SYNTHESIS AND BIOLOGICAL ACTIVITY OF NITRIC OXIDE IN SMOOTH MUSCLE MITOCHONDRIA

Authors:

H.V. Danylovych
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv
https://orcid.org/0000-0003-0571-4494
Scopus Author ID: 36099845500

Yu.V. Danylovych
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv
https://orcid.org/0000-0002-3526-7085
Scopus Author ID: 6507778668
ResearcherID: KEJ-4225-2024

Reviewers:
R.S. Stoika
Corresponding member of NAS of Ukraine, Doctor of Science, Professor
Institute of Cell Biology, Lviv University
Head of Department (Regulation of Cell Proliferation and Apoptosis)
https://orcid.org/0000-0001-5719-2187
Scopus Author ID: 56144795900
SciProfiles: 1949844

O.Р. Matyshevska
Doctor of Science, Professor
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv
Leading Researcher (department of Scientific and Technic Information)
https://orcid.org/0000-0003-0587-5124

А.О. Tykhomyrov
Doctor of Science, Senior Researcher
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv
Head of Department (department of Enzyme Chemistry and Biochemistry)
https://orcid.org/0000-0003-2063-4636
Scopus Author ID: 23502292700

 

Affiliation:

Project: Scientific book

Year: 2024

Publisher: PH "Naukova Dumka"

Pages: 215

DOI:

https://doi.org/10.15407/978-966-00-1948-5

ISBN: 978-966-00-1948-5

Language: Ukrainian

How to Cite:

Abstract:

The monograph presents data from the current scientific literature and the results of our own comprehensive studies on the biochemical pathways of NO synthesis in the mitochondria of uterine smooth muscle cells. Special attention is paid to the molecular mechanisms of nitric oxide action as a possible endogenous specific regulator of Ca2+ concentration in myocytes, functioning of Ca2+ transport systems of mitochondria and bioenergetic processes in them. Experimental data on the effect of calix[4]arenes, exogenous non-toxic modulators of mitochondrial functional activity, on NO synthase capacity, bioenergetics, and Ca2+ homeostasis of organelles were analyzed. New answers are given to fundamental questions about the ways of smooth muscle relaxation.

Modern data on nitric oxide’s metabolism and physiological value have been thoroughly analyzed. Mainly, experimental material related to such issues as the synthesis of nitric oxide in the mitochondria of the smooth muscle of the uterus, nitric oxide regulation of Ca2+ homeostasis in myocytes and Ca2+ transport in the inner mitochondrial membrane, and the effect of nitric oxide on the electron transport chain has been set out. Considerable attention is paid to calix[4]arenes as a selective effectors on Ca2+ transport, NO synthesis, and energy processes in mitochondria.

For specialists in the field of biochemistry and biophysical chemistry, biochemical membranology and pharmacology, as well as for graduate students of the relevant specialties.

Keywords:

nitric oxide, NO-synthase, mitochondria, myometrium, Ca2+-homeostasis, plasmalemma potential, electron transport chain, inner mitochondrial membrane potential, calix[4]arenes

References:

  1. Treuer A.V., Gonzalez D.R. Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities (Review). Molecular Medicine Reports. 2015. Vol. 11. P.1555-1565.
  2. Ghimire K., Altmann H.M., Straub A.C., Isenberg J.S. Nitric oxide: what’s new to NO? American Journal of Physiology Cell Physiology. Vol. 312. P. C254–C262.
  3. Bryan N.S., Bian K., Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Frontiers in Bioscience. 2009. Vol. 14. P. 1-18.
  4. Philippu Nitric Oxide: A Universal Modulator of Brain Function. Current Medical  Chemistry. 2016. Vol. 23, N 24. P. 2643-2652.
  5. Pitocco D., Zaccardi F., Di Stasio E., Romitelli F., Santini S.A., Zuppi C., Ghirlanda G. Oxidative stress, nitric oxide, and diabetes. The Review of Diabetic Studies. 2010. Vol. 7, N 1. P. 15-25.
  6. Sladek M.S., Magness R.R., Conrad K.P. Nitric oxide and pregnancy. American Journal of Physiology. 1997. Vol. 272, N 2. P. R441-R463.
  7. Buxton I.L.O. Regulation of uterine function: a biochemical conundrum in the regulation of smooth muscle relaxation. Molecular Pharmacology. 2004. Vol. 65, N6. P. 1051-1059.
  8. Buxton I.L.O. The regulation of uterine relaxation. Seminars in Cell & Developmental Biology. 2007. Vol. 18, N 3. P. 340-347.
  9. Tiboni G.M., Giampietro F., Lamonaca D. The soluble guanylate cyclase inhibitor methylene blue evokes preterm delivery and fetal growth restriction in a mouse model. In Vivo. 2001. Vol. 15. P. 333-337.
  10. Bao , Rai J., Schreiber J. Expression of nitric oxide synthase isoforms in human pregnant myometrium at term. Journal of the Society for Gynecologic Investigation. 2002. Vol. 9, N6. P. 351-356.
  11. Buxton I.L., Kaiser R.A., Malmquist N.A.,Tichenor S. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP. British Journal of Pharmacology. 2001. Vol. 134. P. 206-214.
  12. Farina M., Ribeiro M.L., Franchi A. Nitric oxide synthases in pregnant rat uterus. Reproduction. 2001. Vol. 121, N3. P. 403-407.
  13. Okawa , Vedernikov Y.P., Saade G.R., Garfield R.E. Effect of nitric oxide on contractions of uterine and cervical tissues from pregnant rats. Gynecological Endocrinology. 2004. Vol. 18, N4. P. 186-193.
  14. Wray S., Jones K., Kupittayanant S., Li Y., Matthew A., Monir-Bishty E., Noble K., Pierce S.J., Quenby S., Shmygol A.V. Calcium signaling and uterine contractility. Journal of the Society for Gynecologic Investigation. 2003. Vol. 10, N 5. P. 252-64.
  15. Wray S. Calcium Signaling in Smooth Muscle. Handbook of Cell Signaling. P. 1009–1025. doi:10.1016/b978-0-12-374145-5.00127-3.
  16. Wray S., Prendergast C. The Myometrium: From Excitation to Contractions and Labour. Springer Nature Singapore Pte Ltd. H. Hashitani, R. J. Lang (eds.), Smooth Muscle Spontaneous Activity, Advances in Experimental Medicine and Biology. 2019.
  17. Nadeem L., Shynlova O., Mesiano S., Lye S. Progesterone Via its Type-A Receptor Promotes Myometrial Gap Junction Coupling. Scientific Reports. 2017. Vol. 7, N 1. P.
  18. Karasinski J., Galas J., Semik D., Fiertak A., Bilinska B., Kilarski W.M. Changes of connexin43 expression in non-pregnant porcine myometrium correlate with progesterone concentration during oestrous cycle.  Reproduction in Domestic Animals. Vol. 45, N 6. P. 959-966.
  19. Danilovich Yu.V., Тugai V.А. Formation of NO and Н2О2 in the endometrium stroma under acetylcholine action. The Ukrainian Biochemical Journal. 2001. Vol.73, N P. 110-115.
  20. Danylovych Yu.V. Steroid hormones and oxitocine action on NO and Н2О2 originating in endometrium. The Ukrainian Biochemical Journal. 2004. Vol. 76, N P. 88-96.
  21. Cameron I.T., Campbell S. Nitric oxide in the endometrium. Human Reproduction Update. 1998. Vol. 4, N 5. P. 565–569.
  22. Khorram O., Gartwaite M., Magness R.R. Endometrial and myometrial expresion of nitric oxide synthase isoforms in pre- and postmenopausal women. The Journal of Clinical Endocrinology & Metabolism. 1999. Vol. 84, N 6. P. 2226–2232.
  23. Valdes G., Corthorn J. Review: the angiogenic and vasodilatory uteroplacental network. Placenta. 2011. Vol. 32, Suppl 2. P. S170-175.
  24. Yellon S.M., Mackler A.M., Kirby M.A. The role of leukocyte traffic and activation in parturition. Journal of the Society for Gynecologic Investigation. 2003. Vol. 10, N 6. P. 323-338.
  25. Zhang J., Massmann G.A., Mirabile C.P., Figueroa J.P. Nonpragnant sheep uterine type 1 and type 2 nitric oxide synthase expression is differentially regulated by estrogen. Biology of Reproduction. 1999. Vol. 60, N 5. P. 1198–1203.
  26. Toda N., Toda H., Okamura T. Regulation of myometrial circulation and uterine vascular tone by constitutive nitric oxide. European Journal of Pharmacology. 2013. Vol. 714, N 1-3. P. 414-423.
  27. Tota B., Quintieri A.M., Angelone T. The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function. Current Medical  Chemistry. 2010. Vol. 17, N 18. P. 1915-1925.
  28. Ghafourifar P., Cadenas E. Mitochondrial nitric oxide synthase. Trends in Pharmacological Sciences. 2005. Vol.  26, N 4. P. 190-195.
  29. Giulivi , Kato K., Cooper C.E. Nitric oxide regulation of mitochondrial oxygen consumtion I: cellular physiology. American Journal of Physiology Cell Physiology. 2006. Vol. 291, N 6. P. C1225-C1231.
  30. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology.  Vol. 303, N 11. P. H1283- H1293.
  31. Elfering S.L., Sarkela Th.M., Giulivi C. Biochemistry of Mitochondrial Nitric-oxide Synthase. The Journal of Biological Chemistry. Vol.  277, N 41. P. 38079–38086.
  32. Valdez L.B., Zaobornyj T., Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochimica et Biophysica Acta. 2006. Vol. 1757, N 3. P. 166–172.
  33. Wang C-H, Wei Y-H. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. Journal of Biomedical Science. 2017. 24. P. 70
  34. Alston C.L., Rocha M.C., Lax N.Z., Turnbull D.M., Taylor R.W. The genetics and pathology of mitochondrial disease. The Journal of Pathology. 2017. Vol. 241. P. 236–250.
  35. Bravo-Sagua R., Parra V., Lґopez-Crisosto C., Dґıaz P.,. Quest A.F.G., Lavandero S. Calcium Transport and Signaling in Mitochondria. Comprehensive Physiology. 2017. Vol. 7. P. 623-634.
  36. Anderson A.J., Jackson T.D., Stroud D.A., Stojanovski D. Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biology. 2019. Vol. 9. P. 190126.
  37. Yeh C-H., Chou Y-J., Kao C-H., Tsai T-F. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing. International Journal of Molecular Sciences. 2020. Vol. 21. P. 9238.
  38. Kuznetsov A.V., Javadov S., Hagenbuchner J., Ausserlechner M.J. Mitochondrial Involvement in the Molecular Mechanisms of Ischemia-Reperfusion Injury in the Heart. Recent Research Advances in Biology. 2021. Vol. 8, N 6. P. 64-85.
  39. Takeuchi, Kim B., Matsuoka S. The destiny of Ca(2+) released by mitochondria. The Journal of Physiological Sciences. 2015. Vol. 65, N 1. P. 11-24.
  40. Gellerich F.N., Gizatullina Z., Trumbeckaite S., Nguyen H.P., Pallas T., Arandarcikaite O., Vielhaber S., Seppet E., Striggow F. The regulation of OXPHOS by extramitochondrial calcium. Biochimica et Biophysica Acta. Vol. 1797, N 6-7. P. 1018-1027.
  41. Gellerich F.N., Gizatullina Z., Gainutdinov T., Muth K., Seppet E., Vielhaber S. The  of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life. Vol. 65, N 3. P. 180-190.
  42. CaoL., Adaniya S.M., Cypress M.W., Suzuki Y., Kusakari Y., Jhun B.S., O-Uchi J. Role of mitochondrial Ca 2+ homeostasis in cardiac muscles. Archives of Biochemistry and  Biophysics. 2019. Vol. 663. P. 276-287.
  43. Naumova N., Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl‐2 Proteins. Membranes. 2020. Vol. 10. P. 299.
  44. Bock J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology. 2020. Vol. 21, N 2. P. 85-100.
  45. Kosterin S.A., Burdyga Th.V., Fomin V.P., Grover A.K. Mechanism of Ca2+-transport in myometrium. Control of Uterine Contractility. Eds. RE. Garfield, TN. Tabb. – CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1994. P. 129-153.
  46. McCarron J.G., Olson M.L., Wilson C., Sandison M.E., Chalmers S. Examining the role of mitochondria in Ca2+ signaling in native vascular smooth muscle. Microcirculation. 2013. Vol. 20. P. 317-329.
  47. Davidson S.M., Duchen M.R. Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovascular Research. 2006. Vol. 71, N 1. P. 10-21.
  48. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovascular Research. Vol. 75, N 2. 283-290.
  49. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C1569-C1580.
  50. Santos C.X.C, Anilkumar N., Zhang M., Brewer A.C., Shah A.M. Redox signaling in cardiac myocytes. Free Radical Biology & Medicine. 2011. Vol. 50, N 7. P. 777-793.
  51. Levine A.B., Punihaole D., Levine T.B. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012. Vol. 122. P. 55-68.
  52. Crouser E.D. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004. Vol. 4. P. 729-741.
  53. Piantadosi C.A., Suliman H.B. Redox regulation of mitochondrial biogenesis. Free Radical Biology & Medicine. 2012. Vol. 53, N 11. P. 2043-2053.
  54. Talib J., Kwan J., Suryo Rahmanto A., Witting P.K., Davies M.J. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochemical Journal. 2014. Vol. 457. P. 89-97.
  55. Liu Z., Khalil R.A. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochemical Pharmacology. 2018. Vol. 153. P. 91-122.
  56. TarasovaV., Vishnyakova P.A., Logashina Yu.A., Elchaninov A.V. Mitochondrial Calcium Uniporter structure and function in different types of muscle tissues in health and disease. International Journal of Molecular Sciences. 2019. Vol. 20, N 19. P. 4823.
  57. Radi R., Cassina A., Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biological Chemistry. 2002. Vol. 383, N 3-4. P. 401-409.
  58. De Palma C., Clementi E. Nitric oxide regulation of mitochondrial biogenesis. Mitochondrial signaling in health and disease. Ed. S. Orrenius, L. Packer, E. Cadenas. 2012. P. 157-167.
  59. Sanchez–Padilla J., Guzman J.N., Ilijic E., Kondapalli J., Galtieri D.J., Yang B., Schieber S., Oertel W., Wokosin D., Schumacker P.T., Surmeier D.J. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nature Neuroscience. 2014. Vol. 17, N 6. P. 832-840.
  60. Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010. Vol. 22, N 2. P. 64-74.
  61. Tengan C.H., Rodrigues G.S., Godinho R.O. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. International Journal of Molecular Sciences. Vol. 13, N 12. P. 17160-17184.
  62. Traaseth N., Elfering S., Solien J., Haynes V., Giulivi C. Role of calcium signaling in activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochimica et Biophysica Acta. 2004. Vol. 1658, N 1-2. P. 64-71.
  63. Veklich Т.О., Kosterin S.О., Shinlova О.P. Cation specificity of Са2+ accumulation system in the smooth muscle cells mitochondria. The Ukrainian Biochemical Journal. 2002. Vol. 74, N 1. P. 42-48.
  64. Shinlova О.P, Kosterin S.А., Veklich Т.А. Ruthenium Red-sensitive energy-dependent and passive Са2+ transport in permeabilized smooth muscle cells. Biochemistry (Moscow). 1996. Vol. 61, N P. 1021-1025.
  65. Austin S., Nowikovsky K. LETM1: essential for mitochondrial biology and cation homeostasis? Trend in Biochemical Sciences. 2019. Vol. 44, N 8. P. 648-658.
  66. Lin Q-T., Stathopulos P.B. Molecular Mechanisms of Leucine Zipper EF-Hand Containing Transmembrane Protein-1 Function in Health and Disease. International Journal of Molecular Sciences. 2019. Vol. 20. P. 286.
  67. Natarajan G.K., Mishra J.,. Camara A.K.S., Kwok W-M. LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Frontiers in Physiology.  2021. Vol. 12. P. 637852.
  68. Кosterin S.О., Кalchenko V.І., Veklich Т.О., Babich L.G., Shlykov S.G. Calixarenes as modulators of АТР-hydrilizing systems of smooth muscles. Кyiv: Naukova Dumka, 2019. 256 p.
  69. Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes. Chemical Communications. 2006. Vol. 23. P. 2425-2438.
  70. Bukharov S.V., Nugumanova G.N., Tagasheva R.G.Polyphenolic antioxidants based on calixarenes.KNITU Publishing House, 2016.
  71. Pan Y-C., Hu X-Y., Guo D-S. Biomedical applications of calixarenes: state of the art and perspectives. Angewandte Chemie International edition in English. 2021. Vol. 60, N 6. P. 2768-2794.
  72. Vovk I., Kalchenko V.I., Cherenok S.A., Kukhar V.P., Muzychka O.V., Lozynsky M.O. Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Organic & Biomolecular Chemistry. 2004. Vol. 2, N 21. P. 3162-3166.
  73. Buldenko V.M., Trush V.V., Kobzar O.L., Drapailo A.B., Kalchenko V.I., Vovk A.I. Calixarene-based phosphinic acid as  inhibitors of protein tyrosine phosphatase. Bioorganic & Medicinal Chemistry Letters. 2019. Vol. 29, N 6. P. 797-801.
  74. Veklich Т.О., Shkrabak A.А., Mazur Yu.Yu., Rodik R.V., Кalchenko V.І., Кosterin S.О. Kinetics of inhibitory effect of calix[4]arene С-90 on activity of transporting plasma membrane Ca2+,Mg2+-АТРase of smooth muscle cells. The Ukrainian Biochemical Journal. 2014. Vol. 86, N 5. P. 37-46.
  75. Veklich Т.О., Кosterin S.О., Rodik R.V., Cherenok S.A., Boyko V.І., Кalchenko V.І. Effect of calixarene-phosphonic acid on Nа++-АТРase activity in plasma membranes of the smooth muscle cells. The Ukrainian Biochemical Journal. 2006. Vol. 78, N 1. P. 70-78.
  76. Veklich Т.О., Shkrabak O.А., Rodik R.V., Кalchenko V.І., Кosterin S.О. The effect of calixarene С-107 on kinetic parameter of Nа++-АТРase of uterus myocyte plasma membrane. The Ukrainian Biochemical Journal. 2011. Vol. 83, N P. 36-44.
  77. ShlykovS.G.,BabychL.G., Slinchenko N.М., Rodik R.V., Boyko V.І., Кalchenko V.І., Кosterin S.О Calixarene С-91 stimulates Са2+ accumulation in mitochondria. The Ukrainian Biochemical Journal. Т. 79, № 4. С. 28-33.
  78. Babych L.G., Shlykov S.G., Boyko V.I., Klyachina M.A., Kosterin S.O.Calix[4]arenechalconamides C-136 and C-137 hyperpolarize the mitochondrial membrane of the myometrium.Bioorganic chemistry. Vol. 39, N 6. P. 728–735.
  79. BabychL.G., ShlykovS.G., Kushnarova А.М., Yesypenko A.A., KosterinS.O. Chalcone-containing calix[4]arenes are nanoscale modulators of mitochondrial membrane polarization and ionized Ca content in them. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. Vol. 15, N P. 193–202.
  80. Tsymbalyuk О.V., Onufryjchuk О.V., Veklich Т.О., Cherenok S.A., Кalchenko V.І., Miroshnichenko N.S., Кosterin S.О. Comparative study of influence of ouabain and calixarene bis-hydroxymethylphosphone acid on Na++-АТРase activity and mechanokinetics of process «contraction-relaxation» of smooth muscle. Physics of the Alive. 2006. Vol. 14, N P. 53-72.
  81. Tsymbalyuk О.V., Rodik R.V., Кalchenko V.І., Кosterin S.О. The mekhanokinetical parameters of contractile activity of rat caecum smooth muscles under conditions of calixarene С107 chronic action in vivo. Physics of the Alive. 2010. Vol. 18, N P. 47-51.
  82. Tsymbalyuk О.V., Кosterin S.О. Influence of calixarene C-90 on contractile activity of rat myometrium smooth muscles. Biologichni studii. 2013. Vol. 7, N P. 5-20.

CHAPTER 1

  1. Furchgott RF, Cherry PD,  Zawadzki JV, Jothianandan Endothelial cells as mediators of vasodilation of arteries. Journal of Cardiovascular Pharmacology. 1984. Vol. 6 N 2. P. S336-343.
  2. Ignarro LJ. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circulation Research. Vol. 65. N 1. P.1-21.
  3. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology,pathophysiology and pharmacology. Pharmacological Reviews. Vol. 43. N 2. P. 109-142.
  4. Marsh N, Marsh A. A short history of nitroglycerine and nitric oxide in pharmacologyand physiology. Clinical and Experimental Pharmacology and Physiology. Vol. 27. N 4. P. 313–319.
  5. Treuer A.V., Gonzalez D.R. Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities (Review). Molecular Medicine Reports. 2015. Vol. 11. N 3. P.1555-1565.
  6. Ghimire K., Altmann H.M., Straub A.C., Isenberg J.S. Nitric oxide: what’s new to NO? American Journal of Physiology Cell Physiology. Vol. 312. N 3. P. C254–C262.
  7. Bryan N.S., Bian K., Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Frontiers in Bioscience. 2009. Vol. 14. N 1. P. 1-18.
  8. Philippu Nitric Oxide: A Universal Modulator of Brain Function. Current Medical Chemistry. 2016. Vol. 23, N 24. P. 2643-2652.
  9. Pitocco D., Zaccardi F., Di Stasio E., Romitelli F., Santini S.A., Zuppi C., Ghirlanda G. Oxidative stress, nitric oxide, and diabetes. The Review of Diabetic Studies. 2010. Vol. 7, N 1. P. 15-25.
  10. Krauss G. Biochemistry of Signal Transduction and Regulation Fifth, Completely Revised Edition. Wiley-VCH, Verlag GmbH&Co.KGaA. 2014, 815 p.
  11. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal. 2001. Vol. 357. Pt 3. P. 593-615.
  12. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proceedings of the National Academy of Sciences of the USA. 2001. Vol. 98 N 1. P. 355-360.
  13. Levine A.B., Punihaole D., Levine T.B. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012. Vol. 122. N 1. P. 55-68.
  14. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences. 2015. Vol. 129. N 2. P. 83-94.
  15. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery. 2008. Vol. 7. N 2. P. 156-167.
  16. Omar SA, Webb AJ, Lundberg JO, Weitzberg Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. Journal of Internal Medicine. 2016. Vol. 279. N 4. P. 315-336.
  17. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. European Heart Journal. 2012. Vol. 33. N 7. P. 829-837.
  18. Daff S. NO synthase: structures and mechanisms. Nitric Oxide. 2010. Vol. 23. N 1. P. 1-11.
  19. Andrew PJ, Mayer Enzymatic function of nitric oxide synthases. Cardiovascular Research. 1999. Vol. 43. N 3. P. 521-531.
  20. Nosarev AV, Smagliy LV, Anfinogenova Y, Popov SV, Kapilevich LV. Exercise and NO production: relevance and implications in the cardiopulmonary system. Frontiers in Cell and Developmental Biology. 2015. Vol. 2. P. 73.
  21. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. Nitric Oxide Synthase Isozymes. Characterization, Purification, Molecular Cloning, and Functions. Hypertension. Vol. 23. N 6, Part 2. P. 1121-1131.
  22. Tengan CH, Rodrigues GS, Godinho RO. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. International Journal of Molecular Sciences. Vol. 13. N 12. P. 17160-17184.
  23. Silvagno F, Xia H, Bredt D S. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. Journal of Biological Chemistry. Vol. 271. N 19. P. 11204–11208.
  24. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, and Bredt DS. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. 1996. Vol. 84. N 5. P. 757-767.
  25. Brenman JE, Xia H, Chao DS, Black SM, Bredt DS. Regulation of neuronal nitric oxide synthase through alternative transcripts. Developmental Neuroscience. Vol. 19. N 3. P. 224-231.
  26. Kone BC, Kuncewicz T, Zhang W, Yu Z-Y. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. American Journal of Physiology Renal Physiology. Vol. 285. N 2. P. F178–F190.
  27. Daff S, Sagami I, Shimizu T. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer. Journal of Biological Chemistry. 1999. Vol. 274. N 43. P. 30589-30595.
  28. De Palma C, Clementi E. Nitric oxide regulation of mitochondrial biogenesis // Mitochondrial signaling in health and disease. Ed. S.Orrenius, L. Packer, E. Cadenas. 2012: 157-167.
  29. Duan W, Zhou J, Li W, Zhou T, Chen Q, Yang F, Wei T. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase. Protein & 2013. Vol. 4. N 4. P. 286-298.
  30. Hemmens B, Woschitz S, Pitters E, Klösch B, Völker C, Schmidt K, Mayer B. The protein inhibitor of neuronal nitric oxide synthase (PIN): characterization of its action on pure nitric oxide synthases. FEBS Letters. 1998. Vol. 430. N 3. P. 397-400.
  31. Rodríguez-Crespo I, Straub W, Gavilanes F, Ortiz de Montellano PR. Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Archives of Biochemistry and Biophysics. 1998. Vol. 359. N 2. P. 297-304.
  32. Heinonen I, Saltin B, Hellsten Y, Kalliokoski The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. European Journal of Applied Physiology. 2017. Vol. 117. N 6. P. 1175-1180.
  33. Li Q, Chen Y, Zhang X, Zuo S, Ge H, Chen Y, Liu X, Zhang JH, Ruan H, Feng H. Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. Journal of Clinical Neuroscience. Vol. 34. P. 264-270.
  34. Lee JE, Yuan H, Liang F-X, Sehgal Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cell. Nitric Oxide. 2013. Vol. 33. P. 64-73.
  35. Duran WN, Breslin JW, Sanchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovascular Research. Vol. 87. N 2. P. 254-261.
  36. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. Journal of Biological Chemistry. 1996. Vol. 271. N 11. P. 6518-6522.
  37. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovascular Research. 2006. Vol. 71. N 1. P. 10-21.
  38. Komeima K, Hayashi Y, Naito Y, Watanabe Y. Inhibition of neuronal nitric-oxide synthase by calcium/calmodulin-dependent protein kinase II alpha through Ser847 phosphorylation in NG108-15 neuronal cells. Journal of Biological Chemistry. 2000. Vol. N 36. P. 28139-28143.
  39. Mutchler SM, Straub AC. Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide. Vol. 49. P. 8-15.
  40. Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, Bauer PM, Schnermann J, Roberts DD, Isenberg JS. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovascular Research. Vol. 88. N 3. P. 471-481.
  41. Rogers NM, Sharifi-Sanjani M, Csányi G, Pagano PJ, Isenberg JS. Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biology. Vol. 37. P. 92-101.
  42. Shashar M, Chernichovski T, Pasvolsky O, Levi S, Grupper A, Hershkovitz R, Weinstein T,  Schwartz Vascular endothelial growth factor augments arginine transport and nitric oxide generation via a KDR receptor signaling pathway. Kidney and Blood Pressure Research. 2017. Vol. 42. N 2. P. 201-208.
  43. Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochemical Journal. 1998. Vol. Pt 1. P. 1-17.
  44. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Frontiers in Physiology. 2015. Vol. 6. P. 20.
  45. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C1569-C1580.
  46. Tsai KD, Chen W, Wang SH, Hsiao YW, Chi JY, Wu HY, Lee YJ, Wong HY, Tseng MJ, Lin TH. Downregulation of connective tissue growth factor by LPS/IFN-γ-induced nitric oxide is reversed by aristolochic acid treatment in glomerular mesangial cells via STAT-1α and NF-κB signaling. Chemico-Biological Interactions. 2014. Vol. 210. P. 86-95.
  47. Tripathi P. Nitric oxide and immune response. Indian Journal of Biochemistry & Biophisics. 2007. Vol. 44. N 5. P. 310-319.
  48. Siomek A. NF-κB signaling pathway and free radical impact. Acta Biochimica Polonica. 2012. Vol. 59. N 2. P. 323-329.
  49. Connely L, Jacobs AT, Palacios-Callender M, Moncada S, Hobbs AJ. Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. Journal of Biological Chemistry. 2003. Vol. 278. N 29. P. 26480-26487.
  50. Van Straaten JF, Postma DS, Coers W, Noordhoek JA, Kauffman HF, Timens W. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase. Modern Pathology. Vol. 11. N 7. P. 648-655.
  51. Nagano T, Friedovich I. The co-oxidation of ammonia to nitrite during the aerobic xanthine oxidase reaction. Archives of Biochemistry and Biophysics. 1985. Vol. 241. N 2. P. 596-601.
  52. Dull BJ, Hotchkins JH. Activated oxygen and mammalian nitrate biosynthesis. Carcinogenesis. 1984. Vol. 5. N 9. P. 1161-1164.
  53. Guerra DD, Hurt KJ. Gasotransmitter in pregnancy: from conception to uterine involution. Biology of Reproduction. 2019. Vol. 101. N 1. P. 4-25.
  54. Lundberg JO, Weitzberg NO-synthase independent NO generation in mammals. Biochemical and Biophysical Research Communications. 2010. Vol. 396. N 1. P. 39-45.
  55. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzellie S, Hussain P, Vecoli C et al. The Chemocal biology of nitric oxide. Implication in cellular signaling. Free Radical Biology & Medicine. 2008. Vol. 45, N 1. P. 18-31.
  56. Siervo M, Scialò F, Shannon OM, Stephan BCM, Ashor AW. Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proceeding of the Nutrition Society. 2018. Vol. 77. N 2. P. 112-123.
  57. LundbergO., Weitzberg E. NO generation from nitrite and its role in vascular control. Arteriosclerosis, Thrombosis and Vascular Biology. 2005. Vol. 25. N 5. P. 915-922.
  58. Sybirna N.O., Lyuta M.Ya., Klymyshyn N.І. Molecular mechanisms of nitric oxide deposition in erythrocytes. Biologichni Studii. 2010. Vol. 4. N 1. P. 143-160.
  59. Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010. Vol. 22. N 2. P. 64-74.
  60. Shiva S. Nitrite: A Physiological Store of Nitric Oxide and Modulator of Mitochondrial Function. Redox Biology. 2013. Vol. 1. N 1. P. 40-44.
  61. Soodaeva S, Klimanov I, Kubysheva N, Popova N, Batyrshin I. The state of the nitric oxide cycle in respiratory tract diseases. Oxidative Medicine and Cellular Longevity. 2020. Article ID 4859260.
  62. Lundberg JO, Weitzberg NO generation from inorganic nitrate and nitrite: Role in physiology, nutrition and therapeutics. Archives of Pharmacal Research. 2009. Vol. 32. N 8. P. 1119-1126.
  63. Welland A, Daff S. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain. The FEBS Journal. 2010. Vol. 277. P. 3833-3843.
  64. Nishida CR, Ortiz de Montellano PR. Autoinhibition of endothelial nitric-oxide synthase. Identifcation of an electron transfer control element. Journal of Biological Chemistry. 1999. Vol. N 21. P. 14692-14698.
  65. Chreifi G, Li H, McInnes CR, Gibson CL, Suckling CJ, Poulos TL. Communication between the zinc and tetrahydrobiopterin binding sites in nitric oxide synthase. Biochemistry. Vol. 53. N 25. P. 4216-4223.
  66. Talib J., Kwan J., Suryo Rahmanto A., Witting P.K., Davies M.J. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochemical Journal. 2014. Vol. 457. N 1. P. 89-97.
  67. Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ. Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status. Journal of Biological Chemistry. 2009. Vol. 284. N 2. P. 1136-1144.
  68. Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clinical Science (Lond). Vol. 113. N 2. P. 47-63.
  69. Li H, Poulos TL. Structure-function studies on nitric oxide synthases. Journal of Inorganic Biochemistry. 2005. Vol. 99. N 1. P. 293-305.
  70. Cosentino F, Katusic ZS. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation. Vol. 91. N 1. P. 139-144.
  71. Gorren А.C., Mayer B. The versatile and complex enzymology of nitric oxide synthase. Biochemistry (Moscow). Vol.63. N 7. С. 734–743.
  72. Sheng J-Zh, Wang D, Braun AP. DAF-FM (4-Amino-5-methylamino-2_,7_-difluorofluorescein) Diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin C and L-sepiapterin. Journal of Pharmacology and Experimental Therapeutics. 2005. Vol. 315. N 2. P. 931-940.
  73. Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radical Biology & Medicine. 2011. Vol. 50. N 7. P. 777-793.
  74. Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. The Journal of Physiology. 2009. Vol. 587. Pt 4. P. 851-
  75. Chuaiphichai S, McNeill E, Douglas G, Crabtree MJ, Bendall JK, Hale AB, Alp NJ, Channon KM. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation. 2014. Vol. 64. N 3. P. 530-540.
  76. Simon A, Plies L, Habermeier A, Martiné U, Reining M, Closs EI. Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circulation Research. 2003. Vol. 93. N 9. P. 813-8
  77. Santhanam L, Christianson DW, Nyhan D,. Berkowitz DE. Arginase and vascular aging. Journal of Applied Physiology. 2008. Vol. 105. N 5. P. 1632-
  78. Hsu C-N, Tain Y-L. Impact of Arginine Nutrition and Metabolism during Pregnancy on Offspring Outcomes. Nutrients. 2019. Vol. 11. N 7. P. 1452.
  79. Closs EI, Scheld JS, Sharafi M, Forstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Molecular Pharmacology. 2000. Vol. 57. N 1. P. 68-
  80. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clinical and Experimental Pharmacology and Physiology. 2007. Vol. 34. N 9. P. 906-911.
  81. Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. British Journal of Pharmacology. 2009. Vol. 157. N 6. P. 922-930.
  82. Elms S, Chen F, Wang Y, Qian J, Askari B, Yu Y, Pandey D, Iddings J, Caldwell RB, Fulton DJ. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. The American Journal of Physiology Heart and Circulatory Physiology. Vol. 305. N 5. P. H651-H666.
  83. Ferents I.V., Brodyak I.V., Lyuta M.Ya., Burda V.A., Fedorovych A.M., Sybirna N.O. The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats. The Ukrainian Biochemical Journal. 2012. Vol. 84. N 3. P. 55-62.
  84. Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proceedings of the National Academy of Sciences of the USA. Vol. 88. N 23. P. 10480-10484.
  85. Ash DE. Structure and Function of Arginases. Journal of Nutrition. 2004. Vol. 134. N 10. P. 2760S-2767
  86. Porcelli V, Fiermonte G, Longo A, Palmieri F. The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids. Journal of Biological Chemistry. 2014. Vol. 289. N 19. P. 13374-13384.
  87. Boucher JL, Moali C, Tenu JP. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cellular and Molecular Life Sciences. 1999. Vol. 55. N 8-9. P. 1015-10
  88. Que LG, George SE, Gotoh T, Mori M, Huang YC. Effects of arginase isoforms on NO Production by nNOS. Nitric Oxide. 2002. Vol. 6. N 1. 1-8.
  89. Peng H, Chen L, Huang X, Yang T, Yu Z, Cheng G, Zhang G, Shi R. Vascular peroxidase 1 up regulation by angiotensin II attenuates nitric oxide production through increasing asymmetrical dimethylarginine in HUVECs. Journal of the American Society of Hypertension. Vol. 10. N 9. P. 741-751.
  90. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovascular Research. Vol. 75, N 2. 283-290.
  91. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T. () Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. Journal of Biological Chemistry. 1996. Vol. 271. N 37. P. 22810-22814.
  92. Sanchez–Padilla J., Guzman J.N., Ilijic E., Kondapalli J., Galtieri D.J., Yang B., Schieber S., Oertel W., Wokosin D., Schumacker P.T., Surmeier D.J. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nature Neuroscience. 2014. Vol. 17, N 6. P. 832-840.
  93. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology. Vol. 303, N 11. P. H1283- H1293.
  94. Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin α in the blood vessel wall. Free Radical Biology & Medicine. 2014. Vol. 73. P. 136-1
  95. Lin X, Xu Q, Veenstra RD. Functional formation of heterotypic gap junction channels by connexins-40 and -43. Channels (Austin). 2014. Vol. 8. N 5. P. 433-4
  96. Pogoda K, Füller M, Pohl U, Kameritsch P1. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Communication and Signaling. 2014. Vol. 12. P.
  97. Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S S-Nitrosylation: an emerging paradigm of redox signaling. Antioxidants. 2019. Vol. 8. N 9. P. 404.
  98. Liu Chao, Cheng LM, Wah ST. Nitric Oxide, Iron and Neurodegeneration. Frontiers in Neuroscience. 2019. Vol. 13. Article 114.
  99. Kleschyov The NO-heme signaling hypothesis. Free Radical Biology & Medicine. 2017. Vol. 112. P. 544-552.
  100. Corbin JD. Mechanisms of action of PDE5 inhibition in erectile dysfunction. International Journal of Impotence Research. 2004. Vol. 16. Suppl 1. P. S4-S7.
  101. Buxton I.L.O. Regulation of uterine function: a biochemical conundrum in the regulation of smooth muscle relaxation. Molecular Pharmacology. 2004. Vol. 65, N6. P. 1051-1059.
  102. Leite ACR, Oliveira HCF, Utino FL, Garcia R, Alberici LC, Fernandes MP, Castilho RF, Verces AE. Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7. P. 1210-1216.
  103. Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM, Romorini L, Poderoso JJ, Carreras MC. Hypothyroid Phenotype Is Contributed by Mitochondrial Complex I Inactivation Due to Translocated Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry. 2006. Vol. 281. N 8. P. 4779-4786.
  104. Giulivi C. Mitochondria as generators and targets of nitric oxide. Novartis Foundation Symposium. 2007. Vol. 287. P. 92-104.
  105. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Letters. 1997. Vol. 416. N 1. P. 15-
  106. Traaseth N., Elfering S., Solien J., Haynes V., Giulivi C. Role of calcium signaling in activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochimica et Biophysica Acta. 2004. Vol. 1658, N 1-2. P. 64-71.
  107. Piantadosi C.A., Suliman H.B. Redox regulation of mitochondrial biogenesis. Free Radical Biology & Medicine. 2012. Vol. 53, N 11. P. 2043-2053.
  108. Ulrich C, Quilici DR, Schlauch KA, Buxton ILO. The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor. American Journal of Physiology Cell Physiology. Vol. 305. N 8. P. C803-C816.
  109. Garfield RE, Saade G, Buhimschi C, Buhimschi I, Shi L, Shi SQ, Chwalisz K. Control and assessment of the uterus and cervix during pregnancy and labour. Human Reproduction Update. 1998. Vol. 4. N 5. P. 673-695.
  110. Bulbul A, Yağci A, Altunbaş K, Sevimli A, Celik HA, Karadeniz A, Akdağ E. The role of nitric oxide in the effects of ovarian steroids on spontaneous myometrial contractility in rats. Theriogenology. Vol. 68. N 8. P. 1156-1168.
  111. Hertelendy F, Zakar T. Regulation of myometrial smooth muscle function. Current Pharmaceutical Design. 2004. Vol. 10. N 20.P. 2499-2517.
  112. Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. Journal of the Society for Gynecologic Investigation. 2004. Vol. 11. N. 4. P. 193-202.
  113. Havelock JC, Keller P, Muleba N, Mayhew BA, Casey BM, Rainey WE, Word RA. Human myometrial gene expression befor and during parturition. Biology of Reproduction. 2005. Vol. 72. N 3. P. 707-719.
  114. Ravanos K, Dagklis T, Petousis S, Margioula-Siarkou C, Prapas Y, Prapas N. Factors implicated in the initiation of human parturition in term and preterm labor: a review. Gynecological Endocrinology. 2015. Vol. 31. N 9. P. 679-683.
  115. Alotaibi MF. The response of rat and human uterus to oxytocin from different gestation stages in vitro. General Physiology and Biophysics. 2017. Vol. 36. N 1. P. 75-82.
  116. Wray S., Prendergast C. The Myometrium: From Excitation to Contractions and Labour. Springer Nature Singapore Pte Ltd. H. Hashitani, R. J. Lang (eds.), Smooth Muscle Spontaneous Activity, Advances in Experimental Medicine and Biology. 2019.
  117. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Human Reproduction Update. 2010. Vol. 16. N 6. P. 725-744.
  118. Yallampalli C, Garfield RE, Byam-Smith M. Nitric oxide inhibits uterine contractility during pregnancy but not during delivery. 1993. Vol. 133. N 4. P. 1899-1902
  119. Toda N., Toda H., Okamura T. Regulation of myometrial circulation and uterine vascular tone by constitutive nitric oxide. European Journal of Pharmacology. 2013. Vol. 714, N 1-3. P. 414-423.
  120. Norman JE, Cameron IT. Nitric oxide in the human uterus. Reviews of Reproduction. 1996. Vol. 1. N 1. P. 61-68.
  121. Zullino S, Buzzella F, Simoncini T. Nitric oxide and biology of pregnancy. Vascular Pharmacology. 2018. Vol. 110. P. 71-74.
  122. Buxton I.L., Kaiser R.A., Malmquist N.A.,Tichenor S. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP. British Journal of Pharmacology. 2001. Vol. 134. N 1. P. 206-214.
  123. Valdes G., Corthorn J. Review: the angiogenic and vasodilatory uteroplacental network. Placenta. 2011. Vol. 32, Suppl 2. P. S170-175.
  124. Yellon S.M., Mackler A.M., Kirby M.A. The role of leukocyte traffic and activation in parturition. Journal of the Society for Gynecologic Investigation. 2003. Vol. 10, N 6. P. 323-338.
  125. Xiao D, Pearce WJ, Zhang L. Pregnancy enhances endothelium-dependent relaxation of ovine uterine artery: role of NO and intracellular Ca2+. The American Journal of Physiology Heart and Circulatory Physiology. Vol. 281. N 1. P. H183–H190.
  126. Arthur P, Taggart MJ, Zeilnik B, Wong S,Mitchell BF. Relationship between gene expression and function of uterotonic systems in rat gestation, uterine activation and both term and preterm labour. The Journal of Physiology. 2008. Vol. 586. N 24. P. 6063-6076.
  127. Danilovich Yu.V., Тugai V.А. Formation of NO and Н2О2 in the endometrium stroma under acetylcholine action. The Ukrainian Biochemical Journal. 2001. Vol.73, N P. 110-115.
  128. Danylovych Yu.V. Mechanisms of acetylcholine-dependent production of Н2О2 and NO2 in stromal cells of endometrium. The Ukrainian Biochemical Journal. 2003. Vol.75, N P. 77-84.
  129. Danylovych Yu.V. Steroid hormones and oxitocine action on NO and Н2О2 originating in endometrium. The Ukrainian Biochemical Journal. 2004. Vol. 76, N P. 88-96.
  130. Semer D, Reisler K, MacDonald PC, Casey ML. Responsiveness of human endometrial stromal cells to cytokines. Annals of the New York Academy of Sciences. 1991. Vol. 622. P. 99-110.
  131. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR.  Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry. 1982. Vol. 126. N 1. P. 131-13
  132. Kotsuruba A.V., Semikopna TV, Viktorov OP. Declaration patent for the invention 31600 A. 15.12.2000. Bulletin #7-11. The method of quantitative determination of nitrite anion in biological fluid.
  133. Sagach V.F., Doloman L.B., Kotsuruba A.V., Buhanevich O.M., Kurdanov H.A., Beslaneev I.A., Bekuzarova S.A. Increased nitric oxide stable metabolites blood level in highlanders. Fiziolohichnyi Zhurnal. 2002. Vol. 48. N 5. P. 3-8.
  134. Bartlett SR, Bennett PR, Campa JS, Dennes WJB, Slater DM, Mann GE, Poston L, Poston R. Expression of nitric oxide synthase isoforms in pregnant human myometrium. Journal of Physiology.1999. Vol. 521. N 3. P. 705-
  135. Cameron I.T., Campbell S. Nitric oxide in the endometrium. Human Reproduction Update. 1998. Vol. 4, N 5. P. 565–569.
  136. Li Y, Zhou X, Wei QW, Huang RH, Shi FX. Cell-specific expression and imunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α and β subunits in postnatal porcine uteri. Acta Histochemica. 2014. Vol. 116. N 3. P. 466-473.
  137. Farina M., Ribeiro M.L., Franchi A. Nitric oxide synthases in pregnant rat uterus. Reproduction. 2001. Vol. 121, N3. P. 403-407.
  138. Garfield RE, Saade G, Buhimschi C, Buhimschi I, Shi L, Shi SQ, Chwalisz K. Control and assessment of the uterus and cervix during pregnancy and labour. Human Reproduction Update. 1998. Vol. 4. N 5. P. 673-695.
  139. Buhimschi IA, Saade GR, Chwalisz K, Garfield RE. The nitric oxide pathway in pre-eclampsia: pathophysiological implications. Human Reproduction Update. 1998. Vol. 4. N 1. P. 25-42.
  140. Tiboni GM, Corso AD, Marotta F. Progestational agents prevent preterm birth induced by a nitric oxide synthesis inhibitor in the mouse. In vivo. 2008. Vol. 22. N 4. P. 447-450.
  141. Rytlewski K, Olszanecki R, Lauterbach R, Grzyb A. Effects of oral L–arginine on the pulsatility indices of umbilical artery and middle cerebral artery in preterm labor. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2008. Vol. 138. N 1. P. 23-28.
  142. Aljameil N, Tabassum H, AlMayouf H, Alshenefy A, Almohizea MM, Ali M N. Identification of serum cytokines as markers in women with recurrent pregnancy loss or miscarriage using MILLIPLEX analysis. Biomedical Research. 2018. Vol. 29. P. 3512-3517.
  143. Cella M, Farina MG, Dominguez Rubio AP et al. Dual effect of nitric oxide on uterine prostaglandin synthesis in a murine model of preterm labour. British Journal of Pharmacology. 2010. Vol. 161. N 4. P. 844-
  144. Javadi–Paydar M, Lesani A, Vakilipour R, et al. Evaluation of the tocolytic effect of morphine in a mouse model of lipopolysaccharide–induced preterm delivery: the role of nitric oxide. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2009. Vol. 147. N 2. P. 166-
  145. Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote leukocyte–endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. Journal of Clinical Investigation. 2011. Vol. 121. N 1. P. 120-
  146. Gomez–Guzman M, Jiménez R, Romero M, et al. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension. 2014. Vol. 64. N 2. P. 330-
  147. Miranda S, Billoir P, Damian L, Thiebaut PA, Schapman D, Le Besnerais M, et al. Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS ONE. 2019. Vol. 14. N 3.
  148. Myatt L, Brockman DE, Eis ALW, Pollock JS. Immunohistochemical localization of nitric oxide synthase in the human placenta. 1993. Vol. 14. N 5. P. 487–495.
  149. Buttery LDK, McCarthy A, Springall DR, Sullivan MHF, Elder MG, Michel T, Polak J M. Endothelial nitric oxide synthase in the human placenta: regional distribution and proposed regulatory role at the feto-maternal interface. Placenta. Vol. 15. N 3. 257-265.
  150. Khorram O., Gartwaite M., Magness R.R. Endometrial and myometrial expresion of nitric oxide synthase isoforms in pre- and postmenopausal women. The Journal of Clinical Endocrinology & Metabolism. 1999. Vol. 84, N 6. P. 2226–2232.
  151. Zhang J., Massmann G.A., Mirabile C.P., Figueroa J.P. Nonpragnant sheep uterine type 1 and type 2 nitric oxide synthase expression is differentially regulated by estrogen. Biology of Reproduction. 1999. Vol. 60, N 5. P. 1198–1203.
  152. Papka RE, MeNell DL, Thompson D. Nitric oxide nerves in the uterus are parasympathetic, sensory, and contain neuropeptides. Cell and Tissue Research. 1995. Vol. 279. N 2. P. 339-349.
  153. Bernardi P, Rasola Calcium and cell death: the mitochondrial connection. Subcellular Biochemistry. 2007. Vol. 45. P. 481-506.
  154. Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. Journal of Biological Chemistry. Vol. 278. N 21. P. 19062-19070.
  155. Rizzuto R., Marchi S., Bonora M., Aguiary P., Bononi A. Ca2+ transfer from the ER to mitochondria: When, how and why. Biochimica et Biophysica Acta. Vol. 1787. N 11. P. 1342-1351.
  156. Graier WF, Frieden M, Malli R.. Mitochondria and Ca2+ signaling: old quests, new functions. European Journal of Physiology. Vol. 455. N 3. P. 375-396.
  157. Takeuchi, Kim B., Matsuoka S. The destiny of Ca(2+) released by mitochondria. The Journal of Physiological Sciences. 2015. Vol. 65, N 1. P. 11-24.
  158. Bernardi P, von Stockum S. The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium. 2012. Vol. N 1. P. 22-27.
  159. Rasola A, Bernardi Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 2011. Vol. 50. N 3. P. 222-233.
  160. Bock J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology. 2020. Vol. 21, N 2. P. 85-100.

CHAPTER 2

 

  1. Campbell A. Intracellular calcium. Springer. 2015.
  2. Krauss G. Biochemistry of Signal Transduction and Regulation Fifth, Completely Revised Edition. Wiley-VCH, Verlag GmbH&Co.KGaA.  2014, 815 p.
  3. Traaseth N., Elfering S., Solien J., Haynes V., Giulivi C. Role of calcium signaling in activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochimica et Biophysica Acta. 2004. Vol. 1658, N 1-2. P. 64-71.
  4. Bernardi P, von Stockum S. The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium. 2012. Vol. N 1. P. 22– 27.
  5. Anderson A.J., Jackson T.D., Stroud D.A., Stojanovski D. Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biology. 2019. Vol. 9. P. 190126.
  6. Giulivi C. Mitochondria as generators and targets of nitric oxide. Novartis Foundation Symposium. 2007. Vol. 287. P. 92-104.
  7. Santos C.X.C, Anilkumar N., Zhang M., Brewer A.C., Shah A.M. Redox signaling in cardiac myocytes. Free Radical Biology & Medicine. 2011. Vol. 50, N 7. P. 777-793.
  8. Ghafourifar P, Richter Ch. Nitric oxide synthase activity in mitochondria. FEBS Letters. Vol. 418. P. 291-296.
  9. Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria.  Journal of Biological Chemistry. 1998. Vol. 273. P. 11038–11043.
  10. Haynes V, Elfering S, Traaseth N, Giulivi Mitochondrial Nitric-Oxide Synthase: Enzyme Expression, Characterization, and Regulation. Journal of Bioenergetics and Biomembranes. 2004. Vol. 36. N 4.
    P. 341-346.
  11. Valdez L.B., Zaobornyj T., Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochimica et Biophysica Acta. 2006. Vol. 1757, N 3. P. 166–172.
  12. Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. The Journal of Physiology. Vol. 587. Pt 4. P. 851–872.
  13. Tatoyan A, Giulivi C. Purification and Characterization of a Nitric-oxide Synthase from Rat Liver Mitochondria. Journal of Biological Chemistry. Vol. 273. N 18. P. 11044–11048.
  14. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovascular Research. 2006. Vol. 71. N 1. P. 10-21.
  15. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Frontiers in Physiology. 2015. Vol. 6. P. 20.
  16. Elfering S.L., Sarkela Th.M., Giulivi C. Biochemistry of Mitochondrial Nitric-oxide Synthase. The Journal of Biological Chemistry. Vol. 277, N 41. P. 38079–38086.
  17. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C1569-C1580.
  18. Ghafourifar P., Cadenas E. Mitochondrial nitric oxide synthase. Trends in Pharmacological Sciences. 2005. Vol. 26, N 4. P. 190-195.
  19. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology. Vol. 303, N 11. P. H1283- H1293.
  20. Tengan CH, Rodrigues GS, Godinho RO. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. International Journal of Molecular Sciences. Vol. 13. N 12. P. 17160-17184.
  21. Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM, Romorini L, Poderoso JJ, Carreras MC. Hypothyroid Phenotype Is Contributed by Mitochondrial Complex I Inactivation Due to Translocated Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry. 2006. Vol. 281. N 8. P. 4779–4786.
  22. Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M. Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neuroscience Letters. Vol. 384. P. 254–259.
  23. Levine A.B., Punihaole D., Levine T.B. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012. Vol. 122. P. 55-68.
  24. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochemical and Biophysical Research Communications. 2008. Vol. 366. P. 23–28.
  25. Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A: Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circulation Research. Vol. 99.
    P. 924–932.
  26. Valdez LB, Zaobornyj T, Boveris A. Functional activity of mitochondrial nitric oxide synthase. Methods in Enzymology. Vol. 396. P. 444–455.
  27. Valdez LB, Boveris A. Mitochondrial nitric oxide synthase, a voltage-dependent enzyme, is responsible for nitric oxide diffusion to cytosol. Frontiers in Bioscience. 2007. Vol. 12. P. 1210-1219.
  28. Brookes PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JR Jr, Darley-Usmar V. Control of mitochondrial respiration by NO: effects of low oxygen and respiratory state. Journal of Biological Chemistry. 2003. Vol. P. 31603–31609.
  29. Alvarez S, Boveris A. Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia. Free Radical Biology & Medicine. 2004. Vol. 37. N 9. P. 1472-1478.
  30. Porcelli V, Fiermonte G, Longo A, Palmieri F. The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids. Journal of Biological Chemistry. 2014. Vol. 289. N 19. P. 13374–13384.
  31. Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochemical Journal. 1998. Vol. 332. P. 673–679.
  32. Dolińska M, Albrecht J. L-arginine uptake in rat cerebral mitochondria. Neurochemistry International. Vol. 33. N 3.
    P. 233-236.
  33. Boucher JL, Moali C, Tenu JP. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cellular and Molecular Life Sciences. Vol. 55. N 8-9. P. 1015-1028.
  34. Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. British Journal of Pharmacology. Vol. 157. P. 922–930.
  35. Ferents I.V., Brodyak I.V., Lyuta M.Ya., Burda V.A., Fedorovych A.M., Sybirna N.O. The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats. The Ukrainian Biochemical Journal. 2012. Vol. 84. N 3. P. 55-62.
  36. Rochette  L, Lorin Ju, Zeller M, Guilland J-C, Lorgis L, Cottin Y, Vergely Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacology & Therapeutics. 2013. Vol. 140. N 3. P. 239-257.
  37. Maas Pharmacotherapies and their influence on asymmetric dimethylargine (ADMA). Vascular Medicine. 2005. Vol. 10. Suppl 1.
    P. S49-57.
  38. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. Journal of Cell Science. 2006. Vol. 119. N 14. P. 2856-2862.
  39. Riobo NA, Melani M, Sanjuan N, Fiszman ML, Gravielle MC, Carreras MC, Cadenas E, Poderoso JJ.The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. Journal of Biological Chemistry. 2002. Vol. 277. N 45. P. 42447-42455.
  40. Lores-Arnaiz S, D’Amico G, Czerniczyniec A, Bustamante J, Boveris A. Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Archives of Biochemistry and  Biophysics. Vol. 430. N 2. P. 170-177.
  41. Boveris A, Valdez LB, Alvarez S, Zabornyi T, Boveris AD, Navarro A. Kidney mitochondrial nitric oxide synthase. Antioxidants & Redox Signaling. 2003. Vol. 5. N 3. P. 265-271.
  42. Bustamante J, Bersier G, Romero M, Badin RA, Boveris A. Nitric Oxide Production and Mitochondrial Dysfunction during Rat Thymocyte Apoptosis. Archives of Biochemistry and Biophysics. 2000. Vol. 376,
    N 2. P. 239–247.
  43. Giulivi C., Kato K., Cooper C.E. Nitric oxide regulation of mitochondrial oxygen consumtion I: cellular physiology. American Journal of Physiology Cell Physiology. 2006. Vol. 291, N 6. P. C1225-C1231.
  44. Shiva S. Nitrite: A Physiological Store of Nitric Oxide and Modulator of Mitochondrial Function. Redox Biology. 2013. Vol. 1. N 1. P. 40-44.
  45. Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Letters. 1998. Vol. 427.
    263-266.
  46. Lopez-Figueroa MO, Caamano C, Morano MI, Rоnn LC, Akil H, Watson SJ. Direct Evidence of Nitric Oxide Presence within м Biochemical and Biophysical Research Communications. 2000. Vol. 272. N 1. 129-133.
  47. Cortese-Krott MM., Rodriguez-Mateos A,.Kuhnle GGC, Brown G, Feelisch M, Kelm M. A multilevel analytical approach for detection and visualization of intracellular NO production and nitrosation events using diaminofluoresceins. Free Radical Biology and Medicine. 2012. Vol. 53. 2146–2158.
  48. Li H, Wan A. Fluorescent probes for real-time measurement of nitric oxide in living cells. Analyst. Vol. 140. P. 7129-7141.
  49. Moller MN, Rios N, Trujillo M, X Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide–derived oxidants in biological systems. Journal of Biological Chemistry. Vol. 294. N 40.
    P. 14776–14802.
  50. Mollard P, Mironneau J, Amedee T, et al. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. American Journal of Physiology Cell Physiology. 1986. Vol. 250. N 1. P. C47-C54.
  51. Babich L.G., Shlykov S.G., Borisova L.A., Kosterin S.A. Energy-dependent Са2+ -transport in intracellular smooth muscle structures Biokhimiia. 1994. Vol. 59. N 8. P. 1218–1229.
  52. Shlykov S.G., Babich L.G., Kosterin S.A. Suspension of smooth muscle cells treated with digitonin as a model for studying the myometrial endoplasmic reticulum calcium pump. Biochemistry (Moscow). Vol. 62. N 12. P. 1424-1428.
  53. Vitecek J, Lojek A, Valacci G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators of Inflammation. 2012. Article ID 318087.
  54. Fiskum G. Intracellular levels and distribution of Ca2+ in digitonin-permeabilised cell. Cell Calcium. 1985. Vol. 6. N 1-2. P. 25-27.
  55. Duran WN, Breslin JW, Sanchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovascular Research. 2010. Vol. 87. P. 254–261.
  56. Ghimire K., Altmann H.M., Straub A.C., Isenberg J.S. Nitric oxide: what’s new to NO? American Journal of Physiology Cell Physiology. Vol. 312. P. C254–C262.
  57. Bovo E, Mazurek SR, Blatter LA, Zima AV. Regulation of sarcoplasmic reticulum Ca2+ leak by cytosolic Ca2+ in rabbit ventricular myocytes. The Journal of Physiology. 2011. Vol. 589. N 24. P. 6039–6050.
  58. Szydlarska J, Weiss C, Marycz K. The Effect of Methyl-β-cyclodextrin on Apoptosis, Proliferative Activity, and Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells of Horses Suffering from Metabolic Syndrome (EMS). Molecules. Vol. 23. N. 2. P. E287.
  59. Yang Q, Miyagawa M, Liu X, Zhu B, Munemasa S, Nakamura T, Murata Y, Nakamura Y. Methyl-β-cyclodextrin potentiates the BITC-induced anti-cancer effect through modulation of the Akt phosphorylation in human colorectal cancer cells. Bioscience, Biotechnology, and Biochemistry. P. 1-10.
  60. Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Journal of Neuroscience Methods. 2001. Vol. 104. N 2. P. 165-176.
  61. Valdez LB, Zaobornyj T, Alvarez S, Bustamante J, Costa LE, Boveris A. Heart mitochondrial nitric oxide synthase. Effects of hypoxia and aging. Molecular Aspects of Medicine. Vol. 25. P. 49–59.
  62. Kosterin S.A., Bratkova N.F, Kurskii M.D. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia. 1985. Vol. 50. N P. 1350–1361.
  63. Cortese-Krott MM., Rodriguez-Mateos A,.Kuhnle GGC, Brown G, Feelisch M, Kelm M. A multilevel analytical approach for detection and visualization of intracellular NO production and nitrosation events using diaminofluoresceins. Free Radical Biology and Medicine. 2012. Vol. 53. 2146–2158
  64. Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ. Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status. Journal of Biological Chemistry. 2009. Vol. 284. N 2. P. 1136–1144.
  65. Talib J., Kwan J., Suryo Rahmanto A., Witting P.K., Davies M.J. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochemical Journal. 2014. Vol. 457. P. 89-97.
  66. Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AK. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochimica et Biophysica Acta. 2014. Vol. 1837. N 3. P. 354–365.
  67. Hagmann WK, Caldwell CG, Chen P, Durette PL, Esser CK, Lanza TJ, Kopka IE, Guthikonda R, Shah SK, MacCoss M, Chabin RM, Fletcher D, Grant SK, Green BG, Humes JL, Kelly TM, Luell S, Meurer R, Moore V, Pacholok SG, Pavia T, Williams HR, Wong KK. Substituted 2-aminopyridines as inhibitors of nitric oxide synthases. Bioorganic & Medicinal Chemistry Letters. 2000. Vol. 10. P. 1975–1978.
  68. Kang S, Li H, Tang W, Martásek P, Roman LJ, Poulos TL, Silverman 2-Aminopyridines With a Truncated Side Chain To Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity. Journal of Medicinal Chemistry. 2015. Vol. 58. N 14.
    P. 5548-5560.
  69. Tica VI, Tica AA, Carling V, Banica O S. Magnesium ion inhibits spontaneous and induced contractions of isolated uterine muscle. Gynecological Endocrinology. 2007. Vol. 23. N 7. P. 368–372.
  70. Fomin VP, Gibbs SG, Vanam R, Morimiya A, Hurd Effect of magnesium sulfate on contractile force and intracellular calcium concentration in pregnant human myometrium. American  Journal of  Obstetrics and Gynecology. 2006. Vol. 194. N 5. P. 1384–1390.
  71. Kosterin S.А., Burdyga T.V. Transport and intracellular homeostasis of Са2+ in myometrium. Successes of modern biology. 1993. Vol. 113. N 4. P. 485-506.
  72. Babich L.G., Borisova L.A., Shlykov S.G., Тitus О.V, Kosterin S.A. Effect of Mg ions and spermine on АТР-dependent Са2+ transport in myometrial intercellular structures. І. Comparative study of Са2+ accumulation in mitochondria and sarcoplasmic reticulum. The Ukrainian Biochemical Journal. Vol. 76. N 5. P. 52-60.
  73. Veklich Т.О., Kosterin S.О., Shinlova О.P. Cation specificity of Са2+ accumulation system in the smooth muscle cells mitochondria. The Ukrainian Biochemical Journal. 2002. Vol. 74, N 1. P. 42-48.
  74. Shinlova О.P, Kosterin S.А., Veklich Т.А. Ruthenium Red-sensitive energy-dependent and passive Са2+ transport in permeabilized smooth muscle cells. Biochemistry (Moscow). 1996. Vol. 61, N P. 1021-1025.
  75. Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM,. Stathopulos PB, Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. American Journal of Physiology Cell Physiology. 2021. Vol. 320. P. C465–C482.
  76. Pallafacchina G, Zanin S, Rizzuto R. From the Identification to the Dissection of the Physiological Role of the Mitochondrial Calcium Uniporter: An Ongoing Story. Biomolecules. 2021. Vol. 11.P.
  77. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P. The Pathophysiology of LETM1. The Journal of General Physiology. Vol. 139. N 6. P. 445-454.
  78. Lin Q-T, Stathopulos Molecular Mechanisms of Leucine Zipper EF-Hand Containing Transmembrane Protein-1 Function in Health and Disease. International Journal of Molecular Sciences. 2019. Vol. 20. P. 286.
  79. Natarajan GK, Mishra J,. Camara AKS, Kwok W-M. LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Frontiers in Physiology.  Vol. 12. P. 637852.
  80. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001; 357: 593-615.
  81. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. European Heart Journal. 2012. Vol. 33. P. 829–837.
  82. Moreau B, Nelson C, Parekh AB. Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ Current Biology. 2006. Vol. 16. N 16. P. 1672-1677.
  83. Satrústegui J, Pardo B, Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiological Reviews. Vol. 87. N 1. P. 29-67.
  84. Babich L.G., Shlykov S.G., Naumova N.V., Kosterin SO. Use of flow cytometry method to determine Са2+ content in mitochondria and influence of calmodulin antagonists on it. The Ukrainian Biochemical Journal. Vol. 80.  N 4. P. 51–58.
  85. Shlykov S.G., Babich L.G., Yevtushenko M.E., Karakhim S.O., Kosterin S.O. Modulation of myometrium mitochondrial membrane potential by calmodulin antagonists. The Ukrainian Biochemical Journal. Vol. 86. N 1. P. 29-41.
  86. Shlykov S.G., Babich L.G., Yevtushenko M.E., Karakhim S.O., Kosterin S.O. Calmodulin antagonists effect on Ca2+ level in the mitochondria and cytoplasm of myometrium cells. The Ukrainian Biochemical Journal. 2015. 87. N 5. P. 54-60.
  87. Sobieszek A. Calmodulin antagonist action in smooth-muscle myosin phosphorylation. Different mechanisms for trifluoperazine and calmidazolium inhibition. Biochemical Journal. 1989. Vol. 262. N 1.
    215-223.
  88. James LR, Griffiths CH, Garthwaite J, Bellamy TC. Inhibition of nitric oxide-activated guanylyl cyclase by calmodulin antagonists. British Journal of Pharmacology. 2009. Vol. 158. N 6. P. 1454-1464.
  89. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. Journal of Biological Chemistry. 1955. Vol. 217. P. 409-427.
  90. Boveris A, Valdez LB, Zabornyi T, Bustamante J. Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochimica et Biophysica Acta. 2006. Vol. 1757. N 5-6.
    535-542.
  91. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovascular Research. Vol. 75, N 2. 283-290.
  92. Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. Journal of Molecular and Cellular Cardiology. 2012. Vol. 52. N 1. P. 48-61.
  93. Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Journal of Biological Chemistry. 1992. Vol. 267. P. 8834–8839.
  94. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial Na in health and disease. Circulation Research. 2009. Vol. 104. N
    P. 292-303.
  95. Hryvennikova V. G., Vinogradov А. D. Generation of active forms of oxygen by mitochondria. Uspehi biologicheskoy himiii. 2013. Vol.53. P. 245-296.
  96. Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circulation Research. 2014. Vol. 114. P. 524-237.
  97. Vadzyuk O.V. ATP-sensitive K+-channels in muscle cells: features and physiological role. The Ukrainian Biochemical Journal. 2014. Vol. 86. N 3. P. 5-22.
  98. Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiological Reviews. 2014. Vol. 94. N 2. P. 519-608.
  99. Kaasik A, Safiulina D, Zharkovsky A, Veksler V. Regulation of mitochondrial matrix volume. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C157-C163.
  100. Nowikovski K, Schweyen RJ, Bernardi P. Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 5. P. 345-350.
  101. Strutyns’ka NA, Strutyns’kyĭ RB, Chorna SV, Semenykhina OM, Mys’LA, Moĭbenko OO, Sahach VF. New fluorine-containing openers of ATP-sensitive potassium channels flokalin and tioflokalin inhibit calcium-induced mitochondrial pore opening in rat hearts. Fiziolohichnyi zhurnal. 2013. Vol. 59. N 6. P. 3-11.
  102. Danylovych YuV, Chunikhin AY, Danylovych GV, Kolomiets OV. The use of the Petri net method in the simulation modeling of mitochondrial swelling. The Ukrainian Biochemical Journal. 2016. Vol. 88. N 4. P. 66-74.
  103. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P. The Pathophysiology of LETM1. The Journal of General Physiology. Vol. 139. N 6. P. 445-454.
  104. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7.
    907-912.
  105. Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L, Scorrano L. LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Human Molecular Genetics. 2008. Vol. 17. N 2.
    201-214.
  106. Bae H, Choi J, Kim Y-W, Lee D, Kim J-H, Ko J-H, Bang H, Kim T, Lim I. Effects of Nitric Oxide on Voltage-Gated K+ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. International Journal of Molecular Sciences. 2018. Vol. 19. P. 814.
  107. Walewska A, Szewczyk A, Koprowski P. Gas Signaling Molecules and Mitochondrial Potassium Channels. International Journal of Molecular Sciences. 2018. Vol. 19. N 10. P. 3227.
  108. Bai Y, Murakami MH, Iwasa M, Sumi S, Yamada Y, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Uno B, Minatoguchi Cilostazol protects the heart against ischaemia reperfusion injury in a rabbit model of myocardial infarction: focus on adenosine, nitric oxide and mitochondrial ATP-sensitive potassium channels. Clinical and Experimental Pharmacology and Physiology. 2011. Vol. 38. N 10. P. 658-665.
  109. Braun T,  Dods Development of a Mn-2+-sensitive, “soluble” adenylate cyclase in rat testis. Proceedings of the National Academy of Sciences of the USA. 1975. Vol. 72. N 3. P. 1097-1101.
  110. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. Journal of Biological Chemistry.  Vol. 278. N 18. P. 15922-15926
  111. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB Journal. 2003. Vol. 17. N 1. P. 82-8
  112. Valsecchi F, Ramos-Espiritu LS, Buck J, Levin LR,  Manfredi cAMP and Mitochondria. Physiology (Bethesda). 2013. Vol. 28. N 3.
    P. 199–209.
  113. Valsecchi F, Konrad C,  Manfredi Role of soluble adenylyl cyclase in mitochondria. Biochimica et Biophysica Acta. 2014. Vol. 1842. N 12, Pt B. P. 2555–2560.
  114. Di Benedetto GD, Lefkimmiatis K, Pozzan T, The basics of mitochondrial cAMP signalling: where, when, why. Cell Calcium. 2021. Vol. 93. P. 102320.
  115. Amer YO, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochimica et Biophysica Acta – Bioenergetics. 2018. Vol. 1859. P. 868–877.
  116. Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochemical Pharmacology. 2013. Vol. 86. P. 1311–1319.
  117. Covian Raul, Balaban RS.. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. American Journal of Physiology Heart and Circulatory Physiology. Vol. 303. P. H940–H966.
  118. Zhao X, Leon IR, Bak S, Mogensen M, Wrzesinski K, Hojlund K, Jensen ON. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Molecular & Cellular Proteomics. 2011. Vol. 10. N 1. P. 000299.
  119. Hurley J H. Structure, Mechanism, and Regulation of Mammalian Adenylyl Cyclase. The Journal of Biological Chemistry. 1999. Vol. 274. N 12. P. 7599–7602.
  120. Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological Distinction between Soluble and Transmembrane Adenylyl Cyclases. The Journal of Pharmacology and Experimental Therapeutics. 2013. Vol. 347. P. 589–598.
  121. Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Frontiers in Physiology. 2020. Vol. 11. Article 574030.
  122. Wiggins SV, Steegborn CLevin LR, Buck J. Pharmacological modulation of the CO2/HCO3−/pH-, calcium-, and ATP-sensing soluble adenylyl Pharmacology & Therapeutics. 2018. Vol. 190.
    P. 173–186.
  123. Veloso C, Rodrigues VG, Ferreira RCM, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone,a pentacyclic triterpene, induces peripheral antinociception due to NO/cGMP and ATP-sensitive K+ channels pathway activation in mice. European Journal of Pharmacology. 2015. Vol. 755. P. 1–5.
  124. Tresguerres M, Levin LR, Buck J. Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney International. 2011. Vol. 79. N 12.
    1277–1288.
  125. Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T. Mitochondrial Ca(2)(+) uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell metabolism. 2013. Vol. 17.
    965–975.
  126. Nadeem L, Shynlova O, Mesiano S, Lye S. Progesterone Via its Type-A Receptor Promotes Myometrial Gap Junction Coupling. Scientific reports. Vol. 7. N 1. P. 13357.
  127. Karasinski J, Galas J, Semik D, Fiertak A, Bilinska B, Kilarski WM. Changes of connexin43 expression in non-pregnant porcine myometrium correlate with progesterone concentration during oestrous cycle. Reproduction in Domestic Animals. Vol. 45. N 6.
    P. 959-966.
  128. Wray S, Prendergast C. The Myometrium: From Excitation to Contractions and Labour. Springer Nature Singapore Pte Ltd. H. Hashitani, R. J. Lang (eds.), Smooth Muscle Spontaneous Activity, Advances in Experimental Medicine and Biology. 2019.
  129. Mitchell BF, Aguilar HN, Mosher A, Wood S, Slater The uterine myocyte as a target for prevention of preterm birth. Facts, Views and Vision in Obstetrics and Gynaecology. 2013. Vol. 5. N 1. P. 72-81.
  130. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Human Reproduction Update. 2010. Vol. 16. N 6. P. 725-744.
  131. Bezprozvanny I. Inositol 1,4,5-tripshosphate receptor, calcium signalling and huntington’s disease. Subcellular Biochemistry. 2007. Vol. 45. P. 323-335.
  132. Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium. 2007. Vol. 42. N 4-5.
    P. 447-466.
  133. Arthur P, Taggart MJ, Zeilnik B, Wong S,Mitchell BF. Relationship between gene expression and function of uterotonic systems in rat gestation, uterine activation and both term and preterm labour. The Journal of Physiology. 2008. Vol. 586. N 24. P. 6063-6076.
  134. Trebak M, Ginnan R, Singer HA, Jourd’heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxidants & Redox Signaling. 2010. Vol. 12. N 5. P. 657-673.
  135. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. American Journal of Physiology Cell Physiology. 2001. Vol. 281. N 2.
    C571-C578.
  136. Van Bavel E, van der Meulen ET, Spaan JA.
    Role of Rho-associated protein kinase in tone and calcium sensitivity of cannulated rat mesenteric small arteries. Experimental Physiology. 2001. Vol. 86. N 5. P. 585-592.
  137. Liu Z, Khalil RA. Evolving Mechanisms of Vascular Smooth Muscle Contraction Highlight Key Targets in Vascular Disease. Biochemical Pharmacology. 2018. Vol. 153. P. 91–122.
  138. Aguilar HN, Tracey CN, Zielnik B, Mitchell BF. Rho-kinase mediates diphosphorylation of myosin regulatory light chain in cultured uterine but not vascular smooth muscle cells. Journal of Cellular and Molecular Medicine. 2012. Vol. N 12. P. 2978-2989.
  139. Szasz T, Webb Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase. Advances in Pharmacology. 2017. Vol. 78. P. 303-322.
  140. Alotaibi MF. The response of rat and human uterus to oxytocin from different gestation stages in vitro. General Physiology and Biophysics. 2017. Vol. 36. P. 75-82.
  141. Garfield RE, Saade G, Buhimschi C, Buhimschi I, Shi L, Shi SQ, Chwalisz K. Control and assessment of the uterus and cervix during pregnancy and labour. Human Reproduction Update. Vol. 4. N 5. P. 673-695.
  142. TarasovaV., Vishnyakova P.A., Logashina Yu.A., Elchaninov A.V. Mitochondrial Calcium Uniporter structure and function in different types of muscle tissues in health and disease. International Journal of Molecular Sciences. 2019. Vol. 20, N 19. P. 4823.

 

 

CHAPTER 3

  1. Raiagopal S, Ponnusamy M. Calcium signaling: from physiology to deseases. Springer. 2017.
  2. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Human Reproduction Update. 2010. Vol. 16. N 6. P. 725-744.
  3. Zhao C,. Wu AY-H, Yu X, Gu Y, Lu Y, Song X, An N, Zhang Microdomain elements of airway smooth muscle in calcium regulation and cell proliferation. Journal of Physiology and Pharmacology Advances. 2018. Vol.  69. N 2. P. 151-163.
  4. George AL Jr, Knittle TJ, Tamkun MM. Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: evidence for a distinct gene family. Proceedings of the National Academy of the USA. 1992. Vol. 11. P. 4893–4897.
  5. Boyle MB, Heslip LA. Voltage-dependent Na+ channel mRNA expression in pregnant myometrium. Receptors and Channels. 1994. Vol. 3. P. 249–253.
  6. Campbell A. Intracellular calcium. Springer. 2015.
  7. Wray S, Prendergast C. The Myometrium: From Excitation to Contractions and Labour. Springer Nature Singapore Pte Ltd. H. Hashitani, R. J. Lang (eds.), Smooth Muscle Spontaneous Activity, Advances in Experimental Medicine and Biology. 2019.
  8. Reinl EL, Zhao P, Wu W, Ma X,  Amazu C,  Bok R,  Hurt KJ, Wang Y, England SK. Na+-Leak Channel, Non-Selective (NALCN) Regulates Myometrial Excitability and Facilitates Successful Parturition. Cellular Physiology and Biochemistry. Vol. 48.
    N 2. P.503-515.
  9. Lorca RA, Prabagaran M, England SK. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Frontiers in Physiology. 2014. Vol. 5. Article 289.
  10. Koval OM, Fan Y, Rothberg A role for the S0 transmembrane segment in voltage-dependent gating of BK channels. The Journal of General Physiology. 2007. Vol. 129. N 3. P. 209-220.
  11. Cui J, Yang H, Lee US. Molecular mechanisms of BK channel activation. Cellular and Molecular Life Sciences. 2009. Vol. 66.
    N 5. P. 852-75.
  12. Vetter SW, Leclerc E. Novel aspects of calmodulin target recognition and activation. European Journal of Biochemistry. 2003. Vol. P. 404–414.
  13. Kim H, Oh KH. Protein Network Interacting with BK Channels. International Review of Neurobiology. 2016. Vol. 128. P. 127-161.
  14. Horrigan FT. Perspectives on: conformational coupling in ion channels: conformational coupling in BK potassium channels. The Journal of General Physiology. Vol. 140. N 6. P. 625-634.
  15. Daniel EE, El-Yazbi A, Cho WJ. Caveolae and calcium handling, a review and a hypothesis. Journal of Cellular and Molecular Medicine. Vol. 10. N 2. P. 529-544.
  16. Liu Z, Khalil RA. Evolving Mechanisms of Vascular Smooth Muscle Contraction Highlight Key Targets in Vascular Disease. Biochemical Pharmacology. 2018. Vol. 153. P. 91–122.
  17. Zhang C, Wang L, Thomas S, Wang K, Lin D-H, Rinehart J, Wang W-H. Src family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10 protein. Journal of Biological Chemistry. Vol. 288. N 36. P. 26135-26146.
  18. Warsi J, Singh Y, Elvira B, Hosseinzadeh Z, Lang Regulation of Large Conductance Voltage-and Ca2+-Activated K+ Channels by the Janus Kinase JAK3. Cellular Physiology and Biochemistry. 2015. Vol. 37. N 1. P. 297-305.
  19. Wang L, Zhang C, Su X, Lin D-H,Wang Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport.  Journal of the American Society of Nephrology. 2015. Vol. 26. N 11. P. 2678–2690.
  20. Mustroph J, Maier L S, Wagner S. CaMKII regulation of cardiac K channels. Frontiers in Pharmacology. Vol. 21. N 5. P. 20.
  21. Hristov Kiril L, Amy C. Smith, Shankar P. Parajuli, John Malysz, and Georgi V. Petkov. Large-conductance voltage- and Ca2_-activated K_ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle. American Journal of Physiology Cell Physiology. Vol. 306. P. C460–C470.
  22. Behringer EJ, Hakim MA. Functional Interaction among KCa and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. International Journal of Molecular Sciences. 2019. Vol. 20. P. 1380.
  23. Liu B, Shi R, Li X, Liu Y, Feng X, Chen X, Fan X, Zhang Y, Zhang W, Tang J, Zhou X, Li N, Lu X, Xu Z. Downregulation of L-Type Voltage-Gated Ca2+, Voltage-Gated K+, and Large-Conductance Ca2+-Activated K+ Channels in Vascular Myocytes From Salt-Loading Offspring Rats Exposed to Prenatal Hypoxia. Journal of the American Heart Association. 2018. Vol. 7. N 6.
    e008148.
  24. Jackson WF. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. Advances in Pharmacology. 2017. Vol. 78. P. 89–144.
  25. Bae H, Choi J, Kim Y-W, Lee D, Kim J-H, Ko J-H, Bang H, Kim T, Lim I. Effects of Nitric Oxide on Voltage-Gated K+ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. International Journal of Molecular Sciences. 2018. Vol. 19. P. 814.
  26. Brainard AM, Korovkina VP, England SK. Potassium channels and uterine function. Seminars in Cell and Development Biology. 2007. Vol. 18. N 3. P. 332-339.
  27. Smith RC, McClure MC, Smith MA, Abel PW, Bradley ME. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reproductive Biology and Endocrinology. Vol. 5. P. 41.
  28. Noble K, Floyd R, Shmygol A, Shmygol A, Mobasheri A, Wray S. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium. Cell Calcium. 2010. Vol. 47. N 1. P. 47-54.
  29. Ferreira JJ, Butler A, Stewart R, Gonzalez-Cota AL, Lybaert P, Amazu C, Reinl EL, Wakle-Prabagaran M, Salkoff L, England SK, Santi CM. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na+-activated K+ channel, Slo2.1. The Journal of Physiology. 2019. Vol. 597. N 1. P. 137-149.
  30. Jones K, Shmygol A, Kupittayanant S, Wray S. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflügers Archiv. 2004. Vol. 1. P. 36-43.
  31. Sommer B, Flores-Soto E, Gonzalez-Avila G. Cellular Na+ handling mechanisms involved in airway smooth muscle contraction. International Journal of Molecular Sciences. 2017. Vol. 40. N 1. P. 3-9.
  32. Zhang L, Staehra C, Zengb F, Bouzinovaa EV, Matchkov VV. The Na,K-ATPase in vascular smooth muscle cells. Current Topics in Membranes. 2019. Vol. 83. P. 152-175.
  33. Orlov SN, Platonova AA., Hamet P, Grygorczyk R. Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. American Journal of Physiology Cell Physiology. Vol. 305. P. C361–C372.
  34. Scheiner-Bobis G. The sodium pump. Its molecular properties and mechanics of ion transport. European Journal of Biochemistry. 2002. Vol. P. 2424–2433.
  35. Sweadner KJ, Donnet C. Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochemical Journal. 2001. Vol. 356. P. 685-704.
  36. Despa S, Bers DM. Na+ transport in the normal and failing heart – remember the balance. Journal of Molecular and Cellular Cardiology. 2013. Vol. 61. P. 2–10.
  37. Schoner W. Endogenous cardiac glycosides, a new class of steroid hormones. European Journal of Biochemistry. 2002.
    269. P. 2440–2448.
  38. Webb RC. Smooth muscle contraction and relaxation. Advances in Physiology Education. 2003. Vol. 27. N 4.
    201-206.
  39. Matthew A, Shmygol A., Wray S. Ca2+ entry, efflux and release in smooth muscle. Biological Research. 2004. Vol. 37. N 4.
    617-624.
  40. Sanders KM. Mechanisms of calcium handling in smooth muscles. Journal of Applied Physiology. 2001. Vol. 91. N 3.
    1438-1449.
  41. Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium. 2007. Vol. 42. N 4-5. P. 447-466.
  42. Wray S, Kupittayanant S, Shmygol A, Smith RD, Burdyga T. The physiological basis of uterine contractility: a short revive. Experimental Physiology. 2001. Vol. 86. N 2. P. 239-246.
  43. Corbett EF, Michalak M. Calcium, a signaling molecule in the endoplasmic reticulum? Trends in Biochemical Sciences. 2000. Vol. 25. N 7. P. 307-311.
  44. Bravo-Sagua R, Parra V, Muñoz-Cordova F, Sanchez-Aguilera P, Garrido V, Contreras-Ferrat A, Chiong M, Lavandero S. Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. International Review of Cell and Molecular Biology. Vol. 350. P. 197-264.
  45. Manoury B, Idres S, Leblais V, Fischmeister Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacology & Therapeutics. 2020.
    Vol. 209. P. 107499.
  46. Krauss G. Biochemistry of Signal Transduction and Regulation Fifth, Completely Revised Edition. Wiley-VCH, Verlag GmbH&Co.KGaA.  2014, 815 p.
  47. Trebak M, Ginnan R, Singer HA, [et al]. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxidants & Redox Signaling. 2010. Vol. 12. N 5. P. 657-673.
  48. Berridge M.J. Smooth muscle cell calcium activation mechanisms. The Journal of Physiology. 2008. Vol. 586. Pt. 21.
    5047-5061.
  49. Venkatachalam K, van Rossum DB, Patterson RL, [et al]. The cellular and molecular basis of store-operated calcium entry. Nature Cell Biology. 2002. Vol. 4. N 11. P. 263-272.
  50. Parekh AB, Putney JWJr. Store-operated calcium channels. Physiological Reviews. 2005. Vol. 85. N 2. P. 757-810.
  51. Shlykov S.H. Oxytocin and its role in the control of intracellular level of calcium ions in the myometrium. The Ukrainian Biochemical Journal. 2010. Vol. 82. N 2. P. 5-17.
  52. Mitchell BF, Aguilar HN, Mosher A, Wood S, Slater The uterine myocyte as a target for prevention of preterm birth. Facts, Views and Vision in Obstetrics and Gynaecology. 2013. Vol. 5.
    N 1. P. 72-81.
  53. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. American Journal of Physiology Cell Physiology. 2001. Vol. 281. N 2. P. C571-C578.
  54. Van Bavel E van der Meulen ET,  Spaan Role of Rho-associated protein kinase in tone and calcium sensitivity of cannulated rat mesenteric small arteries. Experimental  Physiology. 2001. Vol. 86. N 5. P. 585-592.
  55. Chang Y, Auradé F, Larbret F, Zhang Y,  Le Couedic J-P, Momeux L, Larghero J, Bertoglio J, Louache F, Cramer E, Vainchenker W, Debili Proplatelet formation is regulated by the Rho/ROCK pathway. Blood. 2007. Vol. 109. N 10. P. 4229-4236.
  56. Hilgers RHP, Webb Molecular aspects of arterial smooth muscle contraction: focus on Rho. Experimental Biology and Medicine (Maywood). 2005. Vol. 230. N 11. P. 829-835.
  57. Mizuno Y, Isotani E, Huang J, Ding H, Stull JT, Kamm Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo. American Journal of Physiology Cell Physiology. 2008. Vol. 295. N 2. P. C358-C364.
  58. Aguilar HN, Tracey CN, Zielnik B, Mitchell BF. Rho-kinase mediates diphosphorylation of myosin regulatory light chain in cultured uterine but not vascular smooth muscle cells. Journal of Cellular and Molecular Medicine. 2012. Vol. N 12.
    P. 2978-29789.
  59. Szasz T, Webb Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase. Advances in Pharmacology. 2017. Vol. 78. P. 303-322.
  60. Сhakraborti S, Dhalla NS. Regulation of Ca2+-ATPases, V-ATPases and F-ATPases. Springer. 2016.
  61. Vallot O, Combettes L, Lompre A-M. Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells. Biochemical Journal. 2001. Vol. 357. Pt 2. P. 363-371.
  62. Lee SE, Ahn DS, Lee YH. Role of T-type Ca Channels in the Spontaneous Phasic Contraction of Pregnant Rat Uterine Smooth Muscle. Korean Journal of Physiology & Pharmacology. 2009. Vol. 13. N 3. P. 241-249.
  63. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007. Vol. 42. N 4-5. P. 467-476.
  64. Hirota S, Helli P, Janssen LJ. Ionic mechanisms and Са2+ handling in airway smooth muscle. European Respiratory Journal. 2007. Vol. 30. N 1. P. 114-133.
  65. Catterall WA. Voltage-gated calcium channels. Cold Spring Harbor Perspective in Biology. 2011. Vol. 3. N 8. P. a003947.
  66. Bovo E, Mazurek SR, Blatter LA, Zima AV. Regulation of sarcoplasmic reticulum Ca2+ leak by cytosolic Ca2+ in rabbit ventricular myocytes. The Journal of Physiology. 2011. Vol. 589. N 24. P. 6039–6050.
  67. Albert AP, Saleh SN, Peppiatt-Wildman CM, Large WA. Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. The Journal of Physiology. Vol. 583. Pt 1. P. 25-36.
  68. Bhardwaja R, Hedigera MA, Demaurex N. Redox modulation of STIM-ORAI signaling. Cell Calcium. 2016. Vol. 60. P. 142–152.
  69. Sutovska M, Kocmalova M, Sadlonova V, Dokus K, Adamkov M, Luptak J, Franova S. Orai1 protein expression and the role of calcium release-activated calcium channels in the contraction of human term-pregnant and non-pregnant myometrium. Journal of Obstetrics and Gynaecology Research. 2015. Vol. 41. N 5. P. 704-711.
  70. Chin-Smith EC, Slater DM, Johnson MR, Tribe RM. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy. Frontiers in Physiology. 2014. Vol. 5. P. 169.
  71. Rizzuto R, Marchi S, Bonora M, Aguiary P, Bononi A. Са2+ transfer from the ER to mitochondria: When, how and why. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 11. P. 1342–1351.
  72. Noble K, Matthew A, Burdyga T, Wray S. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle. European Journal of  Obstetrics &  Gynecology and  Reproductive Biology. Vol. 144. Suppl 1. P. S11-9.
  73. Tribe RM, Moriarty P, Dalrymple A, Hassoni AA, Poston L. Interleukin-1beta induces calcium transients and enhances basal and store operated calcium entry in human myometrial smooth muscle. Biology of Reproduction. 2003. Vol. 68. N 5. P. 1842-1849.
  74. Dalrymple A , Mahn K, Poston L, Songu-Mize E, Tribe Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Molecular Human Reproduction. 2007. Vol. 13. N 3. P. 171-179.
  75. Chadwick DJ, Goode JA (Ed.). Role of the sarcoplasmic reticulum in smooth muscle. Novartis Foundation Symposium John WILEY&SONS, LTD. 246 p.
  76. Shmygol A, Wray S. Functional architecture of the SR calcium store in uterine smooth muscle. Cell Calcium. 2004. Vol. 35. N 6. P. 501-508.
  77. Noble K, Zhang J, Wray S. Lipid rafts, the sarcoplasmic reticulum and uterine calcium signalling: an integrated approach. The Journal of Physiology. 2006. Vol. 570. Pt 1. P. 29-35.
  78. Beard NA, Wei L, Dulhunty AF. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen. Clinical and Experimental Pharmacology and Physiology. Vol. 36. N 3. P. 340-345.
  79. Wray S, Shmygol A. Role of the calcium store in uterine contractility. Seminars in Cell & Developmental Biology. Vol. 18. N 3. P. 315-320.
  80. Mesonero JE, Tanfin Z, Hilly M, Colosetti P, Mauger JP, Harbon S. Differential expression of inositol 1,4,5-trisphosphate receptor types 1, 2, and 3 in rat myometrium and endometrium during gestation. Biology of Reproduction. Vol. 63. N 2. P. 532-537.
  81. Bezprozvanny I. Inositol 1,4,5-tripshosphate receptor, calcium signalling and huntington’s disease. Subcellular Biochemistry. 2007. Vol. P. 323-335.
  82. Arthur P, Taggart MJ, Zeilnik B, Wong S,Mitchell BF. Relationship between gene expression and function of uterotonic systems in rat gestation, uterine activation and both term and preterm labour. The Journal of Physiology. 2008. Vol. 586. N 24. P. 6063-6076.
  83. Martin C, Chapman KE, Thornton S, Ashley RH. Changes in the expression of myometrial ryanodine receptor mRNAs during human pregnancy. Biochimica et Biophysica Acta. Vol. 1451. N 2-3. P. 343-352.
  84. Matsuki K, Takemoto M, Suzuki Y, Yamamura H, Ohya S, Takeshima H, Imaizumi Y. Ryanodine receptor type 3 does not contribute to contractions in the mouse myometrium regardless of pregnancy. Pflügers Archiv. Vol. 469. N 2. P. 313-326.
  85. Danylovych Iu.V. Characteristics of passive Са2+-transport from myometrium sarcoplasmic reticulum. Fiziolohichnyi Zhurnal. 2007. Vol. 53. N P. 55-61.
  86. Laver DR. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ Clinical and Experimental Pharmacology and Physiology. 2007. Vol. 34. P. 889–896.
  87. Sharma A, Nakade UP, Choudhury S, Garg SK. Functional involvement of protein kinase C, Rho-kinase and TRPC3 decreases while PLC increases with advancement of pregnancy in mediating oxytocin-induced myometrial contractions in water buffaloes (Bubalus bubalis). Theriogenology. Vol. 92.
    P. 176-189.
  88. Wray S. Calcium Signaling in Smooth Muscle. Handbook of Cell Signaling. P. 1009–1025.
  89. Kosterin S.А. Сalcium transport in smooth muscles. Кyiv: Naukova Dumka, 1990. 216 p.
  90. Babich L.G., Shlykov S.G., Strutinskaia N.A., Kosterin S.А. Properties of the smooth muscle cell endoplasmic reticulum calcium pump. The Ukrainian Biochemical Journal. 1999. Vol. 71. N P. 20-27.
  91. Burchinskaia N.F., Kosterin S.А., Babich L.G. Synergism of energy-dependent calcium fluxes through smooth muscle membrane. Biokhimiia. 1991. Vol. 56. N P. 2097-2110.
  92. Carafoli E, Brini M. Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Current Opinion in Chemical Biology. 2000. Vol. 4. N 2. P. 152-161.
  93. Lee AG, East JM. What the structure of a calcium pump tells us about its mechanism. Biochemical Journal. 2001. Vol. 356. N
    P. 665-683.
  94. Veklich Т.О., Shkrabak A.А., Mazur Yu.Yu., Rodik R.V., Boyko V.І, Кalchenko V.І., Кosterin S.О. Kinetic regularities of calix[4]arene С-90 action on the myometrial plasma membrane Са2+,Mg2+-АТРase activity and on the Са2+ concentration in unexcited cells of the myometrium. The Ukrainian Biochemical Journal. 2013. Vol. 85. N 4. P. 20-29.
  95. Kosterin S.А., Burdyga T.V. Transport and intracellular homeostasis of Са2+ in myometrium. Uspehi sovremenoy biologii. 1993. Vol. 113. N 4. P. 485-506.
  96. Kosterin SO. Kinetics and energetics of Mg2+, ATP-dependent Ca2+ transport in the plasma membrane of smooth muscle cells. Нейрофизиология / Neurophysiology. 2003. Vol. 35. N ¾. P. 215-228.
  97. Somlyo A.P., Wasserman A.J., Kitazawa T. Calcium and sodium distribution and movements in smooth muscle. Experientia. 1985. Vol. 41. N 8. P. 981-988.
  98. Busa W.B. Mechanisms and consequences of pH-mediated cell regulation. Annual Review of Physiology. 1986;48: 389-402.
  99. Pierce SJ,  Kupittayanant S,  Shmygol T,  Wray The effects of pH change on Ca(++)signaling and force in pregnant human myometrium. American  Journal of  Obstetrics and Gynecology. 2003. Vol. 188. N 4. P. 1031-1038.
  100. Tribe RM. Regulation of human myometrial contractility during pregnancy and labour: are calcium homeostatic pathway important? Experimental Physiology. 2001. Vol. 86. N 2.
    247-254.
  101. Caroni P, Zurini M, Clark A, Carafoli E. Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. Journal of Biological Chemistry. 1983. Vol. 58. N 1. P. 7305-7310.
  102. Furukawa R-J, Nakamura H. Characterization of the (Ca2++Mg2+) ATPase purified by calmodulin-affinity chromatography from bovine aortic smooth muscle. Journal of Biochemistry. 1984. Vol. 96. N 5. P. 1343-1350.
  103. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacological Reviews. 1997. Vol. 49. N 2. P. 157-230.
  104. Padanyi R, Paszty K, Penheiter AR, Filoteo AG, Penniston JT, Enyedi A. Intramolecular interactions of the regulatory region with the catalytic core in plasma membrane calcium pump. Journal of Biological Chemistry. 2003. Vol. 278. N 37. P. 35798-35804.
  105. Bruce JIE. Metabolic regulation of the PMCA: Role in cell death and survival. Cell Calcium. Vol. 69. P. 28–36.
  106. Kurskii M.D., Slinchenko N.N., Liubakovskaia L.A. Reconstruction of purified Са2+, Мg2+-АТРase from the myometrium sarcolemma into liposomes and its catalytic properties. The Ukrainian Biochemical Journal. 1990. Vol. 62. N 3. P. 66-71.
  107. Liubakovskaia L.A., Slinchenko N.N., Burchinskaia N.F., Kurskii M.D. Catalytic properties of purified Са2+, Мg2+-АТРase from the myometrium sarcolemma. Biokhimiia. 1990. Vol. 55. N
    P. 1237-1243.
  108. Slinchenko N.N., Liubakovskaia L.A., Kurskii M.D. Sopel L.V. Isolation and purification of Са2+, Мg2+-АТРase from plasma membranes of the myometrium. The Ukrainian Biochemical Journal. 1990. Vol. 62. N P. 60-65.
  109. Kosterin S.A., Bratkova N.F., Kurskii M.D., Zimina V.P. Properties of the АТР-dependent Са2+ transport system in plasma membrane fraction of the myometrium cells. Biokhimiia. 1983. Vol. 48. N P. 244-253.
  110. Kosterin S.A., Slinchenko N.N., Gergalova G.L. Energy characteristics of an АТР-hydrolase reaction catalyzed by solubilized Са2+, Мg2+-АТРase from smooth muscle cell membrane. Biokhimiia. 1994.Vol.59. N P. 889-904.
  111. Kosterin S.A., Bratkova N.F., Babich L.G., Shinlova O.P., Slinchenko N.N., Shlykov S.G., Zimina V.P., Rovenets N.A., Veklich Т.А. Effect of inhibitors of energy-dependent Са2+-transporting systems on calcium pumps of a smooth muscle cell. The Ukrainian Biochemical Journal. 1996. Vol. 68. N P. 50-61.
  112. Carafoli E. The Ca2+-pump of the plasma membrane. Journal of Biological Chemistry. 1992. Vol. 267. N 4. P. 2115-2118.
  113. Deliconstantinos G, Fotiou Effect of prostaglandins E2 and F2 alpha on membrane calcium binding, Ca2+/Mg2+-ATPase activity and membrane fluidity in rat myometrial plasma membranes. Journal of Endocrinology. 1986. Vol. 110. N 3. P. 395-404.
  114. Soloff MS, Sweet P. Oxytocin inhibition of (Ca2+ + Mg2+)-ATPase activity in rat myometrial plasma membranes. Journal of Biological Chemistry. 1982. Vol. 257. N 18. P. 10687-10693.
  115. Chen HH, Lin YR, Peng QG, Chan MH. Effects of trichloroethylene and perchloroethylene on muscle contractile responses and epithelial prostaglandin release and acetylcholinesterase activity in swine trachea. Toxicological Sciences. 2005. Vol. 83. N 1. P. 149-154.
  116. Chaudhary J, Walia M, Matharu J, Escher E, Grover AK. Caloxin: a novel plasma membrane Ca2+ pump inhibitior. American Journal of Physiology Cell Physiology. 2001. Vol. 280 . N 4.
    C1027-C1030.
  117. Holmes ME, Chaudhary J, Grover AK. Mechanism of action of the novel plasma membrane Ca2+-pump inhibitior caloxin. Cell Calcium. 2003. Vol. 33. N 4. P. 241-245.
  118. Pande J, Mallhi KK, Grover AK. A novel plasma membrane Ca2+-pump inhibitior: caloxin 1A1. European Journal of Pharmacology. 2005. Vol. 508. N 1-3. P. 1-6.
  119. Pande J, Mallhi KK, Grover AK. Role of third extracellular domen of plasma membrane Ca2+-Mg2+-ATPase based on novel inhibitor caloxin 3A1. Cell Calcium. 2005. Vol. 37. N 3. P. 245-250.
  120. Veklich ТO, Skrabak OA, Nikonishyna YuV, Rodik RV, Kalchenko VІ, Kosterin SO. Calix[4]arene С-956 selectively inhibits plasma membrane Са2+,Mg2+-АТРase in myometrial cells. The Ukrainian Biochemical Journal. 2018. Vol. 90. N 5. P. 34-42.
  121. Smeazzetto S, Armanious GP,  Moncelli MR,  Bak JJ,  Lemieux MJ,  Young HS,  Tadini-Buoninsegni Conformational memory in the association of the transmembrane protein phospholamban with the sarcoplasmic reticulum calcium pump SERCA. Biological Chemistry. 2017. Vol. 292. N 52. P. 21330–21339.
  122. Zafar S, Hussain A, Liu Y, Lewis D, Inesi G.. Specificity of ligand binding to transport sites: Ca2+ binding to the Ca2+ transport ATPase and its dependence on H+ and Mg2+. Archives of Biochemistry and Biophysics. 2008. Vol. 476. P. 87–94.
  123. Hovnanian A. SERCA pumps and human diseases. Subcellular Biochemistry. 2007. Vol. 45. P. 337-363.
  124. Mattiazzi A, Mundina-Weilenmann C, Vittone L, Said M. Phosporylation of phospholamban in ischemia-reperfusion injury: functional role of Thr17 residue. Molecular and Cellular Biochemistry. 2004. Vol. 263. N 1-2. P. 131-136.
  125. Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Canadian Journal of Physiology and Pharmacology. Vol. 93. N 10. P. 843-854.
  126. Primeau JO, Armanious GP, Fisher ME, Young HS. The SarcoEndoplasmic Reticulum Calcium ATPase. Subcellular Biochemistry. Vol. 87. P. 229-258.
  127. DeLuca HF, Engstrom GW. Calcium uptake by rat kidney mitochondria. Proceedings of the National Academy of Sciences of the USA. Vol. 47. N 11. P. 1744-1750.
  128. Lehninger A. L, Rossi CS, Greenawalt JW. Respiration-dependent accumulation of inorganic phosphate and Ca ion by rat liver mitochondria. Biochemical and Biophysical Research Communications. Vol. 10. N 3. P. 444-448.
  129. Carafoli E, Rossi CS, Lehninger AL. Uptake of adenine nucleotides by respiring mitochondria during active accumulation of Ca2+ and phosphate. Journal of Biological Chemistry. Vol. 240. N 5. P. 2254-2261.
  130. Bernardi P, Rasola Calcium and cell death: the mitochondrial connection. Subcellular Biochemistry. 2007. Vol. 45. P. 481-506.
  131. Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. Journal of Biological Chemistry. Vol. 278. N 21. P. 19062-19070.
  132. Bootman MD, Bultynck  Fundamentals of Cellular Calcium Signaling: A Primer. Cold Spring Harbor Laboratory Press. 2019. a038802
  133. Graier WF, Frieden M, Malli R.. Mitochondria and Ca2+ signaling: old quests, new functions. European Journal of Physiology. Vol. 455. N 3. P. 375-396.
  134. Bravo-Sagua R, Parra V, Lґopez-Crisosto C, Dґıaz P, Quest AFG, Lavandero Calcium Transport and Signaling in Mitochondria. Comprehensive Physiology. 2017. Vol. 7.
    P. 623-634.
  135. Takeuchi A, Kim B, Matsuoka S. The destiny of Ca(2+) released by mitochondria. Journal of Physiological Sciences. Vol. 65. N 1. P. 11-24.
  136. Pan S, Ryu S-Y, Sheu S-S. Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Science China Life Sciences. 2011. Vol. 54. N 8. P. 763-769.
  137. Szabadkai G, Duchen MR. Mitochondria: The Hub of Cellular Ca2+ Physiology. 2008. Vol. 23. P. 84-94.
  138. Szabo I, Zoratti M. Мitochondrial channels: ion fluxes and more. Physiological Reviews. Vol. 94. P. 519–608.
  139. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology. Vol. 13.
    P. 566–578.
  140. Zhao H, Pan X. Mitochondrial Ca2+ and cell cycle regulation. International Review of Cell and Molecular Biology. 2021. Vol. 362. P. 171–207.
  141. Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, Thornbury Ca2+ Signalling in Mouse Urethral Smooth Muscle in Situ: Role of Ca2+ Stores and Ca2+ Influx Mechanisms. The Journal of Physiology. 2018. Vol. 596.
    N 8. P. 1433-1466.
  142. Burdyga T, Lang Excitation-Contraction Coupling in Ureteric Smooth Muscle: Mechanisms Driving Ureteric Peristalsis. Advances in Experimental Medicine and Biology. 2019. Vol. 1124. P. 103-119.
  143. Berridge Inositol 1,4,5-trisphosphate-induced Calcium Mobilization Is Localized in Xenopus Oocytes. Proceeding of the Royal Society London B: Biological Sciences. 1989. Vol. 238.
    N 1292. P. 235-43.
  144. Dupont G, Berridge MJ, Goldbeter Signal-induced Ca2+ Oscillations: Properties of a Model Based on Ca(2+)-induced Ca2+ Release. Cell Calcium. 1991. Vol. 12. N 2-3. P. 73-85.
  145. Dupont G, Pontes J, Goldbeter Modeling Spiral Ca2+ Waves in Single Cardiac Cells: Role of the Spatial Heterogeneity Created by the Nucleus. American Journal of Physiology Cell Physiology. 1996. Vol. 271. N 4. Pt 1. P. C1390-C1399.
  146. Navarro-Dorado J, Garcia-Alonso M, van Breemen C, Tejerina T, Fameli N. Calcium Oscillations in Human Mesenteric Vascular Smooth Muscle. Biochemical and Biophysical Research Communications. 2014. Vol. 445. N 1. 84-88.
  147. Jeffries O, McGahon MK, Bankhead P, Lozano MM, Scholfield CN, Curtis TM, McGeown JG. cAMP/PKA-dependent Increases in Ca Sparks, Oscillations and SR Ca Stores in Retinal Arteriolar Myocytes After Exposure to Vasopressin. Investigative Ophthalmology & Visual Science. 2010. Vol. 51. N 3. P. 1591-1598.
  148. Berridge MJ, Rapp A Comparative Survey of the Function, Mechanism and Control of Cellular Oscillators. The Journal of Experimental Biology. 1979. Vol. 81. P. 217-279.
  149. Woods NM, Cuthbertson KS, Cobbold PH. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986. Vol. 319. N 6054. P. 600-602.
  150. Rooney TA, Sass EJ, Thomas AP. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. Journal of Biological Chemistry. 1989. Vol. 264. N 29. P. 17131-17141.
  151. Thomas AP, Renard-Rooney DC, Hajnóczky G, Robb-Gaspers LD, Lin C, Rooney TA. Subcellular Organization of Calcium Signalling in Hepatocytes and the Intact Liver. Ciba Foundation Symposium. 1995. Vol. 188. P. 18-35. Discussion 35-49.
  152. Benninger RKP, Hutchens T, Head WS, McCaughey MJ, Zhang M, Le Marchand SJ, Satin LS, Piston DW. Intrinsic Islet Heterogeneity and Gap Junction Coupling Determine Spatiotemporal Ca²⁺ Wave Dynamics. Biophysical Journal. 2014. Vol. 107. N 11. P. 2723-2733.
  153. Das PN, Mehrotra P, Mishra A, Bairagi N, Chatterjee Calcium Dynamics in Cardiac Excitatory and Non-Excitatory Cells and the Role of Gap Junction. Mathematical Biosciences. 2017. Vol. 289. P. 51-68.
  154. Bolton TB, Gordienko DV, Povstyan OV, Harhun MI, Pucovsky V. Smooth Muscle Cells and Interstitial Cells of Blood Vessels. Cell Calcium. 2004. Vol. 35. N 6. P. 643-657.
  155. Sanders Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. Advances in Experimental Medicine and Biology. 2019. Vol. 1124. P. 3-46.
  156. Bootman MD, Roderick HL, O’Connor R, Berridge MJ. Intracellular Calcium Signaling. Handbook of Cell Signaling. P. 51–56.
  157. Bolton TB, Gordienko DV, Pucovský V, Parsons S, Povstyan Calcium Release Events in Excitation-Contraction Coupling in Smooth Muscle. Novartis Foundation Symposium. 2002. Vol. 246. N 154-168. Discussion 168-173, 221-227.
  158. Kotlikoff M L, Wang Y-X,  Xin H-B,  Ji Calcium Release by Ryanodine Receptors in Smooth Muscle. Novartis Foundation Symposium. 2002. Vol. 246. N 108-119. Discussion 119-124, 221-227.
  159. Pucovský V, Gordienko DV, Bolton TB. Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea-pig small mesenteric arteries. The Journal of Physiology. 2002. Vol. 539. Pt 1. P. 25-39.
  160. Borysova L, Dora KA, Garland CJ, Burdyga Smooth Muscle Gap-Junctions Allow Propagation of Intercellular Ca2+ Waves and Vasoconstriction Due to Ca2+ Based Action Potentials in Rat Mesenteric Resistance Arteries. Cell Calcium. 2018. Vol. 75.
    P. 21-29.
  161. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Frontiers in Bioscience. 2009. Vol. 14. P. 1-18.
  162. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research. 2006. Vol. 71. N 2. P. 310-321.
  163. Ford PC, Miranda KM. The solution chemistry of nitric oxide and other reactive nitrogen species.  Nitric Oxide. 2020. Vol. 103. P. 31–46.
  164. Reutov V.P. Nitric oxide cycle in mammals and the cyclicity principle. Biochemistry (Moscow). 2002. Vol. 67.
    N 3. P. 293-311.
  165. Gorren А.C., Mayer B. The versatile and complex enzymology of nitric oxide synthase. Biochemistry (Moscow). 1998. Vol. 63.
    N С. 734–743.
  166. Schmidt HHHW, Hofmann H, Ogilvie P. The role of nitric oxide in physiology and Pathophysiology. Springer. 1995. Р. 75–86.
  167. Ignarro LI, Fukuto IM, Griscavage IM. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comporison with enzymatically found nitric oxide from L-arginine. Proceedings of the National Academy of Sciences of the USA. 1993. Vol.
    N 17. P. 8103–8107.
  168. Nosarev AV, Smagliy LV, Anfinogenova Y, Popov SV, Kapilevich LV. Exercise and NO production: relevance and implications in the cardiopulmonary system. Frontiers in Celland Developmental Biology. 2015. Vol. 2. P. 73.
  169. Ghimire K, Altmann HM,. Straub AC, Isenberg JS. Nitric oxide: what’s new to NO? American Journal of Physiology Cell Physiology. Vol. 312. P. C254–C262.
  170. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences. 2015. Vol. N 2. P. 83-94.
  171. Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiological Review. Vol. 99. P. 311-379.
  172. Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biology. Vol. 14. P. 618-625.
  173. Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxidants & Redox Signaling. 2017. Vol. 26. N 3. P. 107-121.
  174. Sandner, P., Zimmer, D. P., Milne, G. T., Follmann, M., Hobbs, A., & Stasch, J.-P. Soluble Guanylate Cyclase Stimulators and Activators. Handbook of Experimental Pharmacology.
    P. 355–394.
  175. Najibi S, Cohen RA. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. American Journal of Physiology. 1995. Vol. 269. N 3. P. H805-H811.
  176. Bialecki RA, Stinson-Fisher C. KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle. American Journal of Physiology. 1995. Vol. 268. N 1.
    L152-L159.
  177. Okawa T, Vedernikov YP, Saade GR, Longo M, Olson GL, Chwalisz K, Garfield RE. Roles of potassium channels and nitric oxide in modulation of uterine contractions in rat pregnancy. American Journal of  Obstetrics and Gynecology. Vol. 181. N 3. P. 649-655.
  178. Buxton ILO. Regulation of uterine function: a biochemical conundrum in the regulation of smooth muscle relaxation. Molecular Pharmaceutics. 2004. Vol. 65. N 6. P. 1051-1059.
  179. Roberts OL, Kamishima T, Barrett-Jolley R, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery. The Journal of Physiology. Vol. 591.
    N 20. P. 5107–5123.
  180. Kone BC, Kuncewicz T, Zhang W, Yu Z-Y. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. American Journal of Physiology Renal Physiology. Vol. 285. P. F178–F190.
  181. Treuer A.V., Gonzalez D.R. Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities (Review). Molecular Medicine Reports. 2015. Vol. 11. N 3. P.1555-1565.
  182. Cohen RA, Adachi T. Nitric-Oxide-Induced Vasodilatation: Regulation by Physiologic S-Glutathiolation and Pathologic Oxidation of the Sarcoplasmic Endoplasmic Reticulum Calcium ATPase. Trends in Cardiovascular Medicine. 2006. Vol. 16. N 4. P. 109-114.
  183. Ishii T, Sunami O, Saitoh N, Nishio H, Takeuchi T, Hata Inhibition of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase by nitric oxide. FEBS Letters. 1998. Vol. 440. N 1-2. P. 218-222.
  184. Yu J-Z, Zhang DX, Zou A-P, Campbell WB, Li P-L. Nitric oxide inhibits Ca2+ mobilization through cADP-ribose signaling in coronary arterial smooth muscle cell. The American Journal of Physiology Heart and Circulatory Physiology. Vol. 279.
    P. H873–H881.
  185. Duan W, Zhou J, Li W, Zhou T, Chen Q, Yang F, Wei T. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase. Protein & Cell. 2013. Vol. 4. P. 286-298.
  186. Cartwright EJ, Oceandy D, Neyses L. Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflügers Archiv. 2009. Vol. 457. N 3. P. 665-671.
  187. Mohamed TMA, Oceandy D, Prehar S, Alatwi N, Hegab Z, Baudoin FM, Pickard A, Zaki AO, Nadif R, Cartwright EJ, Neyses L. Specific Role of Neuronal Nitric-oxide Synthase when Tethered to the Plasma Membrane Calcium Pump in Regulating the α-Adrenergic Signal in the Myocardium. Journal of Biological Chemistry. 2009. Vol. 284. N 18. P. 12091–12098.
  188. Mohamed TM, Oceandy D, Zi M, Prehar S, Alatwi N, Wang Y, Shaheen MA, Abou-Leisa R, Schelcher C, Hegab Z, Baudoin F, Emerson M, Mamas M, Di Benedetto G, Zaccolo M, Lei M, Cartwright EJ, Neyses L. Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. Journal of Biological Chemistry. Vol. 286. N 48. 41520-41529.
  189. Stepuro I.I., Oparin A.Yu., Stepuro V.I., Maskevich S.A., Titov V.Yu. Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide. Biochemistry (Moscow). 2012. Vol. 77. N P. 41-55.
  190. Zhou X-B,Wang G-X, Ruth P, Hu¨neke B, Korth M. BKCa channel activation by membrane-associated cGMP kinase may contribute to uterine quiescence in pregnancy. American Journal of Physiology Cell Physiology. Vol. 279. N 6. P. C1751– C1759.
  191. Danilovich Yu.V. Effect of nitrogen and oxygen active compounds on Са2+ and Н+ exchange via myometrium cell plasma membrane. The Ukrainian Biochemical Journal. 2001. Vol. 73. N
    P. 49-54.
  192. Danylovych Iu.V. Comparative analysis of the influence of active nitrogen and oxygen metabolites on К+- and thapsigargin-induced entrance of Са2+ into the myocytes of the rat utera. Bukovyna Medical Herald. 2005. Vol. 9. N P. 78-79.
  193. Molecular probes handbook. A guide to fluorescent probes and labeling technologies. 11-th edition. 2010. Chapter 22. Probes for membrane potential.
  194. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Human Reproduction. 2004. Vol. 12. N 10. P. 2267-2276.
  195. Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HD. Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry. Journal of Andrology. Vol. 21. N 2. P. 238-249.
  196. Patrat C, Serres C, Jouannet Progesterone induces hyperpolarization after a transient depolarization phase in human spermatozoa. Biology of Reproduction. 2002; 66(6):1775-1780.
  197. Mattiasson G. Flow cytometric analysis of isolated liver mitochondria to detected changes relevant to cell deathl. Cytometry. 2004. Vol. 60. N 2. P. 145-154.
  198. Sauvat A, Wang Y, Segura F, Spaggiari S, Muller K, Zhou H, Galluzzi L, Kepp O, Kroemer G. Quantification of cellular viability by automated microscopy and flow cytometry. Oncotarget. 2015. Vol. 6. N 11. P. 9467-9475.
  199. Shoji KF, Debure Fluorometric methods for detection of mitochondrial membrane depolarization induced by CD95 activation. Methods in Molecular Biology. 2017. Vol. 1557.
    P. 49-62.
  200. Chen G, Yang Y, Xu C, Gao A flow cytometry-based assay for measuring mitochondrial membrane potential in cardiac myocytes after hypoxia/reoxygenation. Journal of Visualized Experiments. 2018. Vol. 137. P. 57725.
  201. Kalbocova M, Vrbacky M, Drahota Z, Melková Z. Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. 2003. Vol. 52. N 2. P. 110-116.
  202. Danylovych Iu.V., Tugay V.А. Effect of the active nitrogen and oxygen metabolities on the level of сGMP in uterus myocytes. The Ukrainian Biochemical Journal. Vol. 78. N 1. P. 102-106.
  203. Akopova O.V., Kharlamova O.M., Kotsiuruba A.V., Korkach Iu.P., Sahach V.F. Effect of nitric oxide on Na++-АТPase in the aorta tissue of rats. Fiziolohichnyi Zhurnal. 2009. Vol. 55. N P. 27-35.
  204. Chen C, Schofield GG. Nitric oxide donors enchanced Ca2+ carrents and blocked noradrenalin-induced Ca2+ current inhibition in rat sympathetic neurons. The Journal of Physiology (Lond.). 1995. Vol. 482. Pt 3. P. 521–531.
  205. Khurana G, Benett MR. Nitric oxide and arachidonic acid modulation of calcium currents in postganglionic neurons of avian cultured ciliary ganglia. British Journal of Pharmacology. Vol. 109. N 2. P. 480–485.
  206. Mongin А.А., Nedvetsky P.I., Fedorovich S.В. Depolarization of isolated brain nerve endings by nitric oxide donors: membrane mechanisms. Biochemistry (Moscow). 1998. Vol. 63. N 6. P. 662–670.
  207. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7. P. 907-912.

CHAPTER 4

  1. Kosterin S.А. Сalcium transport in smooth muscles. Кyiv: Naukova Dumka, 1990. 216 p
  2. Graier WF, Frieden M, Malli R.. Mitochondria and Ca2+ signaling: old quests, new functions. European Journal of Physiology. Vol. 455. N 3. P. 375-396.
  3. Bernardi P, Rasola Calcium and cell death: the mitochondrial connection. Subcellular Biochemistry. 2007. Vol. 45. P. 481-506.
  4. Rizzuto R, Marchi S, Bonora M, Aguiary P, Bononi A. Са2+ transfer from the ER to mitochondria: When, how and why. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 11. P. 1342–1351.
  5. Pan S, Ryu S-Y, Sheu S-S. Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Science China Life Sciences. 2011. Vol. 54. N 8. P. 763-769.
  6. Feissner RF, Skalska J, Gaum WE. Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in Bioscience. 2009. Vol.14. N 4. P. 1197-1218.
  7. Kostyuk P.G., Kostyuk O.P., Lukyanets E.A. Intracellular calcium signaling: structures and functions. Кyiv: Naukova Dumka, 2010. 175 p.
  8. Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. Journal of Biological Chemistry. Vol. 278. N 21. P. 19062-19070.
  9. Bernardi P. Mitochondrial transport of cations: channels, exchangers and pemeability transition. Physiological Reviews. 1999. Vol. 7. N 4. P. 1127-1155.
  10. Malli R, Graier WF. Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Letters. 2010. Vol. 584. N 10. P. 1942–1947.
  11. Szabadkai G, Duchen MR. Mitochondria: The Hub of Cellular Ca2+ Physiology. 2008. Vol. 23. P. 84-94.
  12. Campbell A. Intracellular calcium. Springer. 2015.
  13. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Molecular Aspects of Medicine. 2010. Vol. 31. N 3. P. 227-285.
  14. Pallafacchina G, Zanin S, Rizzuto From the identification to the dissection of the physiological role of the mitochondrial calcium uniporter: an ongoing story. Biomolecules. 2021. Vol. 11. N 6. P. 786.
  15. Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, et al. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. American Journal of Physiology Cell Physiology. 2021. Vol. 320. N 4. P. C465–C4
  16. Ryu S-Y, Beutner G, Dirksen RT, Kinnally KW, Sheu S-S. Mitochondrial ryanodine receptors and other mitochondrial Ca2+ FEBS Letters. 2010. Vol. 584. N 10. P. 1948–1955.
  17. Griffiths EJ. Mitochondrial calcium transport in the heart: physiological and pathological roles. Journal of Molecular and Cellular Cardiology. 2009. Vol. 46. N 6. P. 789-803.
  18. Griffiths EJ, Balaska D, Cheng WH. The ups and downs of mitochondrial calcium signalling in the heart. Biochimica et Biophysica Acta. Vol. 1797. N 6-7. P. 856-864.
  19. Marchi S, Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. The Journal of Physiology. 2014. Vol. 592. N 5. P. 829-839.
  20. Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of the matrix redox signaling by mitochondrial Ca2+. World Journal of Biological Chemistry. Vol. 6. N 4. P. 310-323.
  21. Tarasova NV, Vishnyakova PA, Logashina YuA, Elchaninov Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. International Journal of Molecular Sciences. 2019. Vol. 20. N 19. P. 4823.
  22. Kamer K. J., Mootha V. K. The molecular era of the mitochondrial calcium Nature Reviews Molecular Cell Biology. 2015. Vol. 16. N. 9. P. 545–553.
  23. Foskett JK, Philipson B. The Mitochondrial Ca2+ Uniporter Complex. Journal of Molecular and Cellular Cardiology. 2015. Vol. 78. P. 3-8.
  24. De Stefani D, Patron  M, Rizzuto Structure and function of the mitochondrial calcium uniporter complex. Biochimica et  Biophysica Acta. 2015. Vol. 1853. N 9. P. 2006-2011.
  25. Cao JL, Adaniya SM, Cypress MW, Suzuki Y, Kusakari Y, Jhun BS, Jhun BS, O-Uchi J. Role of mitochondrial Ca2+ homeostasis in cardiac muscles. Archives of Biochemistry and  Biophysics. 2019. Vol. 663. P. 276-87.
  26. Tanwar J., Singh J. B., Motiani R. K. Molecular machinery regulating mitochondrial calcium levels: the nuts and bolts of mitochondrial calcium Mitochondrion. 2021. Vol. 57. P. 9-22.
  27. Csordás G, Várnai P, Golenár T, Sheu SS, Hajnóczky G. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology. Molecular and Cellular Endocrinology. Vol. 353. N 1-2. P. 109-113.
  28. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011. Vol. 476. N 7360. P. 341–345.
  29. Carvalho E. J., Stathopulos P. B., Madesh M. Regulation of Ca2+ exchanges and signaling in mitochondria. Current Opinion in Physiology. 2020. Vol. 17. 197–206.
  30. Murphy E., Steenbergen C. Regulation of mitochondrial Ca2+ Annual Review of Physiology. 2020. Vol. 83. P. 107–126.
  31. Anderson AJ, Jackson TD,Stroud DA, Stojanovski D. Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biology. 2019. Vol. 9. N 8. P. 190126.
  32. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7. P. 907-912.
  33. Gunter TE, Gunter E, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Letters. 2004. 567. N 1. P. 96-102.
  34. Hoppe UC. Mitochondrial calcium channels. FEBS Letters. Vol. 584. N 10. P. 1975-1981.
  35. Kosterin S.А., Burdyga T.V. Transport and intracellular homeostasis of Са2+ in myometrium. Successes of modern biology. 1993. Vol. 113. N 4. P. 485-506.
  36. Veklich Т.О., Kosterin S.О., Shinlova О.P. Cation specificity of Са2+ accumulation system in the smooth muscle cells mitochondria. The Ukrainian Biochemical Journal. 2002. Vol. 74, N 1. P. 42-48.
  37. Shinlova О.P, Kosterin S.А., Veklich Т.А. Ruthenium Red-sensitive energy-dependent and passive Са2+ transport in permeabilized smooth muscle cells. Biochemistry (Moscow). 1996. Vol. 61, N 8. P. 1021-1025.
  38. Bazil JN, Dash RK. A minimal model for the mitochondrial rapid mode of Ca²+ uptake PLoS One. 2011. Vol. 6. N 6. e21324.
  39. Kosterin S.О., Babich L.G., Shlykov S.G., Danylovych Yu.V., Veklich Т.О., Mazur Yu.Yu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. Кyiv: Naukova Dumka. 2016. 206 p.
  40. Dedkova EN, Blatter LA. Mitochondrial Ca2+ and the heart. Cell Calcium. 2008. Vol. 44. N 1. P. 77-91.
  41. Buntinas L, Gunter KK, Sparagna GC, Gunter TE. The rapid mode of cacium uptake into heart of mitochondria (RaM): comparison to RaM in liver mitochondria. Biochimica et Biophysica Acta. 2001. Vol. 1504. N 2-3. P. 248-261.
  42. Gunter TE, Sheu SS. Characteristics and possible function of mitochondrial Ca2+ transport mechanisms. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 11. P. 1291-1308.
  43. Xu Z., Zhang D., He X., Huang Y., Shao H. Transport of Calcium ions into mitochondria. Current Genomics. Vol. 17, N 3. P. 215–219.
  44. Beutner G , Sharma VK, Lin L, Ryu S-Y, Dirksen RT, Sheu S-S. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochimica et Biophysica Acta. Vol. 1717. N 1. P. 1-10.
  45. Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl2 Proteins. Membranes. 2020. Vol. 10. P. 299.
  46. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P. The Pathophysiology of LETM1. The Journal of General Physiology. Vol. 139. N 6. P. 445-454.
  47. McCarron JG, Olson ML, Wilson C, Sandison ME, Chalmers S. Examining the role of mitochondria in Ca2+ signaling in native vascular smooth muscle. Microcirculation. 2013. Vol. 20. P. 317-329.
  48. Palty R, Hershfinkel M, Sekler I. Molecular identity and functional properties of the mitochondrial Na+/Ca2+ Journal of Biological Chemistry. 2012. Vol. 287. N 38. P. 31650-31657.
  49. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. American Journal of Physiology. 1990. 258. N 5, Pt 1. P. C755-C786.
  50. Kurskii M.D., Kosterin S.А., Burchinskaia N.F., Shlykov S.G. Passive transport of Са2+ in a myometrium mitochondria fraction. The Ukrainian Biochemical Journal. 1987. Vol. 59. N P. 35-39.
  51. Shao J., Fu, Z., Ji Y., Guan X., Guo S., Ding Z., Yang X., Cong Y., Shen Y. Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ Scientific Reports. 2016. Vol. 6. P. 34174.
  52. Jiang, D., Zhao, L., Clapham, D.E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ Science. 2009. Vol. 326. N 5949. P. 144-147.
  53. Gunter TE, Wingrove Kinetics of mitochondrial calcium transport. I. Characteristics of the sodium-independent calcium efflux mechanism of liver mitochondria. Journal of Biological Chemistry. 1986. Vol. 261. N. 32. P. 15159-15165.
  54. Takeuchi A, Kim B, Matsuoka S. The destiny of Ca(2+) released by mitochondria. Journal of Physiological Sciences. Vol. 65. N 1. P. 11-24.
  55. Schlickum S, Moghekar A, Simpson JC, Steglich C, O’Brien RJ, Winterpacht A, Endele LETM1, a gene deleted in Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein. Genomics. 2004. Vol. 83. N 2. P. 254-261.
  56. Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L, Scorrano LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Human Molecular Genetics. 2008. Vol. 17. N 2. P. 201-214.
  57. AustinS, Nowikovsky K. LETM1: essential for mitochondrial biology and cation homeostasis? Trends in Biochemical Sciences. 2019. Vol. 44. N 8. P. 648-658.
  58. LinQ-T, Stathopulos PB. Molecular Mechanisms of Leucine Zipper EF-Hand Containing Transmembrane Protein-1 Function in Health and Disease. International Journal of Molecular Sciences. 2019. Vol. 20. P. 286.
  59. Natarajan, G.K., Mishra, J.,. Camara, A.K.S., Kwok, W-M. LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Frontiers in Physiology. 2021. Vol. 12. P. 637852.
  60. Li Y, Tran Q, Shrestha R, Piao L, Park L, Park Jis, Park Jon. LETM1 is required for mitochondrial homeostasis and cellular viability (Review). Molecular Medicine Reports. Vol. 19. N 5. P. 3367–3375.
  61. Vovkanych L.S., Dubytskyi L.О. Kinetic properties of Н+-stimulated release of Са2+ from liver mitochondria. Experimental and clinical physiology and biochemistry. Vol. 3. P. 34-38.
  62. Piao l, Li Y, Kim SJ, Byun HS, Huang SM, at al. Association of LETM1 and MRPL36 Contributes to the Regulation of Mitochondrial ATP Production and Necrotic Cell Death. Cancer Research. 2009. Vol. 69. N P. 3397-3404.
  63. Romero-Garcia S., Prado-Garcia H. Mitochondrial calcium: transport and modulation of cellular processes in homeostasis and cancer (review). International Journal of Oncology. Vol. 54. N 4. P. 1155–1167.
  64. Bernardi P, von Stockum S. The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium. 2012. Vol. N 1. P. 22– 27.
  65. Rasola A, Bernardi Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 2011. Vol. 50. N 3. P. 222– 233.
  66. Akopova O.V. The role of mitochondrial permeability transition pore in transmembrane Са2+-exchange in mitochondria. The Ukrainian Biochemical Journal. 200  Vol. 80. N 3. P. 40-47.
  67. Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 11. P. 1324-1333.
  68. Cali T, Ottolini D, Brini M. Mitochondrial Ca2+ as a key regulator of mitochondrial activities. Advances in Experimental Medicine and Biology. 2012. Vol. P. 53-73.
  69. Duchen MR, Verkhratsky A, Muallem S. Mitochondria and calcium in health and disease. Cell Calcium. 2008. Vol. 44. N1. P. 1-5.
  70. Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, Vielhaber S, Seppet E, Striggow F. The regulation of OXPHOS by extramitochondrial calcium. Biochimica et Biophysica Acta. Vol. 1797. N 6-7. P. 1018-1027.
  71. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumtion I: cellular physiology. American Journal of Physiology. 2006. Vol. 291. N 6. P. C1225-C1231.
  72. Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiological Review. Vol. 99. P. 311-379.
  73. Giulivi C. Mitochondria as generators and targets of nitric oxide. Novartis Foundation Symposium. 2007. Vol. 287. P. 92-104.
  74. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovascular Research. 2006. Vol. 71. N 1. P. 10-21.
  75. Ghafourifar P., Cadenas E. Mitochondrial nitric oxide synthase. Trends in Pharmacological Sciences. 2005. Vol. 26, N 4. P. 190-195.
  76. Tota B, Quintieri AM, Angelone T. The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function. Current  Medical  Chemistry. 2010. Vol. 17. N P. 1915-1925.
  77. Reutov V.P. Nitric oxide cycle in mammals and the cyclicity principle. Biochemistry (Moscow). 2002. Vol.67. N 3. P. 293-311.
  78. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology. Vol. 303, N 11. P. H1283- H1293.
  79. Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria.  Journal of Biological Chemistry. 1998. Vol. 273. P. 11038–11043.
  80. Ghimire K, Altmann HM,. Straub AC, Isenberg JS. Nitric oxide: what’s new to NO? American Journal of Physiology Cell Physiology. Vol. 312. P. C254–C262.
  81. Piantadosi CA, Suliman HB. Redox Regulation of Mitochondrial Biogenesis. Free Radical Biology & Medicine. 2012. Vol. 53. N 11. P. 2043–2053.
  82. Levine A.B., Punihaole D., Levine T.B. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012. Vol. 122. P. 55-68.
  83. Tengan CH, Rodrigues GS, Godinho RO. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. International Journal of Molecular Sciences. Vol. 13. N 12. P. 17160-17184.
  84. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovascular Research. Vol. 75, N 2. 283-290.
  85. Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A: Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circulation Research. Vol. 99. N 9. P. 924–932.
  86. Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010. Vol. 22. N 2. P. 64-74.
  87. De Palma C, Clementi E. Nitric oxide regulation of mitochondrial biogenesis. Mitochondrial signaling in health and disease. Ed. S. Orrenius, L. Packer, E. Cadenas. 2012. P. 157-167.
  88. Valdez LB, Zaobornyj T, Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochimica et Biophysica Acta. 2006. Vol. 1757. N 3. P. 166-172.
  89. Haynes V, Elfering SL, Squires RJ, Traaseth N, Solien J, Ettl A, Giulivi C. Mitochondrial Nitric-oxide Synthase: Role in Pathophysiology. IUBMB Life. 2003. Vol. 55. N 10–11. P. 599–603.
  90. Nagendran J, Michelakis ED. Mitochondrial NOS is upregulated in the hypoxic heart: implications for the function of the hypertrophied right ventricle. The American Journal of Physiology Heart and Circulatory Physiology. Vol. 296. N 6. P. H1723–H1726.
  91. Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, Lopez LM, Romorini L, Poderoso JJ, Carreras MC. Hypothyroid Phenotype Is Contributed by Mitochondrial Complex I Inactivation Due to Translocated Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry. 2006. Vol. 281. N 8. P. 4779–4786.
  92. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C1569-C1580.
  93. Poderoso JJ, Carreras MC, Schopfer F, Lisdero C, Riobo´ N, Giulivi C, Boveris A, Boveris AA, Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radical Biology & Medicine. Vol. 26. P. 925-935.
  94. Traaseth N., Elfering S., Solien J., Haynes V., Giulivi C. Role of calcium signaling in activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochimica et Biophysica Acta. 2004. Vol. 1658, N 1-2. P. 64-71.
  95. Dedkova EN, Ji X, Lipsius SL, Blatter LA. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cell. American Journal of Physiology Cell Physiology. 2004. Vol. 286. N 2. P. C406–C415.
  96. Sanchez–Padilla J, Guzman JN, Ilijic E, Kondapalli J, Galtieri DJ, Yang B, Schieber S, Oertel W, Wokosin D, Schumacker PT, Surmeier DJ. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nature Neuroscience. 2014. Vol. 17. N 6. P. 832–840.
  97. Yi M, Weaver D, Hajnoczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. Journal of Biological Chemistry. Vol. 167. N 4. P. 661–672.
  98. Bringold U, Ghafourifar P, Richter C. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ Free Radical Biology & Medicine. 2000. Vol. 29. N 3-4. P. 343–348.
  99. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. European Heart Journal. 2012. Vol. 33. P. 829–837.
  100. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. Journal of Cell Science. 2006. Vol. 119. N 14. P. 2856-2862.
  101. Shiva S. Nitrite: A Physiological Store of Nitric Oxide and Modulator of Mitochondrial Function. Redox Biology. 2013. Vol. 1. N 1. P. 40-44.
  102. Brown GC. Nitric oxide and neuronal death. Nitric oxide. 2010. Vol. N 3. P. 153-165.
  103. Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. The Journal of Physiology. Vol. 587. Pt 4. P. 851–872.
  104. Santos C.X.C, Anilkumar N., Zhang M., Brewer A.C., Shah A.M. Redox signaling in cardiac myocytes. Free Radical Biology & Medicine. 2011. Vol. 50, N 7. P. 777-793.
  105. Ghafourifar P, Schenk U, Klein SD, Richter Ch. Mitochondrial Nitric-oxide Synthase Stimulation Causes Cytochrome c Release from Isolated Mitochondria. Journal of Biological Chemistry. 1999. Vol. 274. N 44. P. 31185–31188.
  106. Elfering SL, Haynes VL, Traaseth NJ, Ettl A, Giulivi Aspects, mechanism, and biological relevance of mitochondrial protein nitration sustained by mitochondrial nitric oxide synthase. The American Journal of Physiology Heart and Circulatory Physiology. 2004. Vol. 286. N 1. P. H22–H29.
  107. Demicheli V, Moreno DM, Jara GE, Lima A, Carballal S, Rios N, Batthyany C, Ferrer-Sueta G, Quijano C, Estrin DA, Marti MA, Radi R. Mechanism of the reaction of human manganese superoxide dismutase with peroxynitrite: nitration of critical tyrosine 34. Biochemistry. 2016. Vol. 55. N 24. P. 3403-3417.
  108. Tortora V, Quijano C, Freeman B, Radi R, Castro L. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radical Biology & Medicine. 2007. Vol. 42. N 7. P. 1075-1088.
  109. Liu C, Cheng LM, Wah ST. Nitric Oxide, Iron and Neurodegeneration. Frontiers in Neuroscience. 2019. Vol. 13. Article 114.
  110. Leite ACR, Oliveira HCF, Utino FL, Garcia R, Alberici LC, Fernandes MP, Castilho RF, Verces AE. Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochimica et Biophysica Acta. Vol. 1797. N 6-7: 1210-1216.
  111. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Frontiers in Physiology. 2015. Vol. 6. P. 20.
  112. Salem MM, Shalbaf M, Gibbons NC, Chavan B, Thornton JM, Schallreuter KU. Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB Journal. Vol. 23. N 11. P. 3790-3807.
  113. Gong L, Liu FQ, Wang J, Wang XP, Hou XG, Sun Y, Qin WD, Wei SJ, Zhang Y, Chen L, Zhang MX. Hyperglycemia induces apoptosis of pancreatic islet endothelial cells via reactive nitrogen species-mediated Jun N-terminal kinase activation. See comment in PubMed Commons below Biochimica et Biophysica Acta. Vol. 1813. N 6. P. 1211-1219.
  114. Talib J., Kwan J., Suryo Rahmanto A., Witting P.K., Davies M.J. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction. Biochemical Journal. 2014. Vol. 457. P. 89-97.
  115. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004. Vol. 4. P. 729-741.
  116. Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biological Chemistry. 2002. Vol. 383. N (3-4). H. 401-409.
  117. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004. Vol.53. Suppl. 1. P. S96-S102.
  118. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences. 2015. Vol. N 2. P. 83-94.

CHAPTER 5

  1. Babsky А., Іkkert О, Manko V. Fundamentals of bioenergy. Lviv: Ivan Franko Lviv National University, “Biological Studies” Series. 2017. 312 p.
  2. Zorovaa LD, Popkova VA, Plotnikova EY, Silacheva DN, Pevznera IB, Jankauskasa SS, Babenkoa VA, Zorovc SD, Balakirevad AV, Juhaszovae M, Sollotte SJ, Zorov DB. Mitochondrial membrane potential. Analytical Biochemistry. 2018. Vol. 552. P. 50–59.
  3. Danylovych Yu.V., Karakhim S.A., Danylovych G.V., Kolomiets O.V., Kosterin S.O. Electrochemical potential of the inner mitochondrial membrane and Ca2+ homeostasis of myometrium cells. The Ukrainian Biochemical Journal. Vol. 87. N 5. P. 56-65.
  4. Kosterin S.A., Bratkova N.F., Babich L.G., Shinlova O.P., Slinchenko N.N., Shlykov S.G., Zimina V.P., Rovenets N.A., Veklich Т.А. Effect of inhibitors of energy-dependent Са2+-transporting systems on calcium pumps of a smooth muscle cell. The Ukrainian Biochemical Journal. 1996. Vol. 68. N P. 50-61.
  5. Veklich Т.О., Kosterin S.О., Shinlova О.P. Cation specificity of Са2+ accumulation system in the smooth muscle cells mitochondria. The Ukrainian Biochemical Journal. 2002. Vol. 74, N 1. P. 42-48.
  6. Shinlova О.P, Kosterin S.А., Veklich Т.А. Ruthenium Red-sensitive energy-dependent and passive Са2+ transport in permeabilized smooth muscle cells. Biochemistry (Moscow). 1996. Vol. 61, N 8. P. 1021-1025.
  7. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Letters. 1997. Vol. N 1. P. 77-82.
  8. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Human Reproduction. 2004. Vol. 12. N 10. P. 2267-2276.
  9. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011. Vol. 50. N 2. P. 98-115.
  10. Wolken GG, Arriaga EA. Simultaneous Measurement of Individual Mitochondrial Membrane Potential and Electrophoretic Mobility by Capillary Electrophoresis. Analytical Chemistry. 2014. Vol. 86. P. 4217−
  11. Sivandzade F, Bhalerao A, Cucullo L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio-Protocol. 2019. Vol. 9. N 1. e3128.
  12. https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/downloads.htm
  13. Коlomiets О.V., Danylovych Yu.V., Danylovych G.V., Kosterin S.О. Са2+ accumulation study in isolated smooth muscle mitochondria using Fluo-4 AM. The Ukrainian Biochemical Journal. Vol. 85. N 4. P. 30-39.
  14. Pan S, Ryu S-Y, Sheu S-S. Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Science China Life Sciences. 2011. Vol. 54. N 8. P. 763-769.
  15. Takeuchi A, Kim B, Matsuoka S. The destiny of Ca(2+) released by mitochondria. Journal of Physiological Sciences. Vol. 65. N 1. P. 11-24.
  16. Kostyuk P.G., Kostyuk O.P., Lukyanets E.A. Intracellular calcium signaling: structures and functions. Кyiv: Naukova Dumka, 2010. 175 p.
  17. Vallot O, Combettes L, Lompre A-M. Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells. Biochemical Journal. 2001. Vol. 357. Pt P. 363-371.
  18. Kosterin S.А. Сalcium transport in smooth muscles. Кyiv: Naukova Dumka, 1990. 216 p.
  19. Kosterin S.А., Burdyga T.V. Transport and intracellular homeostasis of Са2+ in myometrium. Uspehi sovremenoy biologii. 1993. Vol. 113. N 4. P. 485-506.
  20. Gincel D, Zaid H, Shoshan-Barmatz V. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochemical Journal. Vol. 358. Pt 1. P. 147-155.
  21. Arnoult Apoptosis-associated mitochondrial outer membrane permeabilization assays. Methods. 2008;44(3):229-34.
  22. Zhou L, Chang Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis. Journal of Cell Science. 2008. Vol. 121. Pt 13. P. 2186-2196.
  23. Akopova O.V., Sagach V.F. Effect of nitric oxide donors on Ca2+ uptake in the rat heart and laver mitochondria. Українский біохімічний журнал. 2005.Т. 77. № 2. С. 82-87.
  24. Akopova O.V., Korkach Iu.P., Kotsiuruba A.V., Kolchyns’ka L.I., Sagach V.F. Reactive nitrogen and oxygen spesies metabolism in rat heart mitochondria upon administration of NO donor in vivo. Fiziolohichnyi zhurnal.    Vol. 58. N 2. P. 3-15.
  25. Buxton I.L.O. The regulation of uterine relaxation. Seminars in Cell & Developmental Biology. 2007. Vol. 18, N 3. P. 340-347.
  26. Sladek M.S., Magness R.R., Conrad K.P. Nitric oxide and pregnancy. American Journal of Physiology. 1997. Vol. 272, N 2. P. R441-R463.
  27. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. American Journal of Physiology. 1990. 258. N 5, Pt 1. P. C755-C786.
  28. Danylovych G.V., Kolomiets O.V., Danylovych Yu.V., Rodik R.V., Kalchenko V.I., Kosterin S.O. Calix[4]arene C-956 is effective inhibitor of H+-Ca2+-exchanger in smooth muscle mitochondria. The Ukrainian Biochemical Journal. 2018. Vol. 90. N1. P. 25-31.
  29. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial Na in health and disease. Circulation Research. 2009. Vol. 104. N 3. P. 292–303.
  30. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7. P. 907-912.
  31. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology. Vol. 303, N 11. P. H1283- H1293.
  32. Jiang, D., Zhao, L., Clapham, D.E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ Science. 2009. Vol. 326. N 5949. P. 144-147.
  33. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P. The Pathophysiology of LETM1. The Journal of General Physiology. Vol. 139. N 6. P. 445-454.
  34. Waldeck-Weirmair M, Jean-Quartier C, Rost R. Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. The Journal of Biological Chemistry. 2012. Vol. 286. N 32. P. 28444-28455.
  35. Tsai, M.F., Jiang, D., Zhao, L., Clapham, D., Miller, C. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. The Journal of General Physiology. 2014. Vol. 143. N 1. P. 67-73.
  36. Shao J., Fu, Z., Ji Y., Guan X., Guo S., Ding Z., Yang X., Cong Y., Shen Y. Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ Scientific Reports. 2016. Vol. 6. P. 34174.
  37. Danylovych V., Danylovych Yu.V., Kosterin S.O. Nitric oxide induced polarization of myometrium cells plasmalemma revealed by application of fluorescent dye 3,3′-dihexyloxacarbocyanine. Indian Journal of Biochemistry &  Biophysics. 2019. Vol. 55. P. 34-45.
  38. Kaasik, A., Safiulina, D., Zharkovsky, A., Veksler, V. 2007. Regulation of mitochondrial matrix volume. American Journal of Physiology Cell Physiology. 292. N 1. P. C157-C163.
  39. Nowikovsky, K., Schweyen, R.J., Bernardi, P. Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochimica et Biophysica 2009. Vol. 1787. N 5. P. 345-350.
  40. Natarajan, G.K., Mishra, J.,. Camara, A.K.S., Kwok, W-M. LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Frontiers in Physiology. 2021. Vol. 12. P. 637852.
  41. Merkus, H.G. Particle size measurements. Fundamentals, practice, quality. 2009. Springer.
  42. Kandaurova N.V., Chunikhin O.Iu., Babich L., Shlykov S.G., Kosterin S.О. Modulators of transmembrane calcium exchange in myometrium mitochondria change their hydrodynamic diameter. The Ukrainian Biochemical Journal. 2010. Vol. 82. N 6. P. 52-57.
  43. Gunter TE, Sheu SS. Characteristics and possible function of mitochondrial Ca2+ transport mechanisms. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 11. P. 1291-1308.
  44. Weiss,G., Lakatta, E.G., Gerstenblith, G. Effects of amiloride on metabolism and contractility during reoxygenation in perfused rat hearts. Circulation Research. 1990. Vol. 66. N 4. P. 1012-1022.
  45. Babich L.G., Borisova L.A., Shlykov S.G., Тitus О.V, Kosterin S.A. Influence of Mg ions and spermine on ATP-dependent Ca2+ transport in myometrial intracellular structures. II. Comparative study of spermine, Mg ions and cyclosporin A effects on Ca2+ transport in mitochondria. The Ukrainian Biochemical Journal. Vol. 76. N 6. P. 55-62.
  46. Pradhan, R.K., Qi, F., Beard, D.A., Dash, R.K. Characterization of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ Biophysical Journal. 2011. Vol. 101. N 9. P. 2071-2081.
  47. Odagiri, , Katoh, H., Kawashima, H., Tanaka, T., Ohtani, H., Saotome, M., Urushida, T., Satoh, H., Hayashi, H. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology. 2009. Vol. 46. N 6. P. 989-997.
  48. Babich LG, Shlykov SG, Kushnarova AM, Kosterin SO. Ca2+-dependent regulation of the Ca2+ concentration in the myometrium mitochondria. I. Trifluoperazine effects on mitochondria membranes polarization and [Ca2+]m. The Ukrainian Biochemical Journal. 2016. Vol. 88. N 4. P. 5-11.
  49. Sobieszek A. Calmodulin antagonist action in smooth-muscle myosin phosphorylation. Different mechanisms for trifluoperazine and calmidazolium inhibition. Biochemical Journal. 1989. Vol. 262. N1. P. 215-223.
  50. Palty R, Hershfinkel M, Sekler I. Molecular identity and functional properties of the mitochondrial Na+/Ca2+ Journal of Biological Chemistry. 2012. Vol. 287. N 38. P. 31650-31657.
  51. Danylovych Iu.V. The action of nitrogen oxides and hydrogen peroxide on Са2+ transport in sarcoplasmic reticulum of permeabilizated myocytes of utera. Fiziolohichnyi Zhurnal. 2010. Vol. 56. N P. 72-78.

 

CHAPTER 6

  1. Heikal AA. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomarker in Medicine. Vol. 4. N 2. P. 241-263.
  2. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the USA. Vol. 104. N 49. P. 19494-19499.
  3. Kosterin P, Kim GH, Muschol M, Obaid AL, Salzberg BM. Changes in FAD and NADH fluorescence in neurosecretory terminals ar triggered by calcium entry and by ADP production. The Journal of Membrane Biology. 2005. Vol. 208. N 2. P. 113-124.
  4. Shuttleworth Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation. Neurochemistry International. 2010. Vol. 56. N 3. P.379-386.
  5. Schaue D, Ratikan JA, Iwamoto KS. Cellular autofluorescence following ionizing radiation. PLOSone. 2012. Vol. 7. N 2. e32062.
  6. Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochimica et Biophysica Acta. Vol. 1797. N 6-7. P. 897-906.
  7. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology & Medicine. Vol. 30. N 11. P. 1191-1212.
  8. Wang HW, Wei YH, Guo HW. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for detection of cell death. Anti-cancer agents in medicinal chemistry. 2009. Vol. 9. N 9. P. 1012-1017.
  9. Shah AT, Beckler MD, Walsh AJ, Jones WP, Pohlmann PR, Skala MC. Optical metabolic imaging of treatment response in human head and Neck squemous cell carcinoma. PLOSone. 2014. Vol. 9. N 3. e90746.
  10. Staniszewski K, Audi SH, Sepehr R, Jacobs ER, Ranji M. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs. Annals of Biomedical Engineering. 2013. Vol. 41. N 4. P. 827-836.
  11. Stowe DF, Gadicherla AK, Zhou Y, Aldakkak M, Cheng Q, Kwok W-M, Jiang MT, Heisner JS, Yang M, Camara AKS. Protection against cardiac injury by small Ca2+-sensitive K+-channels identified in guinea pig cardiac inner mitochondrial membrane. Biochimica et Biophysica Acta. 2013. Vol. 1828. N 2. P. 427-442.
  12. Riess ML, Camara AK, Kevin LG, An J, Stowe DF. Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts. Cardiovascular Research. Vol. 61. N 3. P. 580-590.
  13. Zinchenko V.P., Goncharov N.V., Teplova V.V., Kasymov V.A., Petrova O.I., Berezhnov A.V., Senchenkov E.V., Mindukshev I.V., Jenkins R.O., Radilov A.S.. Studies of interaction of intracellular signsling and metabolic pathways under inhibition of mitochondrial aconitase with fluoroacetate. Tsitologiia. 200 Vol. 49. N 12. P. 1023-1031.
  14. Lakowicz JR. Principles of fluorescence spectroscopy. Second edition. Plenium Publisher, New York, 1999.
  15. Islam MS, Honma M, Nakabayashi T, Kinjo M, Ohta N. pH Dependence of the Fluorescence Lifetime of FAD in Solution and in Cells. International Journal of Molecular Sciences. Vol. 14. N 1. P. 1952-1963.
  16. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxidants & Redox Signaling. 2008. Vol. 10. N 2. P. 179-206.
  17. Agarwal B, Dash RK, Stowe DF, Bosnjak ZJ, Camara AK. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochimica et Biophysica Acta. 2014. Vol. 1837. N 3. P. 354–365.
  18. Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. The Journal of Biological Chemistry. 1990. Vol. 265. N 20. P. 11409-11412.
  19. Hunte C, Palsdottir H, Trumpower BL. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Letters. Vol. 545. N 1. P. 39-46.
  20. Watzke N, Diekert K, Obrdlik P. Electrophysiology of respiratory chain complexes and the ADP-ATP exchanger in native mitochondrial membranes. 2010. Vol. 49. N 48. P. 10308-10318.
  21. Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, Vielhaber S, Seppet E, Striggow F. The regulation of OXPHOS by extramitochondrial calcium. Biochimica et Biophysica Acta. Vol. 1797. N 6-7. P. 1018-1027.
  22. Ghafourifar P., Cadenas E. Mitochondrial nitric oxide synthase. Trends in Pharmacological Sciences. 2005. Vol. 26, N 4. P. 190-195.
  23. Tengan CH, Rodrigues GS, Godinho RO. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. International Journal of Molecular Sciences. Vol. 13. N 12. P. 17160-17184.
  24. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovascular Research.   Vol. 75, N 2. 283-290.
  25. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C1569-C1580.
  26. Poderoso JJ, Carreras MC, Schopfer F, Lisdero C, Riobo´ N, Giulivi C, Boveris A, Boveris AA, Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radical Biology & Medicine. Vol. 26. P. 925-935.
  27. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology. 2012. Vol. 303, N 11. P. H1283-
  28. Turpaev K.T. The role of nitric oxide in signal transmission between cells. Molecular biology. 1998. Vol. 32. N 4. P. 581-
  29. Proskuryakov S.Ya., Konoplyannikov А.Т., Ivannikov A.I. Biology of nitric oxide. Uspehi sovremenoy biologii. 1999. Vol. 119. N P. 380-395.
  30. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovascular Research. 2006. Vol. 71. N 1. P. 10-21.
  31. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumtion I: cellular physiology. American Journal of Physiology. 2006. Vol. 291. N 6. P. C1225-C1231.
  32. Plotnikov EY, Kazachenko AV, Vyssokikh MY, Vasileva AK, Tcvirkun DV, Isaev NK, Kirpatovsky VI, Zorov DB. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney International. 2007. Vol. 72. N 12. P. 1493–1502.
  33. Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circulation Research. 2014. Vol. 114. N 3. P. 524-537.
  34. Schönfeld P, Wojtczak Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of Lipid Research. 2016. Vol. 57. N 6. P. 943-954.
  35. Danylovych V., Danylovych Yu.V., Kosterin S.O. Nitric oxide induced polarization of myometrium cells plasmalemma revealed by application of fluorescent dye 3,3′-dihexyloxacarbocyanine. Indian Journal of Biochemistry & Biophysics. 2019. Vol. 55. P. 34-45.
  36. Brocard JB, Rintoul GL, Reynolds IJ. New perspectives on mitochondrial morphology in cell function. Biology of the Cell. 2003. Vol. 95. N 5. P. 239-242.
  37. Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annual Review of Genetic. 2005. Vol. 39. P. 503-536.
  38. Kaasik, A., Safiulina, D., Zharkovsky, A., Veksler, V. 2007. Regulation of mitochondrial matrix volume. American Journal of Physiology Cell Physiology. 292. N 1. P. C157-C163.
  39. Nowikovsky, K., Schweyen, R.J., Bernardi, P. Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochimica et Biophysica 2009. Vol. 1787. N 5. P. 345-350.
  40. Ponomarenko O.V., Babich L.H., Horchev V.F., Kosterin S.O.. Studies of Ca2+-dependent smooth muscle mitochondria swelling using flow cytometry and spermine effects on this process. The Ukrainian Biochemical Journal. 2006. Vol. 78. N P. 38-45.
  41. Belosludtsev K.N., Belosludtseva N.V., Dubinin M.V., Gudkov S.V., Pen’kov N.V., Samartsev V.N. The influence of spermine on Ca(2+)-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,Ω-hexadecanedioic acids. Biofizika. 2014. Vol. 59. N P. 895-901.
  42. Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD. In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Analytical Biochemistry. Vol. 313. N 1. P. 46-52.
  43. Chan L, Wong Cytochemical localisation and characterisation of proteoglycans (glycosaminoglycans) in the epithelial-stromal interface of the seminal vesicle of the guinea pig. Journal of Anatomy. 1992. Vol. 180. Pt 1. P. 41–56.
  44. Wieraszko A. Evidence that ruthenium red disturbs the synaptic transmission in the rat hippocampal slices through interacting with sialic acid residues. Brain Research. 1986. Vol. 378. N 1. P. 120-126.
  45. Ryu S-Y, Beutner G, Dirksen RT, Kinnally KW, Sheu S-S. Mitochondrial ryanodine receptors and other mitochondrial Ca2+ FEBS Letters. 2010. Vol. 584. N 10. P. 1948–1955.
  46. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7. P. 907-912.
  47. Herrmann-Frank A, Darling E, Meissner G. Functional characterization of the Ca2+-gated Ca2+ release channel of vascular smooth muscle sarcoplasmic reticulum. Pflügers Archiv. 1991. Vol. 418. N 4. P. 353-359.
  48. Кosterin S.О., Кalchenko V.І., Veklich Т.О., Babich L.G., Shlykov S.G. Calixarenes as modulators of АТР-hydrilizing systems of smooth muscles. Кyiv: Naukova Dumka, 2019. 256 p.
  49. Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes. Chemical Communications. 2006. Vol. 23. P. 2425–2438.
  50. Bukharov S.V., Nugumanova G.N., Tagasheva R.G. Polyphenolic antioxidants based on calixarenes. Kazan. KNITU Publishing House. 2016.
  51. Pan Y-C, Hu X-Y, Guo D-S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angewandte Chemie International Edition. 2021. Vol. 60. N 6. P. 2768-2794.
  52. Vovk AI, Kalchenko VI, Cherenok SA, Kukhar VP, Muzychka OV, Lozynsky Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Organic & Biomolecular Chemistry. 2004. Vol. 2. N 21. P. 3162-3166.
  53. Buldenko VM, Trush VV, Kobzar OL,  Drapailo AB, Kalchenko VI, Vovk Calixarene-based phosphinic acids as inhibitors of protein tyrosine phosphatases Bioorganic & Medicinal Chemistry Letters.  2019. Vol. 29. N 6. P. 797-801.
  54. Labyntseva R.D., Slinchenko N.N., Veklich Т.О., Rodik R.V., Cherenok S.A, Boyko V.І.І, Кalchenko V.І., Кosterin S.О.. Comparative study of calixarenes effect on Мg2+-dependent АТР-hydrolase enzymatic systems from smooth muscle cells of the uterus. The Ukrainian Biochemical Journal. 2007. Vol. 79. N P. 44-54.
  55. ShlykovS.G.,BabychL.G., Slinchenko N.М., Rodik R.V., Boyko V.І., Кalchenko V.І., Кosterin S.О Calixarene С-91 stimulates Са2+ accumulation in mitochondria. The Ukrainian Biochemical Journal. Т. 79, № 4. С. 28-33.
  56. Veklich Т.О., Shkrabak A.А., Mazur Yu.Yu., Rodik R.V., Кalchenko V.І., Кosterin S.О. Kinetics of inhibitory effect of calix[4]arene С-90 on activity of transporting plasma membrane Ca2+,Mg2+-АТРase of smooth muscle cells. The Ukrainian Biochemical Journal. 2014. Vol. 86, N 5. P. 37-46.
  57. BabychL.G., ShlykovS.G., Kushnarova А.М., Yesypenko A.A., KosterinS.O. Chalcone-containing calix[4]arenes are nanoscale modulators of mitochondrial membrane polarization and ionized Ca content in them. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. Vol. 15, N P. 193–202.
  58. Tsymbalyuk О.V., Onufryjchuk О.V., Veklich Т.О., Cherenok S.A., Кalchenko V.І., Miroshnichenko N.S., Кosterin S.О. Comparative study of influence of ouabain and calixarene bis-hydroxymethylphosphone acid on Na++-АТРase activity and mechanokinetics of process «contraction-relaxation» of smooth muscle. Physics of the Alive. 2006. Vol. 14, N 1. P. 53-72.
  59. Tsymbalyuk О.V., Rodik R.V., Кalchenko V.І., Кosterin S.О. The mekhanokinetical parameters of contractile activity of rat caecum smooth muscles under conditions of calixarene С107 chronic action in vivo. Physics of the Alive. 2010. Vol. 18, N 1. P. 47-51.
  60. Tsymbalyuk О.V., Кosterin S.О. Influence of calixarene C-90 on contractile activity of rat myometrium smooth muscles. Biologichni studii. 2013. Vol. 7, N 3. P. 5-20.

 

 

CHAPTER 7

  1. Кosterin S.О., Кalchenko V.І., Veklich Т.О., Babich L.G., Shlykov S.G. Calixarenes as modulators of АТР-hydrilizing systems of smooth muscles. Кyiv: Naukova Dumka, 2019. 256 p.
  2. Voegle F., Weber E. Calixarenes. Chemistry of «host-guest» complexes. Synthesis, structure and applications. Moscow: Mir; 1988. pp 445-502.
  3. Atamas L.I., Boyko V.І., Drapaylo A.B., Yesypenko A.A., Кalchenko O.І., Klyachina М.А., Маtveev Yu.І., Miroshnichenko S.I, Rodik R.V., Cherenok S.A., Кalchenko V.І. Supramolecular chemistry of calixarenes. Journal of Organic and Pharmacological Chemistry. 2009. Vol. 7. Issue N 26. P. 28-36.
  4. Bukharov S.V., Nugumanova G.N., Tagasheva R.G.. Polyphenolic antioxidants based on calixarenes. Kazan. KNITU Publishing House.
  5. Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes. Chemical Communications. 2006. Vol. 23. P. 2425–2438.
  6. Gutshe Calixarenes Revisited. RSC Monographs in Chemistry. Cambridge: Royal Society of Chemistry; 1998: 32-40.
  7. Xiong D. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology. 2008. 19. N 46. P. 126-135.
  8. Nimse S. Biological applications of functionalized calixarenes. Chemical Society Reviews. Vol. 42. N1. P. 366-386.
  9. Rodik R.V. Application of calixarenes for DNA transfection in cells. The Ukrainian Biochemical Journal. 2012. Vol. 84. N 5. P.5-15.
  10. Pan Y-C, Hu X-Y, Guo D-S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angewandte Chemie International Edition. 2021. Vol. 60. N 6. P. 2768-2794.
  11. Pozniak Т.А.; inventor. Antithrombotic calixarenes. Patent of Ukraine № a 2010 04273. December 26, 2011.
  12. Veklich Т.О., Кosterin S.О., Rodik R.V., Cherenok S.A., Boyko V.І., Кalchenko V.І. Effect of calixarene-phosphonic acid on Nа++-АТРase activity in plasma membranes of the smooth muscle cells. The Ukrainian Biochemical Journal. 2006. Vol. 78, N 1. P. 70-78.
  13. Veklich Т.О., Shkrabak A.А., Rodik R.V., Кalchenko V.І., Кosterin S.О. The calixarene С-107 increases the affinity of the Nа++-АТРase in plasmatic membrane of smooth muscle cells to the ouabain. The Ukrainian Biochemical Journal. Vol. 83. N 1. P. 38-44.
  14. Veklich Т.О., Shkrabak A.А., Rodik R.V., Кalchenko V.І., Кosterin S.О. Effect of calixarene С-107 on kinetic parameters of Nа++-АТРase in the plasma membrane of uterus myocytes. The Ukrainian Biochemical Journal. Vol. 83. N 2. P. 36-44.
  15. Bevza A.A., Labyntseva R.D., Rodik R.V., Cherenok S.A, Kosterin S.O., Кalchenko V.І. Effect of calix[4]arenes on the activity of actomyosin ATPase and actomyosine subfragment-1 ATPase from myometrium. The Ukrainian Biochemical Journal. Vol. 81. N 6. P. 49-58.
  16. Labyntseva R.D., Bevza A.A., Bevza O.V., Cherenok S.A, Кalchenko V.І, Kosterin S.O. Structural and functional bases of the intermolecular interaction of calix[4]arene С-97 with myosine subfragment-1 of myometrium. The Ukrainian Biochemical Journal. Vol. 84. N 1. P. 34-44.
  17. Bevza A.A., Labyntseva R.D., Bevza O.V., Cherenok S.A, Кalchenko V.І, Kosterin S.O. Kinetic regularities and mechanisms of action of calix[4]arene С-99 on АТРase activity of myosine subfragment-1 of myometrium. The Ukrainian Biochemical Journal. Vol. 82. N 6. P. 22-32.
  18. Veklich Т.A., Shkrabak A.А., Slinchenko N.N., Mazur I.I., Rodik R.V., Boyko V.I., Кalchenko V.І., Kosterin S.A. Calix[4]arene C-90 selectively inhibits Ca2+,Mg2+-ATPase of myometrium cell plasma membrane. Biochemistry (Moscow). 2014. Vol. 79. N 5. P. 417-424.
  19. Veklich Т.О., Shkrabak A.А., Mazur Yu.Yu., Rodik R.V., Кalchenko V.І., Кosterin S.О. Kinetics of inhibitory effect of calix[4]arene С-90 on activity of transporting plasma membrane Ca2+,Mg2+-АТРase of smooth muscle cells. The Ukrainian Biochemical Journal. 2014. Vol. 86, N 5. P. 37-46.
  20. Veklich TO. The inhibitory influence of calix[4]arene of C-90 on the activity of Ca2+,Mg2+-ATPases in plasma membrane and sarcoplasmic reticulum in myometrium с The Ukrainian Biochemical Journal. 2016. Vol. 88. N 2. P. 5-15.
  21. Veklich ТO, Skrabak OA, Nikonishyna YuV, Rodik RV, Kalchenko VІ, Kosterin SO. Calix[4]arene С-956 selectively inhibits plasma membrane Са2+,Mg2+-АТРase in myometrial cells. The Ukrainian Biochemical Journal. 2018. Vol. 90. N P. 34-42.
  22. Veklich Т.О., Shkrabak A.А., Mazur Yu.Yu., Rodik R.V., Boyko V.І, Кalchenko V.І., Кosterin S.О. Kinetic regularities of calix[4]arene С-90 action on the myometrial plasma membrane Са2+,Mg2+-АТРase activity and on the Са2+ concentration in unexcited cells of the myometrium. The Ukrainian Biochemical Journal. 2013. Vol. 85. N 4. P. 20-29.
  23. Labyntseva R.D., Slinchenko N.N., Veklich Т.О., Rodik R.V., Cherenok S.A, Boyko V.І.І, Кalchenko V.І., Кosterin S.О.. Comparative study of calixarenes effect on Мg2+-dependent АТР-hydrolase enzymatic systems from smooth muscle cells of the uterus. The Ukrainian Biochemical Journal. 2007. Vol. 79. N P. 44-54.
  24. Tsymbalyuk О.V., Кosterin S.О. Influence of calixarene C-90 on contractile activity of rat myometrium smooth muscles. Biologichni studii. 2013. Vol. 7, N 3. P. 5-20.
  25. ShlykovS.G.,BabychL.G., Slinchenko N.М., Rodik R.V., Boyko V.І., Кalchenko V.І., Кosterin S.О Calixarene С-91 stimulates Са2+ accumulation in mitochondria. The Ukrainian Biochemical Journal. Т. 79, № 4. С. 28-33.
  26. Babych L.G., Shlykov S.G., Boyko V.I., Klyachina M.A., Kosterin S.O.Calix[4]arenechalconamides C-136 and C-137 hyperpolarize the mitochondrial membrane of the myometrium.Bioorganic chemistry. Vol. 39, N 6. P. 728–735.
  27. BabychL.G., ShlykovS.G., Kushnarova А.М., Yesypenko A.A., KosterinS.O. Chalcone-containing calix[4]arenes are nanoscale modulators of mitochondrial membrane polarization and ionized Ca content in them. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. Vol. 15, N P. 193–202.
  28. Mazur Iu, Veklich T, Shkrabak A, Kosterin S 2015 New myometrium plasma membrane calcium pump suppressor – calix[4]arene C-90 and its structural peculiarities which determine efficiency of its action. “European Muscle Conference”: abstracts of the 44th International conference. Warsaw, Poland. р 62
  29. Piantadosi CA, Suliman HB. Redox Regulation of Mitochondrial Biogenesis. Free Radical Biology & Medicine. 2012. Vol. 53. N 11. C. 2043–2053.
  30. Feissner RF, Skalska J, Gaum WE. Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in bioscience. 2009. Vol. 14. N 4. P.1197-1218.
  31. Xie Z, Cai T. Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Molecular interventions. 2003. Vol. 3. N 3. P. 157-168.
  32. Kaasik, A., Safiulina, D., Zharkovsky, A., Veksler, V. 2007. Regulation of mitochondrial matrix volume. American Journal of Physiology Cell Physiology. 292. N 1. P. C157-C163.
  33. Vadzyuk O.V. ATP-sensitive K+-channels in muscle cells: features and physiological role. The Ukrainian Biochemical Journal. 2014. Vol. 86. N 3. P. 5-22.
  34. Dzeja PP, Holmuhamedov EL, Ozcan C, Pucar D, Jahangir A, Terzic A. Mitochondria. Gateway for Cytoprotection. Circulation Research. 2001. Vol. 89. N 9. P. 744-746.
  35. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J et al. Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. Journal of Signal Transduction. 2012. Vol. 2012: Article ID 329635.
  36. Zorovaa LD, Popkova VA, Plotnikova EY, Silacheva DN, Pevznera IB, Jankauskasa SS, Babenkoa VA, Zorovc SD, Balakirevad AV, Juhaszovae M, Sollotte SJ, Zorov DB. Mitochondrial membrane potential. Analytical Biochemistry. 2018. Vol. 552. P. 50–59.
  37. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. N 5. P. C1569-C1580.

 

FINAL SECTION

 

  1. Bryan N.S., Bian K., Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Frontiers in Bioscience. 2009. Vol. 14. P. 1-18.
  2. Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S S-Nitrosylation: an emerging paradigm of redox signaling. Antioxidants. 2019. Vol. 8. N 9. P. 404.
  3. Philippu Nitric Oxide: A Universal Modulator of Brain Function. Current Medical  Chemistry. 2016. Vol. 23, N 24. P. 2643-2652.
  4. Treuer A.V., Gonzalez D.R. Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities (Review). Molecular Medicine Reports. 2015. Vol. 11. P.1555-1565.
  5. Ghimire K., Altmann H.M., Straub A.C., Isenberg J.S. Nitric oxide: what’s new to NO? American Journal of Physiology Cell Physiology. Vol. 312. P. C254–C262.
  6. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Frontiers in Physiology. 2015. Vol. 6. P. 20.
  7. Nosarev AV, Smagliy LV, Anfinogenova Y, Popov SV, Kapilevich LV. Exercise and NO production: relevance and implications in the cardiopulmonary system. Frontiers in Cell and Developmental Biology. 2015. Vol. 2. P. 73.
  8. Okawa , Vedernikov Y.P., Saade G.R., Garfield R.E. Effect of nitric oxide on contractions of uterine and cervical tissues from pregnant rats. Gynecological Endocrinology. 2004. Vol. 18, N 4. P. 186-193.
  9. Buxton I.L.O. The regulation of uterine relaxation. Seminars in Cell & Developmental Biology. 2007. Vol. 18, N 3. P. 340-347.
  10. Sladek M.S., Magness R.R., Conrad K.P. Nitric oxide and pregnancy. American Journal of Physiology. 1997. Vol. 272, N 2. P. R441-R463.
  11. Hertelendy F, Zakar T. Regulation of myometrial smooth muscle function. Current Pharmaceutical Design. 2004. Vol. 10. N 20. P. 2499-2517.
  12. Anderson A.J., Jackson T.D., Stroud D.A., Stojanovski D. Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biology. 2019. Vol. 9. N 8. P. 190126.
  13. Xu Z., Zhang D., He X., Huang Y., Shao H. Transport of Calcium ions into mitochondria. Current Genomics. Vol. 17, N 3. P. 215–219.
  14. Zhao H, Pan X. Mitochondrial Ca2+ and cell cycle regulation. International Review of Cell and Molecular Biology. 2021. Vol. 362. P. 171–207.
  15. CaoL., Adaniya S.M., Cypress M.W., Suzuki Y., Kusakari Y., Jhun B.S., O-Uchi J. Role of mitochondrial Ca 2+ homeostasis in cardiac muscles. Archives of Biochemistry and  Biophysics. 2019. Vol. 663. P. 276-287.
  16. Bravo-Sagua R., Parra V., Lґopez-Crisosto C., Dґıaz P.,. Quest A.F.G., Lavandero S. Calcium Transport and Signaling in Mitochondria. Comprehensive Physiology. 2017. Vol. 7. P. 623-634.
  17. Gellerich F.N., Gizatullina Z., Trumbeckaite S., Nguyen H.P., Pallas T., Arandarcikaite O., Vielhaber S., Seppet E., Striggow F. The regulation of OXPHOS by extramitochondrial calcium. Biochimica et Biophysica Acta. Vol. 1797, N 6-7. P. 1018-1027.
  18. Rasola A, Bernardi Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium. 2011. Vol. 50. N 3. P. 222– 233.
  19. Cali T, Ottolini D, Brini M. Mitochondrial Ca2+ as a key regulator of mitochondrial activities. Advances in Experimental Medicine and Biology. 2012. Vol. P. 53-73.
  20. Naumova N., Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl‐2 Proteins. Membranes. 2020. Vol. 10. P. 299.
  21. Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010. Vol. 22, N 2. P. 64-74.
  22. Giulivi , Kato K., Cooper C.E. Nitric oxide regulation of mitochondrial oxygen consumtion I: cellular physiology. American Journal of Physiology Cell Physiology. 2006. Vol. 291, N 6. P. C1225-C1231.
  23. Traaseth N., Elfering S., Solien J., Haynes V., Giulivi C. Role of calcium signaling in activation of mitochondrial nitric oxide synthase and citric acid cycle. Biochimica et Biophysica Acta. 2004. Vol. 1658, N 1-2. P. 64-71.
  24. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Human Reproduction Update. 2010. Vol. 16. N 6. P. 725-744.
  25. Wray S., Prendergast C. The Myometrium: From Excitation to Contractions and Labour. Springer Nature Singapore Pte Ltd. H. Hashitani, R. J. Lang (eds.), Smooth Muscle Spontaneous Activity, Advances in Experimental Medicine and Biology. 2019.
  26. Norman JE, Cameron IT. Nitric oxide in the human uterus. Reviews of Reproduction. 1996. Vol. 1. N 1. P. 61-68.
  27. Ekerhovd E, Weidegård B, Brännström M, Norström A. Nitric oxide-mediated effects on myometrial contractility at term during prelabor and labor. Obstetrics and Gynecology. 1999. Vol. 93. N 6. P. 987-994.
  28. Bao , Rai J., Schreiber J. Expression of nitric oxide synthase isoforms in human pregnant myometrium at term. Journal of the Society for Gynecologic Investigation. 2002. Vol. 9, N6. P. 351-356.
  29. Gunter TE, Gunter E, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Letters. 2004. 567. N 1. P. 96-102.
  30. Graier WF, Frieden M, Malli R.. Mitochondria and Ca2+ signaling: old quests, new functions. European Journal of Physiology. Vol. 455. N 3. P. 375-396.
  31. Szabadkai G, Duchen MR. Mitochondria: The Hub of Cellular Ca2+ Physiology. 2008. Vol. 23. P. 84-94.
  32. Haynes V, Elfering SL, Squires RJ, Traaseth N, Solien J, Ettl A, Giulivi C. Mitochondrial Nitric-oxide Synthase: Role in Pathophysiology. IUBMB Life. 2003. Vol. 55. N 10–11. P. 599–603.
  33. Davidson S.M., Duchen M.R. Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovascular Research. 2006. Vol. 71, N 1. P. 10-21.
  34. Giulivi C. Mitochondria as generators and targets of nitric oxide. Novartis Foundation Symposium. 2007. Vol. 287. P. 92-104.
  35. Santos C.X.C, Anilkumar N., Zhang M., Brewer A.C., Shah A.M. Redox signaling in cardiac myocytes. Free Radical Biology & Medicine. 2011. Vol. 50, N 7. P. 777-793.
  36. Carreras M.C., Poderoso J.J. Mitochondrial nitric oxide in the signaling of cell integrated responses. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C1569-C1580.
  37. Levine A.B., Punihaole D., Levine T.B. Characterization of the role of nitric oxide and its clinical applications. Cardiology. 2012. Vol. 122. P. 55-68.
  38. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovascular Research. Vol. 75, N 2. 283-290.
  39. Valdes G., Corthorn J. Review: the angiogenic and vasodilatory uteroplacental network. Placenta. 2011. Vol. 32, Suppl 2. P. S170-175.
  40. Yellon S.M., Mackler A.M., Kirby M.A. The role of leukocyte traffic and activation in parturition. Journal of the Society for Gynecologic Investigation. 2003. Vol. 10, N 6. P. 323-338.
  41. Danilovich Yu.V., Тugai V.А. Formation of NO and Н2О2 in the endometrium stroma under acetylcholine action. The Ukrainian Biochemical Journal. 2001. Vol.73, N 2. P. 110-115.
  42. Cameron I.T., Campbell S. Nitric oxide in the endometrium. Human Reproduction Update. 1998. Vol. 4, N 5. P. 565–569.
  43. Yoshiki N, Kubota T, Matsumoto Y. Expression of inducible nitric oxide synthase in human cultured endometrial stromal cells. Molecular Human Reproduction. 1999. Vol. N 4. P. 353-357.
  44. Myatt L, Brockman DE, Eis ALW, Pollock JS. Immunohistochemical localization of nitric oxide synthase in the human placenta. 1993. Vol. 14. N 5. P. 487–495.
  45. Farina M., Ribeiro M.L., Franchi A. Nitric oxide synthases in pregnant rat uterus. Reproduction. 2001. Vol. 121, N3. P. 403-407.
  46. Nadeem L., Shynlova O., Mesiano S., Lye S. Progesterone Via its Type-A Receptor Promotes Myometrial Gap Junction Coupling. Scientific Reports. 2017. Vol. 7, N 1. P.
  47. Karasinski J., Galas J., Semik D., Fiertak A., Bilinska B., Kilarski W.M. Changes of connexin43 expression in non-pregnant porcine myometrium correlate with progesterone concentration during oestrous cycle. Reproduction in Domestic Animals. Vol. 45, N 6. P. 959-966.
  48. Buhimschi IA, Saade GR, Chwalisz K, Garfield RE. The nitric oxide pathway in pre-eclampsia: pathophysiological implications. Human Reproduction Update. 1998. Vol. 4. N 1. P. 25-42.
  49. Garfield RE, Saade G, Buhimschi C, Buhimschi I, Shi L, Shi SQ, Chwalisz K. Control and assessment of the uterus and cervix during pregnancy and labour. Human Reproduction Update. Vol. 4. N 5. P. 673-695.
  50. Zullino S, Buzzella F, Simoncini T. Nitric oxide and biology of pregnancy. Vascular Pharmacology. 2018. Vol. 110. P. 71-74.
  51. Zaobornyj T., Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. American Journal of Physiology Heart and Circulatory Physiology. Vol. 303, N 11. P. H1283- H1293.
  52. Elfering S.L., Sarkela Th.M., Giulivi C. Biochemistry of Mitochondrial Nitric-oxide Synthase. The Journal of Biological Chemistry. Vol. 277, N 41. P. 38079–38086.
  53. Valdez L.B., Zaobornyj T., Boveris A. Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochimica et Biophysica Acta. 2006. Vol. 1757, N 3. P. 166–172.
  54. Sanchez–Padilla J., Guzman J.N., Ilijic E., Kondapalli J., Galtieri D.J., Yang B., Schieber S., Oertel W., Wokosin D., Schumacker P.T., Surmeier D.J. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nature Neuroscience. 2014. Vol. 17, N 6. P. 832-840.
  55. Dedkova EN, Blatter LA. Mitochondrial Ca2+ and the heart. Cell Calcium. 2008. Vol. 44. N 1. P. 77-91.
  56. Piantadosi C.A., Suliman H.B. Redox regulation of mitochondrial biogenesis. Free Radical Biology & Medicine. 2012. Vol. 53, N 11. P. 2043-2053.
  57. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. Journal of Cell Science. 2006. Vol. 119. N 14. P. 2856-2862.
  58. Tengan C.H., Rodrigues G.S., Godinho R.O. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. International Journal of Molecular Sciences. Vol. 13, N 12. P. 17160-17184.
  59. Yi-Dong Y, Li M-M, Xu G, Zhang E-L, Chen J, Sun B, Chen D-W, Gao Y-Q. Targeting mitochondria-associated membranes as a potential therapy against endothelial injury induced by hypoxia. Journal of Cellular Biochemistry. Vol. 120. N 11. P. 18967-18978.
  60. Valsecchi F, Konrad C, Manfredi Role of soluble adenylyl cyclase in mitochondria. Biochimica et Biophysica Acta. 2014. Vol. 1842. N 12, Pt B. P. 2555–2560.
  61. Hurley J H. Structure, Mechanism, and Regulation of Mammalian Adenylyl Cyclase. The Journal of Biological Chemistry. 1999. Vol. 274. N 12. P. 7599–7602.
  62. Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J. Pharmacological Distinction between Soluble and Transmembrane Adenylyl Cyclases. The Journal of Pharmacology and Experimental Therapeutics. 2013. Vol. 347. P. 589–598.
  63. Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Frontiers in Physiology. 2020. Vol. 11. Article 574030.
  64. Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T. Mitochondrial Ca(2)(+) uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell metabolism. 2013. Vol. 17.
    965–975.
  65. Di Benedetto GD, Lefkimmiatis K, Pozzan T, The basics of mitochondrial cAMP signalling: where, when, why. Cell Calcium. 2021. Vol. 93. P. 102320.
  66. Amer YO, Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochimica et Biophysica Acta – Bioenergetics. 2018. Vol. 1859. P. 868–877.
  67. Kaasik A, Safiulina D, Zharkovsky A, Veksler V. Regulation of mitochondrial matrix volume. American Journal of Physiology Cell Physiology. 2007. Vol. 292. P. C157-C163.
  68. Nowikovski K, Schweyen RJ, Bernardi P. Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochimica et Biophysica Acta. 2009. Vol. 1787. N 5. P. 345-350.
  69. Bai Y, Murakami MH, Iwasa M, Sumi S, Yamada Y, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Uno B, Minatoguchi Cilostazol protects the heart against ischaemia reperfusion injury in a rabbit model of myocardial infarction: focus on adenosine, nitric oxide and mitochondrial ATP-sensitive potassium channels. Clinical and Experimental Pharmacology and Physiology. 2011. Vol. 38. N 10. P. 658-665.
  70. Radi R., Cassina A., Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biological Chemistry. 2002. Vol. 383, N 3-4. P. 401-409.
  71. Stepuro I.I., Oparin A.Yu., Stepuro V.I., Maskevich S.A., Titov V.Yu. Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide. Biochemistry (Moscow). 2012. Vol. 77. N 1. P. 41-55.
  72. Reutov V.P. Nitric oxide cycle in mammals and the cyclicity principle. Biochemistry (Moscow). 2002. Vol.67. N 3. P. 293-311.
  73. Bock J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nature Reviews Molecular Cell Biology. 2020. Vol. 21, N 2. P. 85-100.
  74. Bernardi P, von Stockum S. The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium. 2012. Vol. N 1. P. 22-27.
  75. Leite ACR, Oliveira HCF, Utino FL, Garcia R, Alberici LC, Fernandes MP, Castilho RF, Verces AE. Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. Biochimica et Biophysica Acta. 2010. Vol. 1797. N 6-7. P. 1210-1216.
  76. Webb R.C. Smooth muscle contraction and relaxation. Advances in Physiology Education. 2003. Vol.27. N4. 201-206.
  77. Zhao C., Wu AY-H, Yu X., Gu Y., Lu Y., Song X., An N., Zhang Microdomain elements of airway smooth muscle in calcium regulation and cell proliferation. Journal of Physiology and Pharmacology Advances. 2018. Vol.  69. N 2. P. 151-163.
  78. Chalmers S., Olson M.L., MacMillan D., RainbowD., McCarron J.G. Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium. 2007. Vol. 42. N 4-5. P. 447-466.
  79. Raiagopal S., Ponnusamy M. Calcium signaling: from physiology to deseases. Springer. 2017.
  80. Trebak M., Ginnan R., Singer H.A., Jourd’heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxidants & Redox Signaling. 2010. Vol. 12. N 5. P. 657-673.
  81. Bartesaghi S., Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biology. Vol. 14. P. 618-625.
  82. Zhao Y., Vanhoutte P.M., Leung S.W. Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences. 2015. Vol. 129. N 2. P. 83-94.
  83. Ulrich C., Quilici D.R., Schlauch K.A., Buxton I.L.O. The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor. American Journal of Physiology Cell Physiology. Vol. 305. N 8. P. C803-C816.
  84. Barnett S.D., Smith C.R., Ulrich C.C., Baker J.E., Buxton I.L.O. S-Nitrosoglutathione reductase underlies the dysfunctional relaxation to nitric oxide in preterm labor. Scientific Reports. Vol. 8. N 1. P.  5614.
  85. Guerra D.D., Hurt K.J. Gasotransmitter in pregnancy: from conception to uterine involution. Biology of Reproduction. 2019. Vol. 101. N 1. P. 4-25.
  86. Brakemeier , Eichler I., Knorr A., Fassheber T., Köhler R., Hoyer J. Modulation of Ca2+-activated K+ channel in renal artery endothelium in situ by nitric oxide and reactive oxygen species. Kidney International. 2003. Vol. 64. N 1. P. 199-207.
  87. Jackson W.F. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. Advances in Pharmacology. 2017. Vol. 78. P. 89–144.
  88. Brainard A.M., Korovkina V.P., England S.K. Potassium channels and uterine function. Seminars in Cell and Development Biology. 2007. Vol. 18. N 3. P. 332-339.
  89. Lang R.J., Harvey J.R., McPhee G.J., Klemm M.F. Nitric oxide and thiol reagent modulation of Ca2+-activated K+ (BKCa) channels in myocytes of the guineapig taenia caeci. Journal of Physiology. 2000. Vol. N 2. P. 363-376.
  90. Bae H., Choi J., Kim Y-W, Lee D., Kim J-H, Ko J-H, Bang H., Kim T., Lim I. Effects of Nitric Oxide on Voltage-Gated K+ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. International Journal of Molecular Sciences. 2018. Vol. 19. P. 814.
  91. Smith R.C., McClure M.C., Smith M.A., Abel P.W., Bradley M.E. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility. Reproductive Biology and Endocrinology. Vol. 5. P. 41.
  92. Perret F., Lazar A.N., Coleman A.W. Biochemistry of the para-sulfonato-calix[n]arenes. Chemical Communications. 2006. Vol. 23. P. 2425-2438.
  93. Pan Y-C., Hu X-Y., Guo D-S. Biomedical applications of calixarenes: state of the art and perspectives. Angewandte Chemie International edition in English. 2021. Vol. 60, N 6. P. 2768-2794.
  94. Atamas L.I., Boyko V.І., Drapaylo A.B., Yesypenko A.A., Кalchenko O.І., Klyachina М.А., Маtveev Yu.І., Miroshnichenko S.I, Rodik R.V., Cherenok S.A., Кalchenko V.І. Supramolecular chemistry of calixarenes. Journal of Organic and Pharmacological Chemistry. 2009. Vol. 7. Issue N 26. P. 28-36.
  95. Nimse S. Biological applications of functionalized calixarenes. Chemical Society Reviews. Vol. 42. N1. P. 366-386.
  96. Кosterin S.О., Кalchenko V.І., Veklich Т.О., Babich L.G., Shlykov S.G. Calixarenes as modulators of АТР-hydrilizing systems of smooth muscles. Кyiv: Naukova Dumka, 2019. 256 p.
  97. Veklich T.O. The inhibitory influence of calix[4]arene of C-90 on the activity of Ca2+,Mg2+-ATPases in plasma membrane and sarcoplasmic reticulum in myometrium с The Ukrainian Biochemical Journal. 2016. Vol. 88. N 2. P. 5-15.
  98. Veklich Т.O., Skrabak O.A., Nikonishyna Yu.V., Rodik R.V., Kalchenko V.І., Kosterin S.O. Calix[4]arene С-956 selectively inhibits plasma membrane Са2+,Mg2+-АТРase in myometrial cells. The Ukrainian Biochemical Journal. 2018. Vol. 90. N P. 34-42.
  99. Veklich Т.О., Koshechkova N.S., Rodik R.V., Boyko V.І., Vorobets’ Z.D., Кosterin S.О. Comparative study of calix[4]arene effect on Na++-АТРase activity in plasma membrane of contractile and mobile cells. The Ukrainian Biochemical Journal. 2007. Vol. 79. N 3. P. 19-28.

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх