pipino, C. Chiappini, F. Matteucci, R. Maiolino, The evolution of the mass-metallicity relation in galaxies of different morphological types, Astron. and Astrophys. 504 (2009), 373-388. https://doi.org/10.1051/0004-6361/200911756
13. S.I.B. Cartledge, J.T. Lauroesch, D.M. Meyer, U.J. Sofia, The homogeneity of interstellar oxygen in the galactic disk, Astrophys. J. 613 (2004), 1037-1048. https://doi.org/10.1086/423270
14. B. Catinella, M.P. Haynes, R. Giovanelli, J.P. Gardner, A.J. Connolly, A pilot survey of H I in field galaxies at redshift z ∼ 0.2, Astrophys. J. 685 (2008), L13-L17. https://doi.org/10.1086/592328
15. B. Catinella, D. Schiminovich, G. Kauffmann et al., The GALEX Arecibo SDSS Survey – I. Gas fraction scaling relations of massive galaxies and first data release, Mon. Not. Roy. Astron. Soc. 403 (2010), 683-708. https://doi.org/10.1111/j.1365-2966.2009.16180.x
16. C. Chiappini, F. Matteucci, D. Romano, Abundance gradients and the formation of the Milky Way, Astrophys. J. 554 (2001), 1044-1058. https://doi.org/10.1086/321427
17. C. Chiappini, F. Matteucci, S.K. Ballero, The origin of nitrogen. Implications of recent measurements of N/O in Galactic metal-poor halo stars, Astron. And Astrophys. 437 (2005), 429-436. https://doi.org/10.1051/0004-6361:20042292
18. R. Cid Fernandes, N.V. Asari, L. Sodr’e, G. Stasi’nska, A. Mateus, J.P. TorresPapaqui, W. Schoenell, Uncovering the chemical enrichment and mass-assembly histories of star-forming galaxies, Mon. Not. Roy. Astron. Soc. 375 (2007), L16- L20. https://doi.org/10.1111/j.1745-3933.2006.00265.x
19. T. Contini, M.A. Treyer, M. Sullivan, R.S. Ellis, Chemical abundances in a UVselected sample of galaxies, Mon. Not. Roy. Astron. Soc. 330 (2002), 75-91. https://doi.org/10.1046/j.1365-8711.2002.05042.x
20. L.L. Cowie, A. Songaila, E.M. Hu, J.G. Cohen, New Iisight on galaxy formation and evolution from Keck spectroscopy of the Hawaii Deep Fields, Astron. J. 112 (1996), 839-864. https://doi.org/10.1086/118058
21. L.L. Cowie, A.J. Barger, An integrated picture of star formation, metallicity evolution, and galactic stellar mass assembly, Astrophys. J. 686 (2008), 72- 116. https://doi.org/10.1086/591176
22. N.R. Crockett, D.R. Garnett, P. Masey, G. Jacoby, Neon and oxygen abundances in M 33, Astrophys. J. 637 (2006), 741-751. https://doi.org/10.1086/498424
23. J.J. Dalcanton, The metallicity of galaxy disks: infall versus outflow, Astrophys. J. 658 (2007), 941-959. https://doi.org/10.1086/508913
24. J. Dunkley, E. Komatsu, M.R. Nolta et al., Five-year Wilkinson Microwave Anisotropy Probe observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. Ser. 180 (2009), 306-329. https://doi.org/10.1088/0067-0049/180/2/306
25. M.G. Edmunds, B.E.J. Pagel, Nitrogen synthesis and the “age” of galaxies, Mon. Not. Roy. Astron. Soc. 185 (1978), 77P-80P. https://doi.org/10.1093/mnras/185.1.77P
26. M.G. Edmunds, General constraints on the effect of gas flows in the chemical evolution of galaxies, Mon. Not. Roy. Astron. Soc. 246 (1990), 678-685.
27. S.L. Ellison, D.R. Patton, L. Simard, A.W. McConnachie, Galaxy pairs in the Sloan Digital Sky Survey. I. Star formation, active galactic nucleus fraction, and the luminosity/mass-metallicity relation, Astron. J. 135 (2008), 1877-1899. https://doi.org/10.1088/0004-6256/135/5/1877
28. R.I. Epstein, J.M. Lattimer, D.N. Schramm, The origin of deuterium, Nature 263 (1976), 198-202. https://doi.org/10.1038/263198a0
29. D.K. Erb, A.E. Shapley, M. Pettini, C.C. Steidel, N.A. Reddy, K.L. Adelberger, The mass-metallicity relation at z > 2, Astrophys. J. 644 (2006), 813-828. https://doi.org/10.1086/503623
30. C. Esteban, M. Peimbert, S. Torres-Peimbert, V. Escalante, Chemical composition of the Orion nebula derived from echelle spectrophotometry, Mon. Not. Roy. Astron. Soc. 295 (1998), 401-422. https://doi.org/10.1046/j.1365-8711.1998.01335.x
31. C. Esteban, M. Peimbert, J. Garc’ıa-Rojas, M.T. Ruiz, A. Peimbert, M. Rodr’ıgues, A reappraisal of the chemical composition of the Orion nebula based on Very Large Telescope echelle spectrophotometry, Mon. Notic. Roy. Astron. Soc. 355 (2004), 229-247.https://doi.org/10.1111/j.1365-2966.2004.08313.x
32. C. Esteban, J. Garc’ıa-Rojas, M. Peimbert, A. Peimbert, M.T. Ruiz, M. Rodr’ıguez, L. Carigi, Carbon and oxygen galactic gradients: observational values from H II region recombination lines, Astrophys. J. 618 (2005), L95-L98. https://doi.org/10.1086/426889
33. M. Fukugita, M. Kawasaki, Primordial helium abundance: a reanalysis of the Izotov-Thuan spectroscopic sample, Astrophys. J. 646 (2006), 691-695. https://doi.org/10.1086/505109
34. D.R. Garnett, G.A. Shields, The composition gradient across M 81, Astrophys. J. 317 (1987), 82-101. https://doi.org/10.1086/165257
35. D.R. Garnett, G.A. Shields, E.D. Skillman, S.P. Sagan, R.J. Dufour, Interstellar abundance gradients in NGC 2403: comparison to M 33, Astrophys. J. 489 (1997), 63-86. https://doi.org/10.1086/304775
36. D.R. Garnett, The luminosity-metallicity relation, effective yields, and metal loss in spiral and irregular galaxies, Astrophys. J. 581 (2002), 1019-1031. https://doi.org/10.1086/344301
37. M. Gavil’an, F. Buell, M. Moll’a, Low and intermediate mass star yields: the evolution of carbon abundances, Astron. and Astrophys. 432 (2005), 861-877. https://doi.org/10.1051/0004-6361:20041949
38. M. Gavil’an, M. Moll’a, F. Buell, Low and intermediate mass star yields. II. The evolution of nitrogen abundances, Astron. and Astrophys. 450 (2006), 509-521. https://doi.org/10.1051/0004-6361:20053590
39. N.G. Guseva, P. Papaderos, H.T. Meyer, Y.I. Izotov, K.J. Fricke, An investigation of the luminosity-metallicity relation for a large sample of low-metallicity emission-line galaxies, Astron. and Astrophys. 505 (2009), 63-72. https://doi.org/10.1051/0004-6361/200912414
40. R.B.C. Henry, M.G. Edmunds, J. K¨oppen, On the cosmic origin of carbon and nitrogen, Astrophys. J. 541 (2000), 660-674. https://doi.org/10.1086/309471
41. Y.I. Izotov, T.X. Thuan, V.A. Lipovetsky, The primordial helium abundance from a new sample of metal-deficient blue compact galaxies, Astrophys. J. 435 (1994), 647-667. https://doi.org/10.1086/174843
42. Y.I. Izotov, T.X. Thuan, V.A. Lipovetsky, The primordial helium abundance: systematic effects and a new determination, Astrophys. J. Suppl. Ser. 108 (1997), 1-39. https://doi.org/10.1086/312956
43. Y.I. Izotov, G. Stasi’nska, G. Meynet, N.G. Guseva, T.X. Thuan, The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey, Astron. and Astrophys. 448 (2006), 955-970. https://doi.org/10.1051/0004-6361:20053763
44. Y.I. Izotov, T.X. Thuan, G. Stasi’nska, The primordial abundance of 4He: a self-consistent empirical analysis of systematic effects in a large sample of lowmetallicity H II regions, Astrophys. J. 662 (2007), 15-38. https://doi.org/10.1086/513601
45. Y.I. Izotov, T.X. Thuan, MMT Observations of new extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey, Astrophys. J. 665 (2007), 1115-1128. https://doi.org/10.1086/519922
46. Y.I. Izotov, N.G. Guseva, K.J. Fricke, P. Papaderos, SBS 0335-052E +W: deep VLT/FORS+UVES spectroscopy of the pair of the lowest-metallicity blue compact dwarf galaxies, Astron. and Astrophys. 503 (2009), 61-72. https://doi.org/10.1051/0004-6361/200911965
47. Y.I. Izotov, T.X. Thuan, The primordial abundance of 4He: evidence for nonstandard Big Bang nucleosynthesis, Astrophys. J. 710 (2010), L67-L71. https://doi.org/10.1088/2041-8205/710/1/L67
48. I.D. Karachentsev, D.I. Makarov, W.K. Huchtmeier, HI properties of nearby galaxies from a volume-limited sample, Astron. and Astrophys. Suppl. Ser. 139 (1999), 97-103. https://doi.org/10.1051/aas:1999383
49. G. Kauffmann, T.M. Heckman, C. Tremonti et al., The host galaxies of active galactic nuclei, Mon. Not. Roy. Astron. Soc. 346 (2003), 1055-1077. https://doi.org/10.1111/j.1365-2966.2003.07154.x
50. L.J. Kewley, R.A. Jansen, M.J. Geller, Aperture Effects on Star Formation Rate, Metallicity, and Reddening, Publ. Astron. Soc. Pac. 117 (2005), 227-244. https://doi.org/10.1086/428303
51. J.P. Kneller, G. Steigman, BBN for pedestrians, New Journal of Physics 6 (2004), 117-244. https://doi.org/10.1088/1367-2630/6/1/117
52. E. Komatsu, J. Dunkley, M.R. Nolta et al., Five-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation, Astrophys. J. Suppl. Ser. 180 (2009), 330-376. https://doi.org/10.1088/0067-0049/180/2/330
53. E. Komatsu, K.M. Smith, J. Dunkley et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. Ser. 192 (2011), 18. https://doi.org/10.1088/0067-0049/192/2/18
54. F. Lamareille, M. Mouhcine, T. Contini, I. Lewis, S. Maddox, The luminosity- metallicity relation in the local Universe from the 2dF Galaxy Redshift Survey, Mon. Not. Roy. Astron. Soc. 350 (2004), 396-406. https://doi.org/10.1111/j.1365-2966.2004.07697.x
55. F. Lamareille, J. Brinchmann, T. Contini et al., Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. I. The evolution of the mass-metallicity relation up to z ∼ 0.9, Astron. and Astrophys. 495 (2009), 53-72. https://doi.org/10.1051/0004-6361:200810397
56. M.A. Lara-L’opez, J. Cepa, A. Bongiovanni et al., Study of star-forming galaxies in SDSS up to redshift 0.4. I. Metallicity evolution, Astron. and Astrophys. 505 (2009), 529-539. https://doi.org/10.1051/0004-6361/200912214
57. D. Larson, J. Dunkley, G. Hinshaw et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters, Astrophys. J. Suppl. Ser. 192 (2011), 16. https://doi.org/10.1088/0067-0049/192/2/16
58. R.B. Larson, Effects of supernovae on the early evolution of galaxies, Mon. Not. Roy. Astron. Soc. 169 (1974), 229-246. https://doi.org/10.1093/mnras/169.2.229
59. H. Lee, M.L. McCall, R.L. Kingsburgh, R. Ross, C.C. Stevenson, Uncovering additional clues to galaxy evolution. I. Dwarf irregular galaxies in the field, Astron. J. 125 (2003), 146-165. https://doi.org/10.1086/345384
60. J. Lequeux, M. Peimbert, J.F. Rayo, A. Serrano, S. Torres-Peimbert, Chemical composition and evolution of irregular and blue compact galaxies, Astron. And Astrophys. 80 (1979), 155-166.
61. S.J. Lilly, C.M. Carollo, A.N. Stockton, The metallicities of star-forming galaxies at intermediate redshifts 0.47 < z < 0.92, Astrophys. J. 597 (2003), 730-750. https://doi.org/10.1086/378389
62. A.R. L’opez-S’anchez, C. Esteban, Massive star formation in Wolf-Rayet galaxies. ‘ IV. Colours, chemical composition analysis and metallicity-luminosity relations, Astron. and Astrophys. 517 (2010), A85. https://doi.org/10.1051/0004-6361/201014156
63. A. Maeder, Stellar yields as a function of initial metallicity and mass limit for black hole formation, Astron. and Astrophys. 264 (1992), 105-120.
64. R. Maiolino, T. Nagao, A. Grazian et al., AMAZE. I. The evolution of the massmetallicity relation at z > 3, Astron. and Astrophys. 488 (2008), 463-479. https://doi.org/10.1051/0004-6361:200809678
65. P. Marigo, Chemical yields from low- and intermidiate-mass stars: Models predictions and basic observational constraints, Astron. and Astrophys. 370 (2001), 194-217. https://doi.org/10.1051/0004-6361:20000247
66. F. Matteucci, M. Tosi, Nitrogen and oxygen evolution in dwarf irregular galaxies, Mon. Not. Roy. Astron. Soc. 217 (1985), 391-405. https://doi.org/10.1093/mnras/217.2.391
67. F. Matteucci, P. Fran¸cois, Galactic chemical evolution – Abundance gradients of individual elements, Mon. Not. Roy. Astron. Soc. 239 (1989), 885-904.https://doi.org/10.1093/mnras/239.3.885
68. S.S. McGaugh, W.J.G. de Blok, Gas mass fractions and the evolution of spiral galaxies, Astrophys. J. 481 (1997), 689-702. https://doi.org/10.1086/304100
69. J. Melbourne, J.J. Salzer, Metal abundances of KISS galaxies. I. Coarse metal abundances and the metallicity-luminosity relation, Astron. J. 123 (2002), 2302-2311. https://doi.org/10.1086/339834
70. J. Mel’endez, A low solar oxygen abundance from the first-overtone OH lines, Astrophys. J. 615 (2004), 1042-1047. https://doi.org/10.1086/424591
71. D.M. Meyer, M. Jura, J.A. Cardelli, The definitive abundance of interstellar oxygen, Astrophys. J. 493 (1998), 222-229. https://doi.org/10.1086/305128
72. J. Moustakas, R.C. Kennicutt, Jr., C.A. Tremonti, D.A. Dale, J.-D.T. Smith, D. Calzetti, Optical spectroscopy and nebular oxygen abundances of the SPITZER/SING galaxies, Astrophys. J. Suppl. Ser. 190 (2010), 233-266. https://doi.org/10.1088/0067-0049/190/2/233
73. C.M. Oliveira, J. Dupius, P. Chayer, H.W. Moos, O/H in the local bubble, Astrophys. J. 625 (2005), 232-241. https://doi.org/10.1086/429582
74. B.E.J. Pagel, M.G. Edmunds, D.E. Blackwell, M.S. Chun, G. Smith, On the composition of H II regions in southern galaxies – I. NGC 300 and 1365, Mon. Not. Roy. Astron. Soc. 189 (1979), 95-113. https://doi.org/10.1093/mnras/189.1.95
75. B.E.J. Pagel, E.A. Simonson, R.J. Terlevich, M.G. Edmunds, The primordial helium abundance from observations of extragalactic H II regions, Mon. Notic. Roy. Astron. Soc. 255 (1992), 325-345. https://doi.org/10.1093/mnras/255.2.325
76. B.E.J. Pagel, Nucleosynthesis and chemical evolution of galaxies (Cambridge University Press, Cambridge, 1997), 392 p.
77. M. Peimbert, S. Torres-Peimbert, Chemical composition of H II regions in the Large Magellanic Cloud and its cosmological implications, Astrophys. J. 193 (1974), 327-333. https://doi.org/10.1086/153166
78. M. Peimbert, S. Torres-Peimbert, Chemical composition of H II regions in the Small Magellanic Cloud and the pregalactic helium abundance, Astrophys. J. 203 (1976), 581 – 586. https://doi.org/10.1086/154114
79. M. Peimbert, V. Luridiana, A. Peimbert, Revised primordial helium abundance based on new atomic data, Astrophys. J. 666 (2007), 636-646. https://doi.org/10.1086/520571
80. T.M.D. Pereira, M. Asplund, D. Kiselman, Oxygen lines in solar granulation. II. Centre-to-limb variation, NLTE line formation, blends, and the solar oxygen abundance, Astron. and Astrophys. 508 (2009), 1403-1416. https://doi.org/10.1051/0004-6361/200912840
81. M. Pettini, B.E.J. Pagel, [O III]/[N II] as an abundance indicator at high redshift, Mon. Notic. Roy. Astron. Soc. 348 (2004), L59-L63. https://doi.org/10.1111/j.1365-2966.2004.07591.x
82. M. Pettini, B.J. Zych, M.T. Murphy, A. Lewis, C.C. Steidel, Deuterium abundance in the most metal-poor damped Lyα system: converging on Ωb,0h2, Mon. Notic. Roy. Astron. Soc. 391 (2008), 1499-1510. https://doi.org/10.1111/j.1365-2966.2008.13921.x
83. L.S. Pilyugin, The evolution of nitrogen and oxygen abundances in dwarf irregular galaxies, Astron. and Astrophys. 260 (1992), 58-66.
84. L.S. Pilyugin, On the evolution of helium, nitrogen and oxygen abundances in dwarf irregular galaxies, Astron. and Astrophys. 277 (1993), 42-52.
85. L.S. Pilyugin, On the evolution of helium, nitrogen and oxygen abundances in dwarf irregular galaxies, Astronomy Reports 38 (1994), 735-741.
86. L.S. Pilyugin, The chemical evolution of irregular galaxies with mass loss, Astron. and Astrophys. 287 (1994), 387-389.
87. L.S. Pilyugin, M.G. Edmunds, Chemical evolution of the Milky Way Galaxy. I. On the infall model of galactic chemical evolution, Astron. and Astrophys. 313 (1996), 783-791.
88. L.S. Pilyugin, M.G. Edmunds, Chemical evolution of the Milky Way Galaxy. II. On the origin of scatter in the age-metallicity relation, Astron. and Astrophys. 313 (1996), 792-802.
89. L.S. Pilyugin, F. Ferrini, On the oxygen abundance deficiency in spiral galaxies, Astron. and Astrophys. 336 (1998), 103-115.
90. L.S. Pilyugin, On the origin of nitrogen in low-metallicity galaxies. Blue compact galaxies versus damped Lyα absorbers, Astron. and Astrophys. 346 (1999), 428-431.
91. L.S. Pilyugin, On the oxygen abundance determination in H II regions. The problem of the line intensities – oxygen abundance calibration, Astron. And Astrophys. 362 (2000), 325-332.
92. L.S. Pilyugin, F. Ferrini, The oxygen abundance deficiency in irregular galaxies, Astron. and Astrophys. 354 (2000), 874-880.
93. L.S. Pilyugin, F. Ferrini, On the origin of the luminosity-metallicity relation for late type galaxies. Spirals to irregulars transition, Astron. and Astrophys. 358 (2000), 72-76.
94. L.S. Pilyugin, On the oxygen abundance determination in H II regions. Highmetallicity regions, Astron. and Astrophys. 369 (2001), 594-604. https://doi.org/10.1051/0004-6361:20010079
95. L.S. Pilyugin, Oxygen abundances in dwarf irregular galaxies and the metallicity-luminosity relationship, Astron. and Astrophys. 374 (2001), 412-420. https://doi.org/10.1051/0004-6361:20010732
96. L.S. Pilyugin, The oxygen abundance distribution in M 101, Astron. And Astrophys. 373 (2001), 56-62. https://doi.org/10.1051/0004-6361:20010598
97. L.S. Pilyugin, The bends in the slopes of radial abundance gradients in the disks of spiral galaxies – Do they exist?, Astron. and Astrophys. 397 (2003), 109-114. https://doi.org/10.1051/0004-6361:20021505
98. L.S. Pilyugin, Abundance determinations in H II regions. Model fitting versus Te method, Astron. and Astrophys. 399 (2003), 1003-1007. https://doi.org/10.1051/0004-6361:20021669
99. L.S. Pilyugin, F. Ferrini, R.V. Shkvarun, On the oxygen abundance in our Galaxy, Astron. and Astrophys. 401 (2003), 557-563. https://doi.org/10.1051/0004-6361:20030139
100. L.S. Pilyugin, T.X. Thuan, J.M. V’ilchez, On the origin of nitrogen, Astron. And Astrophys. 397 (2003), 487-501. https://doi.org/10.1051/0004-6361:20021458
101. L.S. Pilyugin, J.M. V’ilchez, T. Contini, Oxygen and nitrogen abundances in nearby galaxies. Correlations between oxygen abundance and macroscopicproperties, Astron. and Astrophys. 425 (2004), 849-869. https://doi.org/10.1051/0004-6361:20034522
102. L.S. Pilyugin, On the relationship between auroral and nebular oxygen line intensities in spectra of H II regions, Astron. and Astrophys. 436 (2005), L1-L4. https://doi.org/10.1051/0004-6361:200500108
103. L.S. Pilyugin, T.X. Thuan, Oxygen abundance determination in H II regions: the strong line intensities – abundance calibration revisited, Astrophys. J. 631 (2005), 231-243. https://doi.org/10.1086/432408
104. L.S. Pilyugin, T.X. Thuan, J.M. V’ilchez, Oxygen abundances in the most oxygen-rich spiral galaxies, Mon. Not. Roy. Astron. Soc. 367 (2006), 1139-1146. https://doi.org/10.1111/j.1365-2966.2006.10033.x
105. L.S. Pilyugin, T.X. Thuan, J.M. V’ilchez, On the maximum value of the cosmic abundance of oxygen and the oxygen yield, Mon. Not. Roy. Astron. Soc. 376 (2007), 353-360. https://doi.org/10.1111/j.1365-2966.2007.11444.x
106. L.S. Pilyugin, J.M. V’ilchez, T.X. Thuan, New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions, Astrophys. J. 720 (2010), 1738-1751. https://doi.org/10.1088/0004-637X/720/2/1738
107. L.S. Pilyugin, T.X. Thuan, Galaxy Downsizing and the Redshift Evolution of Oxygen and Nitrogen Abundances: Origin of the Scatter in the N/H-O/H Diagram, Astrophys. J. 762 (2011),L23-L28. https://doi.org/10.1088/2041-8205/726/2/L23
108. L.S. Pilyugin, L. Mattsson, Abundance determination in H II regions from spectra without the [O II] λ3727 + λ3729 line, Mon. Not. Roy. Astron. Soc. 412 (2011), 1145-1150. https://doi.org/10.1111/j.1365-2966.2010.17970.x
109. S.A. Pustilnik, A.L. Tepliakova, A.Y. Kniazev, J.-M. Martin, A.N. Burenkov, SDSS J 092609.45 + 334304.1: a nearby unevolved galaxy, Mon. Not. Roy. Astron. Soc. 401 (2010), 333-341. https://doi.org/10.1111/j.1365-2966.2009.15637.x
110. A. Renzini, M. Voli, Advanced evolutionary stages of intermediate-mass stars. I. Evolution of surface compositions, Astron. and Astrophys. 94 (1981), 175- 193.
111. M.G. Richer, M.L. McCall, Oxygen abundances in diffuse ellipticals and themetallicity-luminosity relations for dwarf galaxies, Astrophys. J. 445 (1995), 642-659. https://doi.org/10.1086/175727
112. M.G. Richer, M.L. McCall, Bright Planetary Nebulae and their Progenitors in Galaxies Without Star Formation, Astrophys. J. 684 (2008), 1190-1209. https://doi.org/10.1086/590333
113. D. Romano, C. Chiappini, F. Matteucci, M. Tosi, Quantifying the uncertainties of chemical evolution studies. I. Stellar lifetimes and initial mass function, Astron. and Astrophys. 430 (2005), 491-505. https://doi.org/10.1051/0004-6361:20048222
114. E.E. Salpeter, G.L. Hoffman, Correlation statistics of irregular and spiral galaxies mapped in H I, Astrophys. J. 465 (1996), 595-607. https://doi.org/10.1086/177445
115. A. Sandage, Star formation rates, galaxy morphology, and the Hubble sequence, Astron. and Astrophys. 161 (1986), 89-101.
116. S. Savaglio, K. Glazebrook, D. Le Borgne et al., The Gemini deep deep survey. VII. The redshift evolution of the mass-metallicity relation, Astrophys. J. 635 (2005), 260-279.https://doi.org/10.1086/497331
117. P. Scott, M. Asplund, N. Grevesse, A.J. Sauval, On the Solar Nickel and Oxygen Abundances, Astrophys. J. 691 (2009), L119-L122. https://doi.org/10.1088/0004-637X/691/2/L119
118. L. Searle, Evidence for composition gradients across the disks of spiral galaxies, Astrophys. J. 168 (1971), 327-341. https://doi.org/10.1086/151090
119. L. Searle, W.L.W. Sargent, Inferences from the composition of two dwarf blue galaxies, Astrophys. J. 173 (1972), 25-33. https://doi.org/10.1086/151398
120. P.A. Shaver, R.X. McGee, L.M. Newton, A.C. Danks, S.R. Pottasch, The galactic abundance gradient, Mon. Not. Roy. Astron. Soc. 204 (1983), 53-112. https://doi.org/10.1093/mnras/204.1.53
121. V. Simha, G. Steigman, Constraining the early-Universe baryon density and expansion rate, Journal of Cosmology and Astroparticle Physics 6 (2008), 16. https://doi.org/10.1088/1475-7516/2008/06/016
122. S. Sim’on-D’iaz, A. Herrero, C. Esteban, F. Najarro, Detailed spectroscopic analysis of the Trapezium cluster stars inside the Orion nebula. Rotationalvelocities, stellar parameters, and oxygen abundances, Astron. and Astrophys. 448 (2006), 351-366. https://doi.org/10.1051/0004-6361:20053066
123. E.D. Skillman, R.C. Kennicutt, Jr., P.W. Hodge, Oxygen abundances in nearby dwarf irregular galaxies, Astrophys. J. 347 (1989), 875-882. https://doi.org/10.1086/168178
124. H.E. Smith, Spectrophotometric observations of ionized hydrogen regions in nearby spiral and irregular galaxies, Astrophys. J. 199 (1975), 591-610. https://doi.org/10.1086/153727
125. U.J. Sofia, D.M. Meyer, Interstellar abundance standards revisited, Astrophys. J. 554 (2001), L221-L224. https://doi.org/10.1086/321715
126. D.N. Spergel, R. Bean, O. Dor’e et al., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology, Astrophys. J. Suppl. Ser. 170 (2007), 377-408. https://doi.org/10.1086/513700
127. G. Steigman, Primordial nucleosynthesis: successes and challenges, International Journal of Modern Physics E 15 (2006), 1-35. https://doi.org/10.1142/S0218301306004028
128. G. Steigman, Primordial nucleosynthesis in the precision cosmology era, Annual Review of Nuclear and Particle Systems 57 (2007), 463-491. https://doi.org/10.1146/annurev.nucl.56.080805.140437
129. G. Steigman, Neutrinos and BBN (and the CMB), 2008, astro-ph. 0807.3004.
130. G. Steigman, Primordial helium and the cosmic background radiation, Journalof Cosmology and Astroparticle Physics. 4 (2010), 29. https://doi.org/10.1088/1475-7516/2010/04/029
131. G. Steigman, Primordial nucleosynthesis: A cosmological probe, in: Light Elements in the Universe, Proceedings of the IAU Symposium, edited by C. Charbonnel, M. Tosi, F. Primas, C. Chiappini, 268 (2010), p. 19-26.https://doi.org/10.1017/S1743921310003819
132. G. Steigman, Primordial Nucleosynthesis: The Predicted and Observed Abundances and Their Consequences, 2010, astro-ph 1008.4765. https://doi.org/10.22323/1.100.0001
133. T.X. Thuan, L.S. Pilyugin, I.A. Zinchenko, The redshift evolution of oxygen and nitrogen abundances in emission-line SDSS galaxies, Astrophys. J. 712 (2010), 1029-1048. https://doi.org/10.1088/0004-637X/712/2/1029
134. M. Tosi, Models of galactic chemical evolution: the problem of uniqueness, Astron. and Astrophys. 197 (1988), 33-46.
135. M. Tosi, The effect of metal-rich infall on galactic chemical evolution, Astron. and Astrophys. 197 (1988), 47-51.
136. C.A. Tremonti, T.M. Heckman, G. Kauffmann et al., The origin of the mass- metallicity relation: insight from 53000 star-forming galaxies in the Sloan Digital Sky Survey, Astrophys. J. 613 (2004), 898-913. https://doi.org/10.1086/423264
137. L.B. van den Hoek, M.A.T. Groenewegen, New theoretical yields of intermediate mass stars, Astron. and Astrophy. Suppl. Ser. 123 (1997), 305-328. https://doi.org/10.1051/aas:1997162
138. L. van Zee, J.J. Salzer, M.P. Haynes, A.A. O’Donoghue, T.J. Balonek, Spectroscopy of outlying H II regions in spiral galaxies: abundances and radial gradients, Astron. J. 116 (1998), 2805-2833. https://doi.org/10.1086/300647
139. L. van Zee, M.P. Haynes, Oxygen and Nitrogen in Isolated Dwarf Irregular Galaxies, Astrophys. J. 636 (2006), 214-239. https://doi.org/10.1086/498017
140. M.B. Vila-Costas, M.G. Edmunds, The relation between abundance gradients and physical properties of spiral galaxies, Mon. Not. Roy. Astron. Soc. 259(1992), 121-145. https://doi.org/10.1093/mnras/259.1.121
141. D.G. York, J. Adelman, J.E. Anderson et al., The Sloan Digital Sky Survey: technical summary, Astron. J. 120 (2000), 1579-1587. https://doi.org/10.1086/301513
142. D. Zaritsky, R.C. Kennicutt, Jr., J.P. Huchra, H II regions and the abundance properties of spiral galaxies, Astrophys. J. 420 (1994), 87-109. https://doi.org/10.1086/173544
CHAPTER 4.
1. L.A. Aguilar, D. Merritt, The structure and dynamics of galaxies formed by cold dissipationless collapse, Astrophys. J. 354 (1990), 33-51. https://doi.org/10.1086/168665
2. C. Alcock, C.W. Akerlof, R.A. Allsman, T.S. Axelrod, D.P. Bennett et al., Possible gravitational microlensing of a star in the Large Magellanic Cloud, Nature 365 (1993), 621-623. https://doi.org/10.1038/365621a0
3. M. Alongi, G. Bertelli, A. Bressan, C. Chiosi, F. Fagotto et al., Evolutionary sequences of stellar models with semiconvection and convective overshoot. I – Z = 0.008, Astron. Astrophys. Supp. 97 (1993), 851-871.
4. E. Bajaja, W.K. Huchtmeier, U. Klein, The extended HI halo in NGC 4449, Astron. Astrophys. 285 (1994), 385-388.
5. D.S. Balsara, von Neumann stability analysis of smooth particle hydrodynamics-suggestions for optimal algorithms, Journal of Computational Physics 121 (1995), 357-372. https://doi.org/10.1016/S0021-9991(95)90221-X
6. J.M. Bardeen, J.R. Bond, N. Kaiser, A.S. Szalay, The statistics of peaks of Gaussian random fields, Astrophys. J. 304 (1986), 15-61. https://doi.org/10.1086/164143
7. M. C. Begelman, C. F. McKee, Global effects of thermal conduction on twophase media, Astrophys. J. 358, (1990) 375-391. https://doi.org/10.1086/168994
8. C.L. Bennett, N.W. Boggess, M.G. Hauser, J.C. Mather, G.F. Smoot et al., Recent Results from COBE, in The Environment and Evolution of Galaxies, edited by J.M. Shull & H.A. Thronson, volume 188 of Astrophysics and Space Science Library (1993), pp. 27-58. https://doi.org/10.1007/978-94-011-1882-8_2
9. P. Berczik, SPH code for dynamical and chemical evolution of disk galaxies, ArXiv Astrophysics e-prints: astro-ph/9807059.
10. P. Berczik, Chemo-Dynamical Evolution of Disk Galaxies, Smoothed Particles Hydrodynamics Approach, Astrophys. Sp. Sci. 265 (1999), 473-477. https://doi.org/10.1023/A:1002123019106
11. P. Berczik, Chemo-dynamical smoothed particle hydrodynamic code for evolution of star forming disk galaxies, Astron. Astrophys. 348 (1999), 371-380.
12. P. Berczik, Modeling the Star Formation in Galaxies Using the ChemoDynamical SPH Code, Astrophys. Sp. Sci. 271 (2000), 103-126. https://doi.org/10.1023/A:1002485702347
13. P. Berczik, G. Hensler, C. Theis, R. Spurzem, Chemodynamical Modelling of Galaxy Formation and Evolution, Astrophys. Sp. Sci. 281 (2002), 297-300. https://doi.org/10.1023/A:1019582231255
14. P. Berczik, G. Hensler, C. Theis, R. Spurzem, A multi-phase chemo-dynamical SPH code for galaxy evolution. Testing the code, Astrophys. Sp. Sci. 284 (2003), 865-868. https://doi.org/10.1023/A:1024085909715
15. P. Berczik, I.G. Kolesnik, Gasodynamical model of the triaxial protogalaxy collapse, Astronomical and Astrophysical Transactions 16 (1998), 163-185. https://doi.org/10.1080/10556799808208155
16. P. Berczik, S.G. Kravchuk, 3D Modelling of Forming Galaxies; The History of Star Formation Activity, Astrophys. Sp. Sci. 245 (1996), 27-42. https://doi.org/10.1007/BF00637801
17. P. Berczik, S.G. Kravchuk, On the Galactic Baryonic Halo, Astronomical and Astrophysical Transactions 14 (1997), 61-64. https://doi.org/10.1080/10556799708213572
18. P. Berczik, S.G. Kravchuk, Dissipative N-body code for galactic evolution, Astronomical and Astrophysical Transactions 18 (2000), 829-838. https://doi.org/10.1080/10556790008208177
19. P.P. Berczik, I.G. Kolesnik, Particle orbits in triaxial potentials of two ellipsoids, Kinematics and Physics of Celestial Bodies 9 (1993), 51-64.
20. P.P. Berczik, I.G. Kolesnik, Smoothed particle hydrodynamics and its application to astrophysical problems, Kinematics and Physics of Celestial Bodies 9 (1993), 1-11.
21. P.P. Berczik, I.G. Kolesnik, Dynamical collapse of isothermal and adiabatic triaxial protogalaxies, Kinematics and Physics of Celestial Bodies 12 (1996), 13- 26.
22. P.P. Berczik, S.G. Kravchuk, Galaxy as a dynamical system with accreting cold gaseous halo, Kinematics and Physics of Celestial Bodies 13 (1997), 32-38.
23. P.P. Berczik, S.G. Kravchuk, Three-dimensional simulation of the evolution of protogalaxies. Rapidly rotating objects, Kinematics and Physics of Celestial Bodies 13 (1997), 51-60.
24. P.P. Berczik, M.I. Petrov, Analysis of the star formation modeling algorithm in the hydrodynamic SPH code, Kinematics and Physics of Celestial Bodies 17 (2001), 153-161.
25. P.P. Berczik, N.I. Petrov, Calculation of the SSP chemical evolution, Kinematics and Physics of Celestial Bodies 19 (2003), 23-33.
26. G. Bertelli, A. Bressan, C. Chiosi, F. Fagotto, E. Nasi, Theoretical isochrones from models with new radiative opacities, Astron. Astrophys. Suppl. Ser. 106 (1994), 275-302.
27. F. Bertola, M. Vietri, W.W. Zeilinger, Triaxiality in disk galaxies, Astrophys. J. Lett. 374 (1991), L13-L16. https://doi.org/10.1086/186060
28. O. Bienaym’e, The local stellar velocity distribution of the Galaxy. Galactic structure and potential, Astron. Astrophys. 341 (1999), 86-97.
29. J. Binney, On the rotation of elliptical galaxies, Mon. Not. Roy. Astron. Soc. 183 (1978), 501-514. https://doi.org/10.1093/mnras/183.3.501
30. J. Binney, Testing for triaxiality with kinematic data, Mon. Not. Roy. Astron. Soc. 212 (1985), 767-781. https://doi.org/10.1093/mnras/212.4.767
31. J. Binney, WARPS, Annu. Rev. Astron. Astrophys. 30 (1992), 51-74. https://doi.org/10.1146/annurev.aa.30.090192.000411
32. G.S. Bisnovatyi-Kogan, R.A. Syunyaev, Quasars and the Nuclei of Galaxies: A Single Object or a Star Cluster?, Sov. Astron. 16 (1972), 201-208.
33. L. Blitz, D.N. Spergel, Direct evidence for a bar at the Galactic center, Astrophys. J. 379 (1991), 631-638. https://doi.org/10.1086/170535
34. L. Blitz, D.N. Spergel, The shape of the Galaxy, Astrophys. J. 370 (1991), 205-224. https://doi.org/10.1086/169806
35. A. Bressan, C. Chiosi, F. Fagotto, Spectrophotometric evolution of elliptical galaxies. 1: Ultraviolet excess and color-magnitude-redshift relations, Astrophys. J. Suppl. Ser. 94 (1994), 63-115. https://doi.org/10.1086/192073
36. A. Bressan, F. Fagotto, G. Bertelli, C. Chiosi, Evolutionary sequences of stellar models with new radiative opacities. II – Z = 0.02, Astron. Astrophys. Suppl. Ser. 100 (1993), 647-664.
37. A. Burkert, The Structure of Dark Matter Halos in Dwarf Galaxies, Astrophys. J. Lett. 447 (1995), L25-L28. https://doi.org/10.1086/309560
38. J.M. Cannon, E.D. Skillman, K.R. Sembach, D.J. Bomans, Probing the Multiphase Interstellar Medium of the Dwarf Starburst Galaxy NGC 625 with Far Ultraviolet Spectroscopic Explorer Spectroscopy, Astrophys. J. 618 (2005), 247-258. https://doi.org/10.1086/425897
39. G. Carraro, C. Lia, C. Chiosi, Galaxy formation and evolution – I. The Padua tree-sph code (pd-sph), Mon. Not. Roy. Astron. Soc. 297 (1998), 1021-1040. https://doi.org/10.1046/j.1365-8711.1998.2970041021.x
40. S. Chandrasekhar, Ellipsoidal figures of equilibrium (Mir, Moscow, 1973), p. 243.
41. A.D. Chernin, The nature of the angular momentum of galaxies: The hydrodynamical theory, Astron. Astrophys. 267 (1993), 315-336.
42. R. Courant, K.O. Friedrichs, Supersonic flow and shock waves (Interscience Publishers, New York, 1948).
43. L.L. Cowie, C.F. McKee, J.P. Ostriker, Supernova remnant revolution in an inhomogeneous medium. I – Numerical models, Astrophys. J. 247 (1981), 908-924.https://doi.org/10.1086/159100
44. A. Curir, A. Diaferio, Angular momentum redistribution and spin tilt during Nbody collapse: phenomenological implications, Astron. Astrophys. 285 (1994), 389-392.
45. A. Dalgarno, R. A. McCray, Heating and Ionization of HI Regions, Annu. Rev. Astron. Astrophys. 10 (1972), 375-424. https://doi.org/10.1146/annurev.aa.10.090172.002111
46. A. Dar, Baryonic Dark Matter and Big Bang Nucleosynthesis, Astrophys. J. 449 (1995), 550-553. https://doi.org/10.1086/176078
47. B. Dauphole, J. Colin, Globular clusters as a new constraint for the potential of our Galaxy., Astron. Astrophys. 300 (1995), 117-125.
48. J.I. Davies, Searching for Hidden Galaxies, in The Environment and Evolution of Galaxies, edited by J.M. Shull & H.A. Thronson, volume 188 of Astrophysics and Space Science Library (1993), pp. 105-126. https://doi.org/10.1007/978-94-011-1882-8_6
49. F. de Paolis, G. Ingrosso, P. Jetzer, M. Roncadelli, A scenario for a baryonic dark halo, Astron. Astrophys. 295 (1995), 567-570.
50. A. de Rujula, P. Jetzer, E. Masso, On the Nature of the Dark Halo of Our Galaxy, Astron. Astrophys. 254 (1992), 99-104.
51. T. de Zeeuw, M. Franx, Structure and dynamics of elliptical galaxies, Annu. Rev. Astron. Astrophys. 29 (1991), 239-274. https://doi.org/10.1146/annurev.aa.29.090191.001323
52. R. Duerr, C.L. Imhoff, C.J. Lada, Star formation in the Lambda Orionis region. I – The distribution of young objects, Astrophys. J. 261 (1982), 135-150. https://doi.org/10.1086/160325
53. B. Edvardsson, J. Andersen, B. Gustafsson, D.L. Lambert, P.E. Nissen et al., The Chemical Evolution of the Galactic Disk – Part One – Analysis and Results, Astron. Astrophys. 275 (1993), 101-150.
54. D.J. Eisenstein, A. Loeb, An analytical model for the triaxial collapse of cosmological perturbations, Astrophys. J. 439 (1995), 520-541. https://doi.org/10.1086/175193
55. A.E. Evrard, Beyond N-body – 3D cosmological gas dynamics, Mon. Not. Roy. Astron. Soc. 235 (1988), 911-934. https://doi.org/10.1093/mnras/235.3.911
56. K.M. Ferriere, The hot gas filling factor in the vicinity of the Sun, Astrophys. J. 441 (1995), 281-299. https://doi.org/10.1086/175355
57. C. Flynn, B. Fuchs, Density of dark matter in the Galactic disk, Mon. Not. Roy. Astron. Soc. 270 (1994), 471-479. https://doi.org/10.1093/mnras/270.3.471
58. M. Franx, G. Illingworth, T. de Zeeuw, The ordered nature of elliptical galaxies: Implications for their intrinsic angular momenta and shapes, Astrophys. J. 383 (1991), 112-134. https://doi.org/10.1086/170769
59. M. Franx, G. Illingworth, T. Heckman, Major and minor axis kinematics of 22 ellipticals, Astrophys. J. 344 (1989), 613-636.https://doi.org/10.1086/167830
60. C.S. Frenk, S.D.M. White, M. Davis, G. Efstathiou, The formation of dark halos in a universe dominated by cold dark matter, Astrophys. J. 327 (1988), 507-525. https://doi.org/10.1086/166213
61. D. Friedli, W. Benz, Secular evolution of isolated barred galaxies. II. Coupling between stars and interstellar medium via star formation, Astron. Astrophys. 301 (1995), 649-665.
62. T. Fukushige, J. Makino, A. Kawai, GRAPE-6A: A Single-Card GRAPE-6 for Parallel PC-GRAPE Cluster Systems, Publ. Astron. Soc. Jap. 57 (2005), 1009- 1021. https://doi.org/10.1093/pasj/57.6.1009
63. L. Greggio, A. Renzini, The binary model for type I supernovae – Theoretical rates, Astron. Astrophys. 118 (1983), 217-222.
64. S. Harfst, C. Theis, G. Hensler, Modelling galaxies with a 3d multi-phase ISM, Astron. Astrophys. 449 (2006), 509-518. https://doi.org/10.1051/0004-6361:20042190
65. R.N. Henriksen, L.M. Widrow, Hydrogen clouds and the MACHO/EROS events, Astrophys. J. 441 (1995), 70-76. https://doi.org/10.1086/175336
66. G. Hensler, A. Rieschick, Star Formation in Dwarf Irregular Galaxies: From Selfregulation to Starbursts (Invited), in Modes of Star Formation and the Origin of Field Populations, edited by E.K. Grebel & W. Brandner, volume 285 of Astronomical Society of the Pacific Conference Series (2002), pp. 341-348.
67. L. Hernquist, N. Katz, TREESPH – A unification of SPH with the hierarchical tree method, Astrophys. J. Suppl. Ser. 70 (1989), 419-446. https://doi.org/10.1086/191344
68. N. Hiotelis, N. Voglis, Smooth particle hydrodynamics with locally readjustable resolution in the collapse of a gaseous protogalaxy, Astron. Astrophys. 243 (1991), 333-340.
69. N. Hiotelis, N. Voglis, G. Contopoulos, Hydrodynamics in a collapsing gaseous protogalaxy, Astron. Astrophys. 242 (1991), 69-76.
70. G. Illingworth, Rotation in 13 elliptical galaxies, Astrophys. J. Lett. 218 (1977), L43-L47. https://doi.org/10.1086/182572
71. Y.I. Izotov, Helium abundances in the most metal-deficient dwarf galaxies, in The Low Surface Brightness Universe, edited by J.I. Davies, C. Impey, & S. Phillips, volume 170 of Astronomical Society of the Pacific Conference Series (1999), pp. 390-392. https://doi.org/10.1017/S0252921100054609
72. N. Katz, Dissipational galaxy formation. II – Effects of star formation, Astrophys. J. 391 (1992), 502-517. https://doi.org/10.1086/171366
73. N. Katz, J.E. Gunn, Dissipational galaxy formation. I – Effects of gasdynamics, Astrophys. J. 377 (1991), 365-381. https://doi.org/10.1086/170367
74. J. Koppen, C. Theis, G. Hensler, Condensation and evaporation of interstellar clouds in chemodynamical models of galaxies, Astron. Astrophys. 331 (1998), 524-534.
75. J. Kormendy, S. Djorgovski, Surface photometry and the structure of elliptical galaxies, Annu. Rev. Astron. Astrophys. 27 (1989), 235-277. https://doi.org/10.1146/annurev.aa.27.090189.001315
76. A.V. Kravtsov, A.A. Klypin, J.S. Bullock, J.R. Primack, The Cores of Dark Matter-dominated Galaxies: Theory versus Observations, Astrophys. J. 502 (1998), 48-58. https://doi.org/10.1086/305884
77. P. Kroupa, C.A. Tout, G. Gilmore, The distribution of low-mass stars in the Galactic disc, Mon. Not. Roy. Astron. Soc. 262 (1993), 545-587. https://doi.org/10.1093/mnras/262.3.545
78. K. Kuijken, G. Gilmore, The mass distribution in the galactic disc. I – A technique to determine the integral surface mass density of the disc near the sun, Mon. Not. Roy. Astron. Soc. 239 (1989), 571-603. https://doi.org/10.1093/mnras/239.2.571
79. R.B. Larson, A model for the formation of a spherical galaxy, Mon. Not. Roy. Astron. Soc. 145 (1969), 405-422. https://doi.org/10.1093/mnras/145.4.405
80. R.B. Larson, Turbulence and star formation in molecular clouds, Mon. Not. Roy. Astron. Soc. 194 (1981), 809-826. https://doi.org/10.1093/mnras/194.4.809
81. C. Leitherer, C. Robert, L. Drissen, Deposition of mass, momentum, and energy by massive stars into the interstellar medium, Astrophys. J. 401 (1992), 596- 617. https://doi.org/10.1086/172089
83. J. Lequeux, Large amounts of cold molecular hydrogen in the Small Magellanic Cloud, Astron. Astrophys. 287 (1994), 368-370.
84. J. Lequeux, R. J. Allen, S. Guilloteau, CO absorption in the outer Galaxy: Abundant cold molecular gas, Astron. Astrophys. 280 (1993), L23-L26.
85. F. Li, S. Ikeuchi, Formation of a giant Galactic gaseous halo – Metal absorption lines and high-velocity clouds, Astrophys. J. 390 (1992), 405-422. https://doi.org/10.1086/171291
86. W.J. Maciel, J. Koppen, Abundance gradients from disk planetary nebulae: O, Ne, S, and AR, Astron. Astrophys. 282 (1994), 436-443.
87. P. Maloney, Are molecular clouds in virial equilibrium?, Astrophys. J. Lett. 348 (1990), L9-L12. https://doi.org/10.1086/185618
88. F. Matteucci, L. Greggio, Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas, Astron. Astrophys. 154 (1986), 279-287.
89. C.F. McKee, M.C. Begelman, Steady evaporation and condensation of isolated clouds in hot plasma, Astrophys. J. 358 (1990), 392-398. https://doi.org/10.1086/168995
90. D. Mera, G. Chabrier, R. Schaeffer, Towards a consistent model of the Galaxy. I. Kinematic properties, star counts and microlensing observations, Astron. Astrophys. 330 (1998), 937-952.
91. D. Mera, G. Chabrier, R. Schaeffer, Towards a consistent model of the Galaxy. II. Derivation of the model, Astron. Astrophys. 330 (1998), 953-962.
92. H. Meusinger, B. Stecklum, H. Reimann, The age-metallicity-velocity dispersion relation in the solar neighborhood and a simple evolution model, Astron. Astrophys. 245 (1991), 57-74.
93. J.C. Mihos, L. Hernquist, Gasdynamics and Starbursts in Major Mergers, Astrophys. J. 464 (1996), 641-663. https://doi.org/10.1086/177353
94. M. Miyamoto, R. Nagai, Three-dimensional models for the distribution of mass in galaxies, Publ. Astron. Soc. Jap. 27 (1975), 533-543.
95. A. Miyazaki, M. Tsuboi, Dense Molecular Clouds in the Galactic Center Region. II. Statistical Properties of the Galactic Center Molecular Clouds, Astrophys. J. 536 (2000), 357-367. https://doi.org/10.1086/308899
96. J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30 (1992), 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
97. J.J. Monaghan, R.A. Gingold, Shock Simulation by the Particle Method SPH, J. Comput. Phys. 52 (1983), 374-389.https://doi.org/10.1016/0021-9991(83)90036-0
98. J.J. Monaghan, J.C. Lattanzio, A refined particle method for astrophysical problems, Astron. Astrophys. 149 (1985), 135-143.
99. B. Moore, F. Governato, T. Quinn, J. Stadel, G. Lake, Resolving the Structure of Cold Dark Matter Halos, Astrophys. J. Lett. 499 (1998), L5-L8.https://doi.org/10.1086/311333
100. H.W. Moos, W.C. Cash, L.L. Cowie, A.F. Davidsen, A.K. Dupree et al., Overview of the Far Ultraviolet Spectroscopic Explorer Mission, Astrophys. J. Lett. 538 (2000), L1-L6.
101. M. Mori, Y. Yoshii, K. Nomoto, Dissipative Process as a Mechanism of Differentiating Internal Structures between Dwarf and Normal Elliptical Galaxies in a Cold Dark Matter Universe, Astrophys. J. 511 (1999), 585-594. https://doi.org/10.1086/306724
102. N. Nakasato, M. Mori, K. Nomoto, Numerical Simulations of Globular Cluster Formation, Astrophys. J. 535 (2000), 776-787. https://doi.org/10.1086/308855
103. J.F. Navarro, Dark Matter Halos and Disk Rotation Curves, in Galactic Halos, edited by D. Zaritsky, volume 136 of Astronomical Society of the Pacific Conference Series (1998), pp. 409-417.
104. J.F. Navarro, C.S. Frenk, S.D.M. White, The Structure of Cold Dark Matter Halos, Astrophys. J. 462 (1996), 563-575. https://doi.org/10.1086/177173
105. J.F. Navarro, C.S. Frenk, S.D.M. White, A Universal Density Profile from Hierarchical Clustering, Astrophys. J. 490 (1997), 493-508. https://doi.org/10.1086/304888
106. J.F. Navarro, S.D.M. White, Simulations of Dissipative Galaxy Formation in Hierarchically Clustering Universes – Part One – Tests of the Code, Mon. Not. Roy. Astron. Soc. 265 (1993), 271-300. https://doi.org/10.1093/mnras/265.2.271
107. K. Nomoto, K. Iwamoto, N. Nakasato, F. Thielemann, F. Brachwitz et al., Nucleosynthesis in type Ia supernovae, Nucl. Phys. A 621 (1997), 467-476. https://doi.org/10.1016/S0375-9474(97)00291-1
108. K. Nomoto, F. Thielemann, K. Yokoi, Accreting white dwarf models of Type I supernovae. III – Carbon deflagration supernovae, Astrophys. J. 286 (1984), 644-658. https://doi.org/10.1086/162639
109. B.E.J. Pagel, Chemical Evidence on Galaxy Formation and Evolution, in TheFormation and Evolution of Galaxies, edited by C. Munoz-Tunon & F. Sanchez (1994), pp. 149-230.
110. P.J.E. Peebles, Origin of the Angular Momentum of Galaxies, Astrophys. J. 155 (1969), 393-401. https://doi.org/10.1086/149876
111. P.J.E. Peebles, Principles of physical cosmology (Princeton University Press, Princeton, 1993).
112. M. Peimbert, Chemical evolution of the galactic interstellar medium: Abundance gradients, in The Large-Scale Characteristics of the Galaxy, edited byW.B. Burton, volume 84 of IAU Symposium (1979), pp. 307-315. https://doi.org/10.1017/S0074180900014686
113. D. Pfenniger, The 3D dynamics of barred galaxies, Astron. Astrophys. 134 (1984), 373-386.
114. D. Pfenniger, F. Combes, Is dark matter in spiral galaxies cold gas? II. Fractal models and star non formation, Astron. Astrophys. 285 (1994), 94-118.
115. D. Pfenniger, F. Combes, L. Martinet, Is dark matter in spiral galaxies cold gas? I. Observational constraints and dynamical clues about galaxy evolution, Astron. Astrophys. 285 (1994), 79-93.
116. L.S. Pilyugin, M.G. Edmunds, Chemical evolution of the Milky Way Galaxy. I. On the infall model of galactic chemical evolution, Astron. Astrophys. 313 (1996), 783-791.
117. L. Portinari, C. Chiosi, A. Bressan, Galactic chemical enrichment with new metallicity dependent stellar yields, Astron. Astrophys. 334 (1998), 505-539.
118. L. Portinari, C. Chiosi, A. Bressan, Galactic chemical enrichment with new metallicity dependent stellar yields, Astron. Astrophys. 334 (1998), 505-539.
119. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, C. Lloyd et al., Book Review: Numerical recipes in C: the art of scientific computing / Cambridge U Press, 1993, The Observatory 113 (1993), 214-263.
120. C.M. Raiteri, M. Villata, J.F. Navarro, Simulations of Galactic chemical evolution. I. O and Fe abundances in a simple collapse model, Astron. Astrophys. 315 (1996), 105-115.
121. A. Renzini, M. Voli, Advanced evolutionary stages of intermediate-mass stars. I – Evolution of surface compositions, Astron. Astrophys. 94 (1981), 175-193.
122. O. Richter, R. Sancisi, Asymmetries in disk galaxies. How often? How strong?, Astron. Astrophys. 290 (1994), L9-L12.
123. A. Rieschick, G. Hensler, Chemodynamical gas flow cycles and their influence on the chemical evolution of dwarf irregular galaxies, Astrophys. Space Sci. 284 (2003), 861-864. https://doi.org/10.1023/A:1024081708806
124. T.R. Saitoh, H. Daisaka, E. Kokubo, J. Makino, T. Okamoto et al., Toward First-Principle Simulations of Galaxy Formation: I. How Should We Choose Star-Formation Criteria in High-Resolution Simulations of Disk Galaxies?, Publ. Astron. Soc. Jap. 60 (2008), 667-681. https://doi.org/10.1093/pasj/60.4.667
125. M. Samland, Modeling the Evolution of Disk Galaxies. II. Yields of Massive Stars, Astrophys. J. 496 (1998), 155-171. https://doi.org/10.1086/305368
126. M. Samland, G. Hensler, Modelling the Evolution of Galaxies, in Reviews in Modern Astronomy, edited by R.E. Schielicke, volume 9 of Reviews in Modern Astronomy (1996), pp. 277-306.
127. M. Samland, G. Hensler, C. Theis, Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model, Astrophys. J. 476 (1997), 544-559. https://doi.org/10.1086/303627
128. B. Semelin, F. Combes, Formation and evolution of galactic disks with a multiphase numerical model, Astron. Astrophys. 388 (2002), 826-841. https://doi.org/10.1051/0004-6361:20020547
129. P.A. Shaver, R.X. McGee, L.M. Newton, A.C. Danks, S.R. Pottasch, The galactic abundance gradient, Mon. Not. Roy. Astron. Soc. 204 (1983), 53-112. https://doi.org/10.1093/mnras/204.1.53
130. F.H. Shu, V. Milione, W. Gebel, C. Yuan, D.W. Goldsmith et al., Galactic Shocks in an Interstellar Medium with Two Stable Phases, Astrophys. J. 173 (1972), 557-592.https://doi.org/10.1086/151444
131. J. Silk, Star formation and galactic evolution – From protogalaxies to starbursts, in Star Forming Regions, edited by M. Peimbert & J. Jugaku, volume 115 of IAU Symposium (1987), pp. 663-689. https://doi.org/10.1017/S0074180900096819
132. P.M. Solomon, A.R. Rivolo, J. Barrett, A. Yahil, Mass, luminosity, and line width relations of Galactic molecular clouds, Astrophys. J. 319 (1987), 730-741. https://doi.org/10.1086/165493
133. V. Springel, L. Hernquist, Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation, Mon. Not. Roy. Astron. Soc. 339 (2003), 289-311. https://doi.org/10.1046/j.1365-8711.2003.06206.x
134. V. Springel, N. Yoshida, S.D.M. White, GADGET: a code for collisionless and gasdynamical cosmological simulations, New Astronomy 6 (2001), 79-117. https://doi.org/10.1016/S1384-1076(01)00042-2
135. M. Steinmetz, GRAPESPH: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE, Mon. Not. Roy. Astron. Soc. 278 (1996), 1005-1017. https://doi.org/10.1093/mnras/278.4.1005
136. M. Steinmetz, M. Bartelmann, On the spin parameter of dark-matter haloes, Mon. Not. Roy. Astron. Soc. 272 (1995), 570-578. https://doi.org/10.1093/mnras/272.3.570
137. M. Steinmetz, E. Mueller, On the capabilities and limits of smoothed particle hydrodynamics, Astron. Astrophys. 268 (1993), 391-410.
138. M. Steinmetz, E. Mueller, The formation of disk galaxies in a cosmological context: Populations, metallicities and metallicity gradients, Astron. Astrophys. 281 (1994), L97-L100.
139. M. Steinmetz, E. Muller, The formation of disc galaxies in a cosmological context: structure and kinematics, Mon. Not. Roy. Astron. Soc. 276 (1995), 549-562. https://doi.org/10.1093/mnras/276.2.549
140. R.S. Sutherland, M.A. Dopita, Cooling functions for low-density astrophysical plasmas, Astrophys. J. Suppl. Ser. 88 (1993), 253-327. https://doi.org/10.1086/191823
141. R. Tantalo, C. Chiosi, A. Bressan, F. Fagotto, Spectro-photometric evolution of elliptical galaxies. II. Models with infall, Astron. Astrophys. 311 (1996), 361-383.
142. R.J. Thacker, E.R. Tittley, F.R. Pearce, H.M.P. Couchman, P.A. Thomas, Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations, Mon. Not. Roy. Astron. Soc. 319 (2000), 619-648. https://doi.org/10.1111/j.1365-8711.2000.03927.x
143. C. Theis, A. Burkert, G. Hensler, Chemo-dynamical evolution of massive spherical galaxies, Astron. Astrophys. 265 (1992), 465-477.
144. C. Theis, G. Hensler, Dynamical evolution of dissipative cloud systems, Astron. Astrophys. 280 (1993), 85-104.
145. F. Thielemann, K. Nomoto, K. Yokoi, Explosive nucleosynthesis in carbon deflagration models of Type I supernovae, Astron. Astrophys. 158 (1986), 17-33. https://doi.org/10.1007/978-94-009-4578-4_16
146. J. Tomkin, M. Lemke, D.L. Lambert, C. Sneden, The carbon-to-oxygen ratio in halo dwarfs, Astron. J. 104 (1992), 1568-1584. https://doi.org/10.1086/116342
147. M. Tosi, The effect of metal-rich infall on galactic chemical evolution, Astron. Astrophys. 197 (1988), 47-51.
148. G. Toth, J.P. Ostriker, Galactic disks, infall, and the global value of Omega, Astrophys. J. 389 (1992), 5-26. https://doi.org/10.1086/171185
149. A. Udalski, M. Szymanski, J. Kaluzny, M. Kubiak, W. Krzeminski et al., Theoptical gravitational lensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge, Acta Astronomica 43 (1993), 289-294.
150. J.P. Vallee, Galactic magnetism and the rotation curves of M31 and the Milky Way, Astrophys. J. 437 (1994), 179-183. https://doi.org/10.1086/174986
151. S. van den Bergh, R.D. McClure, Rediscussion of extragalactic supernova rates derived from Evans’s 1980-1988 observations, Astrophys. J. 425 (1994), 205- 209. https://doi.org/10.1086/173975
152. L.B. van den Hoek, M.A.T. Groenewegen, New theoretical yields of intermediate mass stars, Astron. Astrophys. Suppl. Ser. 123 (1997), 305-328. https://doi.org/10.1051/aas:1997162
153. N. Voglis, A new distribution function fitting a nearly spherical cold-collapsed N-body system, Mon. Not. Roy. Astron. Soc. 267 (1994), 379-389. https://doi.org/10.1093/mnras/267.2.379
154. N. Voglis, N. Hiotelis, Simulations of galaxy formation in tidal fields, Astron. Astrophys. 218 (1989), 1-14.
155. M.S. Warren, P.J. Quinn, J.K. Salmon, W.H. Zurek, Dark halos formed via dissipationless collapse. I – Shapes and alignment of angular momentum, Astrophys. J. 399 (1992), 405-425. https://doi.org/10.1086/171937
156. M.D. Weinberg, Detection of a large-scale stellar bar in the Milky Way, Astrophys. J. 384 (1992), 81-94. https://doi.org/10.1086/170853
157. S.D.M. White, M.J. Rees, Core condensation in heavy halos: A two-stage theory for galaxy formation and clustering, Mon. Not. Roy. Astron. Soc. 183 (1978), 341-358. https://doi.org/10.1093/mnras/183.3.341
158. S.D.M. White, J. Silk, The growth of aspherical structure in the universe – Is the Local Supercluster an unusual system, Astrophys. J. 231 (1979), 1-9. https://doi.org/10.1086/157156
159. B.A. Wilking, C.J. Lada, The discovery of new embedded sources in the centrally condensed core of the Rho Ophiuchi dark cloud – The formation of a bound cluster, Astrophys. J. 274 (1983), 698-716. https://doi.org/10.1086/161482
160. T.L. Wilson, R. Mauersberger, On the question of dark matter and cold H2, Astron. Astrophys. 282 (1994), L41-L44.
161. S.E. Woosley, T.A. Weaver, The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis, Astrophys. J. Suppl. Ser. 101 (1995), 181-235. https://doi.org/10.1086/192237
162. W.H. Zurek, P.J. Quinn, J.K. Salmon, Rotation of halos in open and closed universes – Differentiated merging and natural selection of galaxy types, Astrophys. J. 330 (1988), 519-534. https://doi.org/10.1086/166491
CHAPTER 5.
1. T. Ak, S.Bilir, S. Ak, Z. Eker, Spatial distribution and galactic model parameters of cataclysmic variables, NewA 13 (2008), 133-143. https://doi.org/10.1016/j.newast.2007.08.003
2. S. Araujo-Betancor, B.T. Gansicke, H.-J. Hagen et al., HS 2331 + 3905: The cataclysmic variable that has it all, Astron. Astrophys. 430 (2005), 629-642. https://doi.org/10.1051/0004-6361:20041736
3. T. Augusteijn, L. Wisotzki, HE 2350 – 3908: a dwarf nova with a 78m orbital period, Astron. Astrophys. 324 (1997), L57-L60.
4. A. Aviles, S. Zharikov, G. Tovmassian et al., SDSS J 123813.73 – 033933.0: A cataclysmic variable evolved beyond the period minimum, Astron. J. 711 (2010), 389-398. https://doi.org/10.1088/0004637X/711/1/389
5. S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution, Astrophys. J. 376 (1991), 214-233. https://doi.org/10.1086/170270
6. I. Baraffe, U. Kolb, On the late spectral types of cataclysmic variable secondaries, Mon. Not. R. Astron. Soc. 318 (2000), 354-360. https://doi.org/10.1046/j.1365-8711.2000.03628.x
7. C.S. Brinkworth, D.W. Hoard, S. Wachter et al., Spitzer Space Telescope Observations of Circumbinary Dust Disks around Polars, Astrophys. J. 372 (2007), 333-336.
8. E.J. Christensen, Variable Star in Leo, CBET 746 (2006), 1-1.
9. H. Chun, S. Howell, D. Daou et al., Detecting Brown Dwarfs in Interacting Cataclysmic Binaries, Sptz. prop. (2005), 238.
10. D.V. Denisenko & K. V. Sokolovsky, Identification of new cataclysmic variables in the 1RXS and USNO-B1.0 catalogs, Pis’ma v Astronomicheskii Zhurnal 37 (2011), 110-119. https://doi.org/10.1134/S1063773711010038
11. D. Denisenko & E. Smirnov, 1RXS J 184542.4 + 483134: a New Cataclysmic Variable with Short-Period Photometric Variations, PZP 11 (2011), 10.
12. A.J. Drake, et al., First Results from the Catalina Real-Time Transient Survey, Astrophys. J. 696 (2009), 870-874. https://doi.org/10.1088/0004-637X/696/1/870
13. G. Fontaine, & P. Brassard, The Pulsating White Dwarf Stars, PASP 120 (2008), 1043-1096. https://doi.org/10.1086/592788
14. A.M. Fridman, & D.V. Bisikalo, REVIEWS OF TOPICAL PROBLEMS: The nature of accretion disks of close binary stars: overreflection instability and developed turbulence, PhyU (2008), 551-576.
15. T.E. Harrison, S. B. Howell, P. Szkody et al., Phase-Resolved Infrared H- and K-Band Spectroscopy of EF Eridani, Astrophys. J. 614 (2004), 947-954. https://doi.org/10.1086/423783
16. K. Hellier, Cataclysmic variable stars. How and why they vary, Springer-Praxis books in astronomy and space sciences. Praxis Publishing Ltd, Chichester, UK (2001), 206 p.
17. S.B. Howell, D.R. Ciardi, Spectroscopic Discovery of Brown Dwarf-like Secondary Stars in the Cataclysmic Variables LL Andromedae and EF Eridani, Astrophys. J. 550L (2001), 57-59. https://doi.org/10.1086/319499
18. S.B. Howell, C. Brinkworth, D. Hoard et al., First Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Evidence of Excess Emission at 3-8 µm?, Astrophys. J. 646 (2006), 65-68. https://doi.org/10.1086/506558
19. S.B. Howell, D.W. Hoard, C. Brinkworth et al., “Dark Matter” in Accretion Disks, Astrophys. J. 685 (2008), 418-427. https://doi.org/10.1086/590491
20. A. Golovin et al., Multicolor Observations of ASAS 002511 + 1217.2, IBVS 5611 (2005), 1-4.
21. J. Isern, M. Hernantz, E. Garcia-Berro, Axion cooling of white dwarfs, Astrophys. J. 392 (1992), L23-L25. https://doi.org/10.1086/186416 22.
23. T. Kato, S. Yoshiyuki, H. Ryuko, HV Virginis and WZ Sge-Type Dwarf Novae, PASJ 53 (2001), 1191-1210. https://doi.org/10.1093/pasj/53.6.1191
24. T.Kato, H. Maehara, M. Uemura, Characterization of Dwarf Novae Using SDSS Colors, PASJ 64 (2012), 63 p.; arXiv:1111.4286 (2011), 69 p.https://doi.org/10.1093/pasj/64.3.63
25. T. Kato et al., SDSS J 080434.20 + 510349.2: Eclipsing WZ Sge-Type Dwarf Nova with Multiple Rebrightenings, Publ. Astron. Soc. Jap. 61 (2009), 601-613. https://doi.org/10.1093/pasj/61.3.601
26. T. Kato et al., Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. III. The Third Year (2010-2011), PASJ 64 (2012), 21-100. https://doi.org/10.1093/pasj/64.1.21
27. T. Kato, et al., Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae, Publ. Astron. Soc. Jap. 61 (2009), S395-S616.
28. N. Katysheva & S. Shugarov, J. V455 and a life before the outburst, Phys.: Conf. Ser. 172 (2009), 012044, 1-4. https://doi.org/10.1088/1742-6596/172/1/012044
29. N. Katysheva, I. Voloshina, Cataclysmic Variables with Magnetic White Dwarfs, ASP Conf. Ser. 372 (2007), 527-530.
30. S.O. Kepler, S.J. Kleinman, A. Nitta et al., The White Dwarf Mass Distribution, ASP Conf. Ser. 372 (2007), 35-40.
31. C. Knigge, Cataclysmic Variables: Eight Breakthroughs in Eight Years, arXiv: 1101.2901(2011). https://doi.org/10.1063/1.3536361
32. C. Knigge, I. Baraffe, J. Patterson, The Evolution of Cataclysmic Variables as Revealed by Their Donor Stars, Astrophys. J. Suppl. Ser. 194 (2011), 28-90. https://doi.org/10.1088/0067-0049/194/2/28
33. U. Kolb, A model for the intrinsic population of cataclysmic variables, Astron. Astrophys. 271 (1993), 149-166.
34. U. Kolb, I. Baraffe, Brown dwarfs and the cataclysmic variable period minimum, Mon. Not. R. Astron. Soc. 309 (1999), 1034 -1042. https://doi.org/10.1046/j.1365-8711.1999.02926.x
35. R.P. Kraft, J. Methews & J.L. Greenstein, Binary Stars among Cataclysmic Variables. II. Nova WZ Sagittae: a Possible Radiator of Gravitational Waves, Astrophys. J. 136 (1962), 312-315. https://doi.org/10.1086/147381
36. W. Krzeminski, J. Smak, Eruptive Binaries. III. The Recurrent Nova WZ Sagittae, Acta Astronomica 21 (1971), 133-184.
37. E. Leibowitz, H. Mendelson, A. Bruch, et al., The 1992 outburst of the SU Ursae Majoris-type dwarf nova HV Virginis, Astrophys. J. 421 (1994), 771-778. https://doi.org/10.1086/173689
38. D.N.C. Lin, & J. Papaloizou, Tidal torques on accretion discs in binary systems with extreme mass ratios, Mon. Not. R. Astron. Soc. 186 (1979), 799-812. https://doi.org/10.1093/mnras/186.4.799
39. K. Matsumoto, T. Kato, K. Ayani, T. Kawabata, On the Orbital Period of EG Cancri, IBVS 4613 (1998), 1-4.
40. A.S. Mukadam et al., Multi-site Observations of Pulsation in the Accreting White Dwarf SDSS J 161033.64 – 010223.3 (V386 Ser), Astrophys. J. 714 (2010), 1702- 1714. https://doi.org/10.1088/0004-637X/714/2/1702
41. Y. Osaki, Dwarf-Nova Outbursts, Publications of the Asronomical Society of Pacific 108 (1996), 39-60. https://doi.org/10.1086/133689
42. Y. Osaki, F. Meyer, Early humps in WZ Sge stars, Astron. Astrophys. 383 (2002), 574-579. https://doi.org/10.1051/0004-6361:20011744
43. J. Patterson, T. Augusteijn, D. Harvey et al., Superhumps in Cataclysmic Binaries. IX. AL Comae Berenices, Publications of the Asronomical Society of Pacific 108 (1996), 748-761. https://doi.org/10.1086/133798
44. E. Pavlenko, K. Sokolovsky, A. Baklanov et al., 1RXS J 184542.4 + 483134 is a new eclipsing polar, ATel 3436 (2011), 1-1.
45. E. Pavlenko et al., Discovery of the New WZ Sge Star SDSS J 080434.20 + + 510349.2, ASPC 372 (2007), 511-514.
46. E.P. Pavlenko, V.P. Malanushenko, Unique components of the WZ Sge-type dwarf nova SDSS J 080434.20 + 510349.2, KBCB 25 (2009), 48-53. https://doi.org/10.3103/S0884591309010073
47. E.P. Pavlenko, The white dwarf in dwarf nova SDSS J 080434.20 + 510349.2: Entering the instability strip?, J. Phys.: Conf. Ser. 172 (2009), 012071, IOP Publ. https://doi.org/10.1088/1742-6596/172/1/012071
48. E. Pavlenko, O. Antonyuk, K. Antonyuk et al., Activity of five WZ Sge-type systems in a few years after their outbursts, AIP Conf. Proc. 1273 (2010), 332-337. https://doi.org/10.1063/1.3527835
49. E.P. Pavlenko, T. Kato, O.I. Antonyuk et al.,Features of the orbital variability in the brightness of the WZ Sge type dwarf nova V1108 Her, Astrophysics 54 (2011), 483-495. https://doi.org/10.1007/s10511-011-9199-0
50. E. Pavlenko, V. Malanushenko, G. Tovmassian et al., SDSS J 080434.20 + + 510349.2: Cataclysmic Variable Witnessing the Instability Strip?, ArXiv:1111.2339 (2011).
51. J. Patterson, Distances and Absolute Magnitudes of Dwarf Novae: Murmurs of Period Bounce, ArXiv:0903.1006 (2009), 57 p.
52. J. Patterson, Late Evolution of Cataclysmic Variables, Publications of the Asronomical Society of Pacific 110 (1998), 1026-1031. https://doi.org/10.1086/316223
53. B. Paczynski, R. Sienkiewicz, Gravitational radiation and the evolution of cataclysmic binaries, Astrophys. J. 248 (1981), L27-L30. https://doi.org/10.1086/183616
54. Ja. Pelt, Irregulary Spaced Data Analysis. User Manual, Helsinki (1992).
55. M.L. Pretorius, & C. Knigge, The space density and X-ray luminosity function of non-magnetic cataclysmic variables, arXiv: 1109.3162 (2012).
56. M.L. Pretorius, P.A. Woudt, B. Warner, et al., High-speed photometry of SDSS J 013701.06 – 091234.9, Mon. Not. R. Astron. Soc. 352 (2004), 1056-1060. https://doi.org/10.1111/j.1365-2966.2004.08000.x
57. A. Price, B. Gary, J. Bedient et al., A New Cataclysmic Variable in Hercules, Publ. Astron. Soc. Pacif. 116 (2004) 1117-1122. https://doi.org/10.1086/427272
58. S. Rappaport, P.C. Joss, R.F.Webbink, The evolution of highly compact binary stellar systems, Astrophys. J. 254 (1982), 616-640. https://doi.org/10.1086/159772
59. M. Revnivtsev, E. Churazov, S. Sazonov et al., Universal X-ray emissivity of the stellar population in early-type galaxies: unresolved X-ray sources in NGC 3379, Astron. Astroph. 490 (2008), 37-43. https://doi.org/10.1051/0004-6361:200809889
60. P. Rogoziecki, A. Schwarzenberg-Cherny, The dwarf nova WX Cet: a clone of WZ Sge or a pretender?, Mon. Not. R. Astron. Soc. 323 (2001), 850-858. https://doi.org/10.1046/j.1365-8711.2001.04252.x
61. J. Smak, Eruptive Binaries. II. U Geminorum, Acta Astronomica 21 (1971), 15- 47. https://doi.org/10.1017/S0252921100033042
62. J. Southworth, D.M. Townsley, B.T. Gansicke, Orbital periods of cataclysmic variables identified by the SDSS – IV. SDSS J 220553.98 + 115553.7 has stopped pulsating, Mon. Not. R. Astron. Soc. 388 (2008), 709-715. https://doi.org/10.1111/j.1365-2966.2008.13433.x
63. L.N.S. Sproats, S.B. Howell, K.O. Mason, Infrared colours, distance determination and absolute magnitudes of a sample of faint cataclysmic variables, Mon. Not. R. Astron. Soc. 282 (1996), 1211-1222. https://doi.org/10.1093/mnras/282.4.1211
64. P. Szkody, A. Henden, M. Agueros et al., Cataclysmic Variables from Sloan Digital Sky Survey. V. The Fifth Year (2004), Astron. J. 131 (2006), 973-983. https://doi.org/10.1086/499308
65. P. Szkody, et al., Finding the Instability Strip for Accreting Pulsating White Dwarfs From Hubble Space Telescope and Optical Observations, Astrophys. J. 710 (2010), 64-77. https://doi.org/10.1088/0004-637X/710/1/64
66. D.W. Townsley, L. Bildsten, The Thermal Structure and Evolution of Accreting White Dwarfs, ASP Conf. Ser. 372 (2007), 557-562.
67. M. Uemura et al., Discovery of a WZ Sge-Type Dwarf Nova, SDSS J 102146.44 + + 234926.3: Unprecedented Infrared Activity during a Rebrightening Phase, Publ. Astron. Soc. Jap. 60 (2008), 227-236. https://doi.org/10.1093/pasj/60.2.227
68. M. Uemura, T. Kato, D. Nogami, H. Ohsugi, Dwarf Novae in the Shortest OrbitalPeriod Regime: II. WZ Sge Stars as the Missing Population near the Period Minimum, Publ. Astron. Soc. Jap. 62 (2010), 613-620. https://doi.org/10.1093/pasj/62.3.613
69. J.A. Urban, E.M. Sion, The Dwarf Novae during Quiescence, Astrophys. J. 642 (2006), 1029-1041. https://doi.org/10.1086/501430
70. H. Uthas et al., Two new accreting, pulsating white dwarfs: SDSS J1457+51 and BW Sculptoris, Mon. Not. R. Astron. Soc. 420 (2012), 379-387. https://doi.org/10.1111/j.1365-2966.2011.20042.x
71. F. Verbunt, C. Zwaan, Magnetic braking in low-mass X-ray binaries, Astron. Astrophys. 100 (1981), L7-L9.
72. N. Vogt, The structure and outburst mechanisms of dwarf novae and their evolutionary status among cataclysmic variables, MitAG 57 (1982), 79-118.
73. R. Whitehurst, Numerical simulations of accretion disks. I – Superhumps – A tidal phenomenon of accretion disks, Mon. Not. R. Astron. Soc. 232 (1988), 35-51. https://doi.org/10.1093/mnras/232.1.35
74. J.C. Wheeler, White dwarf/Red dwarf binaries as a single degenerate progenitors of type Ia supernovae, Astrophys. J. (2012), in press, arXiv: 1209.1021. https://doi.org/10.1088/0004-637X/758/2/123
75. D.E. Winget, Asteroseismology of white dwarf stars, Journal of Physics 10 (1998), 11247-11261. https://doi.org/10.1088/0953-8984/10/49/014
76. D E. Winget, S.O. Kepler, Pulsating White Dwarf Stars and Precision Asteroseismology, Ann. Rev. Astron. Astrophys. 46 (2008), 157-159. https://doi.org/10.1146/annurev.astro.46.060407.145250
77. P.A. Woudt, B. Warner, SDSS J 161033.64 – 010223.3: a second cataclysmic variable with a non-radially pulsating primary, Mon. Not. R. Astron. Soc. 348 (2004), 599-602. https://doi.org/10.1111/j.1365-2966.2004.07369.x
78. B.Warner, Cataclysmic Variables, Cembridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511586491
79. T. Yuasa, K. Nakazawa, K. Makishima et al., White dwarf masses in intermediate polars observed with the Suzaku satellite, Astron. & Astroph. 520 (2010), 25-41. https://doi.org/10.1051/0004-6361/201014542
80. S.V. Zharikov, et al., Cyclic brightening in the short-period WZ Sge-type cataclysmic variable SDSS J080434.20+510349.2, Astron. Astrophys. 486 (2008), 505-509. https://doi.org/10.1051/0004-6361:200809721
81. S.V. Zharikov, G.H. Tovmassian, R. Napiwotzki et al., Time-resolved observations of the short period CV SDSS J 123813.73 – 033933.0, Astron. & Astropys. 449 (2006), 645-653. https://doi.org/10.1051/0004-6361:20053597
CHAPTER 6.
1. E. Anders, N. Grevesse, Abundances of the elements – meteoritic and solar, Geochim. Cosmochim. Acta 53 (1989), 197-214. https://doi.org/10.1016/0016-7037(89)90286-X
2. J.R. Auman, Opacity of Hot Water Vapor, Astron. J. 14 (1966), 171-171. https://doi.org/10.1086/190153
3. I. Baraffe, G. Chabrier, F. Allard, P.H. Hauschildt, Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams, Astron. Astrophys. 337 (1998), 403-412.
4. R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, A high-accuracy computed water line list, Mon. Not. R. Astron. Soc. 368 (2006), 1087-1094. https://doi.org/10.1111/j.1365-2966.2006.10184.x
5. G. Basri, The discovery of brown dwarfs, Scientific American 282, No. 4 (2000), 76-83. https://doi.org/10.1038/scientificamerican0400-76
6. G. Basri, S. Mohanty, F. Allard et al., An Effective Temperature Scale for Late-M and L Dwarfs, from Resonance Absorption Lines of Cs I and Rb I, Astrophys. J. 538 (2000), 363-385. https://doi.org/10.1086/309095
7. V.J.S. Bejar, M.R. Zapatero Osorio, and R. Rebolo, A Search for Very Low Mass Stars and Brown Dwarfs in the Young Sigma Orionis Cluster, Astrophys. J. 521 (1999), 671-681. https://doi.org/10.1086/307583
8. W.J. Borucki, D.G. Koch, G. Basri, N. Batalha, T.M. Brown et al., Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data, Astrophys J. 736 (2011), 19-22. https://doi.org/10.1088/0004-637X/736/1/19
9. A. Burgasser, M.W. McElwain, J.D. Kirkpatrick et al., The 2MASS Wide-Field T Dwarf Search. III. Seven New T Dwarfs and Other Cool Dwarf Discoveries, Astron. J. 127 (2004), 2856-2870. https://doi.org/10.1086/383549
10. A. Burgasser, S. Witte, Chr. Helling et al., Optical and Near-Infrared Spectroscopy of the L Subdwarf SDSS J 125637.13 – 022452.4, Astrophys. J. 697 (2009), 148-159. https://doi.org/10.1088/0004-637X/697/1/148
11. A. Burrows, M. Marley, W.B. Hubbard et al., A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs, Astrophys. J. 491 (1997), 856-875.https://doi.org/10.1086/305002
12. A. Burrows, S.R. Ram, P. Bernath et al., New CrH Opacities for the Study of L and Brown Dwarf Atmospheres, Astrophys. J. 577 (2002), 986-998. https://doi.org/10.1086/342242
13. A. Burrows, M. Volobuyev, Calculations of the Far-Wing Line Profiles of Sodium and Potassium in the Atmospheres of Substellar-Mass Objects, Astrophys. J. 583 (2003), 985-995. https://doi.org/10.1086/345412
14. J.A. Caballero, V.J.S. Bejar, R. Rebolo, Variability of L Dwarfs in the Near Infrared, in E.L. Mart’in, ed., Proc. IAU211 Symp. Brown dwarfs, ASP, San Francisco (2003), 455-456. https://doi.org/10.1017/S0074180900211121
15. B. Campbell, G.A.H. Walker, S. Yang, A search for substellar companions to solar-type stars, Astrophys. J. 331 (1988), 902-921. https://doi.org/10.1086/166608
16. M. Cappetta, R.P. Saglia, J.L. Birkby et al., The first planet detected in the WTS: an inflated hot Jupiter in a 3.35 d orbit around a late F star, Mon. Not. R. Astron. Soc. 427 (2012), 1877-1890. https://doi.org/10.1111/j.1365-2966.2012.21937.x
17. G. Chabrier, I. Baraffe, F. Allard, P. Hauschildt, Deuterium Burning in Substellar Objects, Astrophys. J. 542 (2000), L119-L122. https://doi.org/10.1086/312941
18. M.C. Cushing, J.D. Kirkpatrick, C.R. Gelino et al., The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE), Astrophys. J. 743 (2011), 50-66. https://doi.org/10.1088/0004-637X/743/1/50
19. F. D’Antona and I. Mazzitelli, in Brown Dwarfs and Extrasolar Planets, edited by R. Rebolo, E. Mart’in, and M.R. Zapatero Osorio, Astron. Soc. Pac. Conf. Ser. 134 (1998), 442-445.
20. C.C. Dahn, H.C. Harris, F.J. Vrba et al., Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs, Astron. J. 24 (2002), 1170-1189. https://doi.org/10.1086/341646
21. L.R. Doyle, J.A. Carter, D.C. Fabrycky et al., Kepler-16: A Transiting Circumbinary Planet, Science 333 (2011), 1602-1614. https://doi.org/10.1126/science.1210923
22. M. Dulick, C.W. Bauschlincher, A. Burrows, Line Intensities and Molecular Opacities of the FeH F 4∆i − X4∆i Transition, Astrophys. J. 594 (2003), 651- 663.https://doi.org/10.1086/376791
23. K.C. Freeman, On the Disks of Spiral and so Galaxies, Astrophys. J. 160 (1970), 811-830. https://doi.org/10.1086/150474
24. C.S. Frenk, C.M. Baugh, S. Cole, and C. Lacey, Numerical and Analytical Modelling of Galaxy Formation and Evolution, in Dark and visible matter in Galaxies, edited by M. Persic and P. Salucci, Astron. Soc. Pac. Conf. Ser. 117 (1997), 335-347.
25. E. Gates, Einstein’s Telescope: The Hunt for Dark Matter and Dark Energy in the Universe (W.W. Norton & Co, New York, 2009), 1.
26. C.R. Gelino, M.S. Marley, J.A. Holtzman et al., L Dwarf Variability: I-Band Observations, Astroph. J. 577 (2002), 433-446. https://doi.org/10.1086/342150
27. C.R. Gelino, D. Kirkpatrick, M.C. Cushing et al., WISE Brown Dwarf Binaries: The Discovery of a T5 + T5 and a T8.5 + T9 System, Astron. J. 142 (2011), 57-65. https://doi.org/10.1088/0004-6256/142/2/57
28. B.K. Gibson, C. Flynn, White Dwarfs and Dark Matter, Science 292 (2001), 2211-2213. https://doi.org/10.1126/science.292.5525.2211a
29. D. Goorvitch, Infrared CO line for the X 1Σ + state, Astrophys. J. Suppl. Ser. 95 https://doi.org/10.1086/192110
30. V. Hambaryan, A. Staude, A.D. Schwope, R.-D. Scholz, S. Kimeswenger, and R.E. Neuhaus, A new strongly X-ray flaring M 9 dwarf in the solar neighborhood, Astron. Astrophys. 415 (2004), 265-272. https://doi.org/10.1051/0004-6361:20034378
31. A.P. Hatzes, W.D. Cochran, M. Endl, B. McArthur, D.B. Paulson, B. Diane, G.A.H. Walker, B. Campbell, S. Yang, A Planetary Companion to γ Cephei A, Astrophys. J. 599 (2003), 1383-1394. https://doi.org/10.1086/379281
32. P.H. Hauschildt, F. Allard, E. Baron, The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10 000 K, Astrophys. J. 512 (1999), 377-385. https://doi.org/10.1086/306745
33. C. Hayashi, T. Nakano, Evolution of Stars of Small Masses in the Pre-MainSequence Stages, Prog. Theor. Phys. 30 (1963), 460-474. https://doi.org/10.1143/PTP.30.460
34. J.S. Jenkins, Y.V. Pavlenko, O. Ivanyuk et al., Benchmark cool companions: agesand abundances for the PZ Telescopii system, Mon. Not. R. Astron Soc. 420 (2012), 3587-3598. https://doi.org/10.1111/j.1365-2966.2011.20280.x
35. J.S. Jenkins, H.R.A. Jones, M. Tuomi et al., A Hot Uranus Orbiting the Super Metal-rich Star HD 77338 and the Metallicity-Mass Connection, Mon. Not. R. Astron Soc. 766 (2013), 67-80. https://doi.org/10.1088/0004-637X/766/2/67
36. H.R.A. Jones, T. Tsuji, Spectral Evidence for Dust in Late-Type M Dwarfs, Astrophys. J. 480 (1997), L39-L41. https://doi.org/10.1086/310619
37. H.R.A. Jones, Ya. Pavlenko, S. Viti, J. Tennyson, Mon. Not. R. Astron. Soc. 330 (2002), 675-684. https://doi.org/10.1046/j.1365-8711.2002.05090.x
38. H.R.A. Jones, Ya.V. Pavlenko, S. Viti, R.J. Barber, La.A. Yakovina, D. Pinfield, J. Tennyson, Carbon monoxide in low-mass dwarf stars, Mon. Not. R. Astron. Soc. 358 (2005), 105-112. https://doi.org/10.1111/j.1365-2966.2005.08736.x
39. U.G. Jorgensen, Molecular opacity data for stellar atmospheres, Rev. Mex. Astron. Astrofis. 23 (1992), 49-62.
40. J.D. Kirkpatrick, T.J. Henry, J. Liebert, The unique spectrum of the brown dwarf candidate GD 165B and comparison to the spectra of other low-luminosityobjects, Astrophys. J. 406 (1993), 701-707. https://doi.org/10.1086/172480
41. J.D. Kirkpatrick, I.N. Reid, J. Liebert et al., Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2 Micron All-Sky Survey (2MASS), Astrophys. J. 519 (1999), 802. https://doi.org/10.1086/307414
42. J.D. Kirkpatrick, D.L. Looper, D.J. Burgasser et al., Discoveries from a Nearinfrared Proper Motion Survey Using Multi-epoch Two Micron All-Sky Survey Data, Astrophys. J. Suppl. Ser. 190 (2010), 100-146. https://doi.org/10.1088/0067-0049/190/1/100
43. C. Koen, N. Matsunaga, J. Menzis, A search for short time-scale JHK variabilityin ultracool dwarfs, Mon. Not. R. Astron. Soc. 354 (2004), 466-476. https://doi.org/10.1111/j.1365-2966.2004.08208.x
44. J. Koppenhoefer, R.P. Saglia, L.Fossati et al., A hot Jupiter transiting a mid-K dwarf found in the pre-OmegaCam Transit Survey, Mon. Not. R. Astron. Soc. 435 (2014), 3133-3147. https://doi.org/10.1093/mnras/stt1512
45. S.S. Kumar, The Structure of Stars of Very Low Mass, Astrophys. J. 137 (1963), 1121-1125. https://doi.org/10.1086/147589
46. S.S. Kumar, The Helmholtz-Kelvin Time Scale for Stars of Very Low Mass, Astrophys. J. 137 (1963a), 1126-1128. https://doi.org/10.1086/147590
47. F. Kupka, N. Piskunov, T.A. Ryabchikova, H.C. Stempels, W.W. Weiss, VALD-2: Progress of the Vienna Atomic Line Data Base, Astron. Astrophys. Suppl. Ser. 138 (1999), 119-133. https://doi.org/10.1051/aas:1999267
48. R.L. Kurucz, Atlas: a Computer Program for Calculating Model StellarAtmospheres, SAO Spec. Rept. 309 (1970), 1-291
49. R.L. Kurucz, CDROMs 1-22, Harvard-Smisthonian Observatory (1993), 1.
50. A.T. Lawton, P. Wright, A planetary system for Gamma Cephei?, Journ. of the British Interplanetary Soc. 42 (1989), 335-336.
51. S.K. Leggett, F. Allard, T.R. Geballe, P.H. Hauschildt, A. Schweitzer, Infrared Spectra and Spectral Energy Distributions of Late M and L Dwarfs, Astrophys. J. 548 (2001), 908-918. https://doi.org/10.1086/319020
52. J.J. Lissauer, How common are habitable planets?, Nature 398 (1999), 659-662. https://doi.org/10.1038/19409
53. M.C. Liu, S.K. Leggett, Kelu-1 Is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics, Astrophys. J. 634 (2005), 616-624. https://doi.org/10.1086/496915
54. N. Lodieu, D.J. Pinfield, S.K. Leggett et al., Eight new T4.5 – T7.5 dwarfs discovered in the UKIDSS Large Area Survey Data Release 1, Mon. Not. R. Astron. Soc. 379 (2007), 1434-1430. https://doi.org/10.1111/j.1365-2966.2007.12023.x
55. W.J. Luyten, C.T. Kowal, Proper motion Survey with 48 inch Schmidt telescope. XLIII. One hundred and six Faint Stars with Large Proper Motion, University of Minnesota, Ninneapolis 43 (1975), 1-2.
56. K.L. Luhman, Young Low-Mass Stars and Brown Dwarfs in IC 348, Astrophys. J. 525 (1999), 466-465. https://doi.org/10.1086/307902
57. E.L. Mart’in, R. Rebolo, M.R. Zapatero-Osorio, Spectroscopy of New Substellar Candidates in the Pleiades: Toward a Spectral Sequence for Young Brown Dwarfs, Astrophys. J. 469 (1996), 706-714. https://doi.org/10.1086/177817
58. E.L. Mart’in, X. Delfosse, G. Basri, B. Goldman, Th. Forveille, M.R. Zapatero Osorio, Spectroscopic Classification of Late-M and L Field Dwarfs, Astron. J. 118 (1999), 2466-2482. https://doi.org/10.1086/301107
59. E.L. Mart’in, M.R. Zapatero Osorio, and H. Lehto, Photometric Variability in the Ultracool Dwarf BRI 0021 – 0214: Possible Evidence for Dust Clouds, Astrophys. J. 557 (2001), 822-830. https://doi.org/10.1086/321685
60. E.L. Mart’in, H. Bouy, XMM-Newton observations of the nearby brown dwarf LP 944-20, New Astronomy 7 (2002), 595-602. https://doi.org/10.1016/S1384-1076(02)00178-1
61. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star, Nature 378 (1995), 355-359. https://doi.org/10.1038/378355a0
62. D. Michalas, Stellar Atmospheres (Freeman, San Francisco, 1980).
63. T. Nakajima, B.R. Oppenheimer, S.R. Kulkarni, D.A., Golimowski, K. Matthews, S.T. Durrance, Discovery of a cool brown dwarf, Nature 378 (1995), 463-465. https://doi.org/10.1038/378463a0
64. B.R Oppenheimer, N.C Hambly, A.P. Digby, S.T. Hodgkin, D. Saumon, Direct Detection of Galactic Halo Dark Matter, Science 292 (2001), 698-702. https://doi.org/10.1126/science.1059954
65. F. de Paolis, G. Ingrosso, Ph. Jetzer, and M. Roucadelli, MACHOs and molecular clouds in galactic halos, Phys. Rev. Lett. 74 (1995), 14-18. https://doi.org/10.1103/PhysRevLett.74.14
66. D.J. Pinfield, B. Burningham, M. Tamura et al., Fifteen new T dwarfs discovered in the UKIDSS Large Area Survey, Mon. Not. R. Astron. Soc. 390 (2008), 304-322. https://doi.org/10.1111/j.1365-2966.2008.13729.x
67. H. Partrige and D. Schwenke, The determination of an accurate isotope-dependent potential energy surface for water from extensive ab initio calculations and experimental data, J. Chem. Phys. 106 (1997), 4618-4628. https://doi.org/10.1063/1.473987
68. D. Pfenniger, Galactic Dynamics and the Nature of Dark Matter, in Dark and visible matter in Galaxies, edited by M. Persic and P. Salucci, Astron. Soc. Pac. Conf. Ser. 117 (1997), 249-257.
69. Y.V. Pavlenko, R. Rebolo, E.L. Mart’ın, and R.J. Garc’ıa L’opez, Formation oflithium lines in very cool dwarfs, Astron. Astrophys. 303 (1995), 807-818.
70. Ya.V. Pavlenko, Analysis of the spectra of two Pleiades brown dwarfs: Teide 1 and Calar 3, Astrophys. Space Sci. 253 (1997), 43-53. https://doi.org/10.1023/A:1000584320988
71. Y.V. Pavlenko, Lines in Late-Type M Dwarfs: Teide1, Astron. Rept. 41 (1997a), 537-542.
72. Ya.V. Pavlenko, Depletion of TiO and spectra of the coolest brown dwarfs, Odessa Astron. Publ. 10 (1997b), 76-77.
73. Ya.V. Pavlenko, Lithium lines in the spectra of late M-dwarfs: the efects ofchromosphere-like structures, Astron. Rept. 42 (1998), 501-507.
74. Ya.V. Pavlenko, The “lithium test” and the Spectra of Late M Dwarfs and BrownDwarfs: Condensation Effects, Atron. Rept. 42 (1998b), 787-792.
75. Y. Pavlenko, M.R. Zapatero Osorio, R. Rebolo, On the interpretation of the optical spectra of L-type dwarfs, Astron. Astrophys. 355 (2000), 245-255.
76. Ya.V. Pavlenko, Lithium Lines in the Spectra of M Dwarfs: UX Tau C, Astron.Rept. 44 (2000), 219-226.
https://doi.org/10.1134/1.163844
77. Ya.V. Pavlenko, Modeling the Spectral Energy Distributions of L Dwarfs, Astron. Rept. 45 (2001b), 144-156. https://doi.org/10.1134/1.1346723
78. Ya.V. Pavlenko, Formation of the optical spectra of L dwarfs, in Ultracool dwarfs, edited by H.R.A. Jones, I.A. Steele (Springer, 2001a), 33-49. https://doi.org/10.1007/978-3-642-56672-1_4
79. Ya.V. Pavlenko, H.R.J. Jones, Carbon Monoxide bands in M dwarfs, Astron.Astrophys. 397 (2002), 967-975. https://doi.org/10.1051/0004-6361:20021454
80. Ya.V. Pavlenko, H2O and HDO bands in the spectra of late-type dwarfs, Astron. Rept. 46 (2002), 567-578. https://doi.org/10.1134/1.1495033
81. Ya.V. Pavlenko, Ultracool dwarfs, in Proceedings of MAO2004, 2005, astro-ph 0506263, 1.
82. Ya.V. Pavlenko, H.R.A. Jones, Yu. Lyubchik, J. Tennyson, Astron. Astrophys. 447 (2006), 709-717. https://doi.org/10.1051/0004-6361:20052979
83. Ya.V. Pavlenko, H.R.A. Jones, E.L. Mart’in, E. Guenther, M.A. Kenworthy, M.R. Zapatero Osorio, Lithium in LP 944-20, Mon. Not. R. Astron. Soc. 380 (2007), 1285-1296. https://doi.org/10.1111/j.1365-2966.2007.12182.x
84. Ya.V. Pavlenko, S.V. Zhukovskaya, M. Volobuev, Resonance potassium and sodium lines in the spectra of ultracool dwarfs, Astron. Rept. 51 (2007a), 282-290. https://doi.org/10.1134/S106377290704004X
85. Ya.V. Pavlenko, G.J. Harris, J. Tennyson, H.R.A. Jones, J.M. Brown, C. Hill, L.A. Yakovina, The electronic bands of CrD, CrH, MgD and MgH: application to the ‘deuterium test’, Mon. Not. R. Astron. Soc. 386 (2008), 1338-1346. https://doi.org/10.1111/j.1365-2966.2008.12522.x
86. B. Plez, A new TiO line list, Astron. Astrophys. 337 (1998), 495-500.
87. I.N. Reid, M Dwarfs, L Dwarfs, T Dwarfs and Subdwarfs: Φ(M) at and below the Hydrogen-Burning Limit, in Proceedings of Star Formation, held in Nagoya, Japan, June 21-25, 1999, edited by T. Nakamoto, Nobeyama Radio Observatory, 327-322
88. R. Rebolo, E.L. Mart’in, and A. Magazzu, Spectroscopy of a brown dwarf candidate in the Alpha Persei open cluster, Astrophys. J. 389 (1992), L83-L86. https://doi.org/10.1086/186354
89. R. Rebolo, M.R. Zapatero-Osorio, E.L. Mart’in, Discovery of a brown dwarf in the Pleiades star cluster, Nature 377 (1995), 129-131. https://doi.org/10.1038/377129a0
90. R. Rebolo, E.L. Mart’in, G. Basri et al., Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test, Astrophys. J. 469 (1996), L53-L56. https://doi.org/10.1086/310263
91. L.S. Rothman, C.P. Rinsland, A. Goldman et al., The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996Edition, J. Quant. Spectrosc. Radiat. Transfer 60 (1998), 665-710. https://doi.org/10.1016/S0022-4073(98)00078-8
92. M.T. Ruiz, S.K. Leggett, and F. Allard, Kelu-1: A Free-floating Brown Dwarf the Solar Neighborhood, Astrophys. J. 491 (1997), L107-L110. https://doi.org/10.1086/311070
93. R.E. Rutledge, G. Basri, E.L. Mart’in, L. Bildsten, Chandra Detection of an X-Ray Flare from the Brown Dwarf LP 944-20, Astrophys. J. 538 (2000), L141-L144. https://doi.org/10.1086/312817
94. D. Saumon, W.B. Hubbard, A. Burrows et al., A Theory of Extrasolar Giant Planets, Astrophys. J. 460 (1996), 993. https://doi.org/10.1086/177027
95. M.W. Schmidt, M.S. Gordon, The Construction and Interpretation of MCSCF wavefunctions, Ann. Rev. Phys. Chem. 49 (1998), 233-266. https://doi.org/10.1146/annurev.physchem.49.1.233
96. D. Schwenke, Opacity of TiO from a coupled electronic state calculation parametrized by AB initio and experimental data, Faraday Discuss. 109 (1998), 321-334. https://doi.org/10.1039/a800070k
97. B. Stelzer, X-ray emission probing the limiting cases of stellar dynamos, Mem. S. A. It. 76 (2005), 410-415.
98. J. Tennyson, G.J. Harris, R.J. Barber, S. La Delfa, B.A. Voronin, B.M. Kaminsky, Ya.V. Pavlenko, Molecular line lists for modelling the opacity of cool stars, Mol. Pharm. J. 105 (2007), 701-714. https://doi.org/10.1080/00268970701196983
99. C.G. Tinney, The intermediate-age brown dwarf LP 944-20, Mon. Not. R. Astron. Soc. 296 (1998), L42-L44. https://doi.org/10.1046/j.1365-8711.1998.01642.x
100. C.G. Tinney, I.N. Reid, High-resolution spectra of very low-mass stars, Mon. Not. R. Astron. Soc. 301 (1998a), 1031-1048.https://doi.org/10.1046/j.1365-8711.1998.02079.x
101. C.G. Tinney, A.J. Tolley, Searching for weather in brown dwarfs, Mon. Not. R. Astron. Soc. 304 (1999), 119-126. https://doi.org/10.1046/j.1365-8711.1999.02297.x
102. R.N. Thomas, The Source Function in a Non-Equilibrium Atmosphere. I. The Resonance Lines, Astrophys. J. 125 (1957), 260-274. https://doi.org/10.1086/146299
103. V. Trimble, Ann. Rev. Astron. Astrophys. 25 (1987), 425-472. https://doi.org/10.1146/annurev.aa.25.090187.002233
104. T. Tsuji, Molecular abundances in stellar atmospheres. II. Astron. Astrophys. 23 (1973), 411-431.
105. T. Tsuji, K. Ohnaka, W. Aoki, T. Nakajima, Astron. Astrophys. 308 (1996), L29-L32.
106. T. Tsuji, Dust in Very Cool Dwarfs, in Very Low-mass Stars and Brown Dwarfs, edited by R. Rebolo and M.R. Zapatero-Osorio (The Cambridge University Pressб 2000), 156-168. https://doi.org/10.1017/CBO9780511564758.016
107. A. Uns¨old, Physics der Sternatmospharen (Springer, 1955), 1. https://doi.org/10.1007/978-3-642-47425-5_1
108. G.A.H. Walker, D.A. Bohlender, A.R. Walker, A.W. Irwin, Yang, L.S. Stephenson, A. Larson, γ Cephei – Rotation or planetary companion?, Astrophys. J. 396 (1992), L91-94. https://doi.org/10.1086/186524
109. A. Wolszczan, D.A. Frail, A planetary system around the millisecond pulsar PSR 1257 + 12, Nature 355, 6356 (1992), 145-147.https://doi.org/10.1038/355145a0
110. M.R. Zapatero Ozorio, R. Rebolo, E.L. Mart’in, New Brown Dwarfs in the Pleiades Cluster, Astrophys. J. 491 (1997), L81-L84. https://doi.org/10.1086/311073
111. M.R. Zapatero Ozorio, V.J.S. Bejar, R. Rebolo et al., Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster, Science 290 (2000), 103-107. https://doi.org/10.1126/science.290.5489.103
112. M.R. Zapatero Osorio, V.J.S. Bejar, Ya. Pavlenko, R. Rebolo, C. Allende Prieto, E.L. Mart’in, R.J. Garcia Lopez, Lithium and Hα in stars and brown dwarfs of sigma Orionis, Astron. Astrophys. 384 (2002b), 937-953. https://doi.org/10.1051/0004-6361:20020046
113. M.R. Zapatero Osorio, B.L. Lane, Ya. Pavlenko, E.L. Mart’in, M. Britton, S.R. Kulkarni, Dynamical Masses of the Binary Brown Dwarf GJ 569 Bab, Astrophys. J. 615 (2004), 958-971. https://doi.org/10.1086/424507