Wear-resistant protective coating

Authors:

Vitalii Babak, head of the Department of Monitoring and Diagnostics of Power Engineering Facilities, Professor, Doctor of Sciences, Corresponding Member of the National Academy of Sciences of Ukraine.

ORCID   https://orcid.org/0000-0002-9066-4307

Scopus Author ID 57218226416

Researcher ID  AAH-6948-2020

 

Vitaly Shchepetov, leading researcher of the Department of Monitoring and Diagnostics of Energy Facilities, Professor, Doctor of Sciences.

ORCID  https://orcid.org/0000-0002-8352-8307

Scopus Author ID 6603582096

 

Olena Kharchenko, associate professor, Docent, Ph.D.

ORCID ID  https://orcid.org/0000-0002-1311-8548

 

Serhii Kharchenko, Senior Researcher of the Department of Monitoring and Diagnostics of Energy Facilities, Senior Researcher, Ph.D.

ORCID  https://orcid.org/0000-0001-9808-7607

Scopus Author ID 57374376100

Researcher ID  AFX-5136-2022

 

Reviewers:

Oksana Mikosyanchyk, professor of the Department of Civil and Industrial Safety, Professor, Doctor of Sciences. National Aviation University, Kyiv, Ukraine.

ORCID: https://orcid.org/0000-0002-2438-1333

 

Boris Lyashenko, head of the Laboratory of Information Technology, Professor, Laureate of the State Prize of Ukraine, Doctor of Sciences. V. Bakul Institute for Superhard Materials of the National Academy of Sciences, Kyiv, Ukraine.

ORCID: https://orcid.org/0000-0002-7812-2513

 

Affiliation:

Institute of General Energy of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, National Aviation University, Kyiv, Ukraine

Project: Scientific book

Year: 2022

Publisher: PH "Naukova Dumka"

Pages: 112

DOI:

https://doi.org/10.15407/978-966-00-1812-9

ISBN: 978-966-00-1812-9

Language: Ukrainian

How to Cite:

Babak, V., Shchepetov, V., Kharchenko, O., Kharchenko, O. (2022) Wear-resistant protective coating. Kyiv, Naukova Dumka. 112p. [in Ukrainian].

Abstract:

Considered modern technologies for the formation of composite detonation crystalline and amorphous-crystalline coatings, their friction and wear under the conditions of the presence and absence of lubricant, compatibility with structural and antifriction materials, as well as the influence of the stress state on their formation.

The monograph consists of six chapters.

Chapter 1 discusses the general issues of friction and wear research of composite detonation coatings in the absence of lubricant. It is shown how the sliding speed affects the wear of the friction surfaces. The evaluation of the features of wear in conditions of heavily loaded contact and the formation of coatings in conditions of elevated temperatures is given.

Chapter 2 shows how the presence of lubricant affects the wear of composite detonation coatings. The role of tribochemical processes in the formation of wear-resistant surface structures and the wear resistance of coatings in the presence of lubricant in contact, the influence of elemental-organic additives on the processes of friction and wear are revealed.

Chapter 3 deals with the compatibility of coatings with antifriction and structural materials. On the basis of the obtained results, friction pairs from structural and antifriction materials were selected, as well as the operational stability of detonation coatings in these friction pairs was studied.

Chapter 4 describes the principles of forming amorphous and amorphous-crystalline coatings. The selection and justification of the components of the wear-resistant amorphous-crystalline coating, their influence of the nature of alloying elements on the properties of zirconium-based coatings are considered. The influence of technological parameters of detonation sputtering on the formation of detonation amorphous-crystalline coatings

Chapter 5 presents the results of research on friction and wear of amorphous-crystalline coatings in the absence of lubricant. The wear resistance of amorphous-crystalline coatings in friction with tested coatings was studied. The wear resistance of amorphous-crystalline coatings with aircraft steels and the patterns of wear of amorphous-crystalline coatings with anti-friction materials were studied.

Chapter 6 examines the features of the formation of the stress state of amorphous-crystalline detonation coatings. An assessment of the level of technological residual stresses in friction pairs and their effect on wear resistance was carried out. The influence of residual stresses on the wear resistance of the obtained coatings is shown.

For researchers, engineers, as well as teachers, graduate students and students of higher educational institutions dealing with the problems of formation and research of detonation coatings.

Keywords:

Friction, wear, nanostructured material, intensity of wear, coefficient of friction, wear resistance, antifriction, contact pair, composite.

References:

[1] Nosovskyy Y.H. Shchepetov V.V. Avyatsyonnoe materyalovedenye. KY VVS. 1989. 287s.
[2] Bershadskyy L.Y. O samoorhanyzatsyy y kontseptsyyakh yznosostoykosty trybosystem. Trenye y yznos. 1992. T.13. №6. S.1021-1025.
[3] Shchepetov V.V., NedayborshchC.D. Povyshenye эkspluatatsyonnykh kharakterystyk pry vosstanovlenyy detaley avyatsyonnoy tekhnyky. Problemy tekhniky. 2011. №1. S.145-148.
[4] Nedayborshch S.D. Zakonomernosty y mekhanyzm yznashyvanyya detonatsyonnykh pokrytyy Cr-Si-B pry nahruzhenyy trenyem v otsutstvyy smazky. Problemy tertya ta znoshuvannya. 2010. №54. S.163-170.
[5] Nosovskyy Y.H. O mekhanyzme skhvatyvanyya materyalov pry trenyy. Trenye y yznos. 1993. t.14. №1. S. 19-24.
[6] Nosovskyy Y.H. Yssledovanye yznashyvanyya staly v vozdukhe, arhone y kyslorode. Yz-vo. AN SSSR. 1977. S. 87-94.
[7] Harbar Y.Y. Vzaymodeystvye mykroheometryy y struktura metala pry trenyy. Trenye y znos. 1985. t.6. №3. S. 458-466.
[8] Ferolenko V.K., Kadyrov V.Kh. Fyzyko-mekhanycheskye svoystva pry razrushenyy detonatsyonnykh pokrytyy. Poroshkovaya metalurhyya. 1987. №11. S. 88-94.
[9] Bondarenko V.P. Trybotekhnycheskye kompozyty. K.: Naukova dumka. 1987. 232s.
[10] Babak V.P., Shchepetov V.V., Nedayborshch S.D. Matematychne modelyuvannya formuvannya detonatsiynykh pokryttiv. Tekhnolohycheskye systemy. 2016. № 2(75). S.82-88.
[11] Popova V.L. Mekhanyka kontaktnoho vzaymodeystvyya y fyzyka ternyya. M.: FYZMATLYT. 2013. 352s.
[12] Babak V.P., Shchepetov V.V., Gladkii Ya. N., Suprun T.T., Bys S.S. Structural Regeneration of Coatings in Friction. Materials Science. 2019. Р55. №1. C.33-38.
[13] Shchepetov V.V., Nedayborshch S.D. Fyzycheskye aspekty sovmestymosty detonatsyonnykh pokrytyy s trybotekhnycheskymy materyalamy. Problemy tertya ta znoshuvannya. 2011. №55. S.189-197.
[14] Pynchuk V., Korotkevych S. Kynetyka uprochnenyya y razrushenyya poverkhnostnoho sloya metallov pry trenyy. Saarbryuken: LAP. 2013. 180s.
[15] Dotsenko A.Y., Buyanovskyy Y.A. Osnovy trybotekhnyky. M.:YNFRA-M. 2014. 336s.
[16] Nedayborshch S.D., Bys’ S.S. Soprotyvlenye yznosu detonatsyonnykh pokrytyy Cr-Si-B v эkstremal’nykh uslovyyakh trenyya. Visnyk KhNU. 2013. №6. S.20-24.
[17] Shchepetov V.V., Nedayborshch S.D. Yznosostoykost’ detonatsyonnykh pokrytyy Cr-Si-B pry nahruzhenyy trenyem v uslovyyakh povyshennykh temperatur. Poroshkovaya metalurhyya. 2014. №1/2. S.81-89.
[18] Babak V.P., Shchepetov V.V., Nedayborshch S.D. Wear resistance under vacuum of nanocomposite coatings with dry lubricant. Scientific bulletin of NMU. 2016. № 1. P.47-52.
[19] Babak V.P., Nedayborshch S.D., Shchepetov V.V. Yznosostoykost’ detonatsyonnykh pokrytyy FeAl2-Ti-Si, soderzhashchykh dysul’fyd molybdena. Tekhnolohycheskye systemy. 2014. №68/3. C.27-32.
[20] Babak V.P., Lisovyy Ye.N., Shchepetov V.V. ta in Yznosostoykost’ detonatsyonnykh pokrytyy FeAl2-Ti-Si, pry nahruzhenyy trenyem v uslovyyakh povyshennykh temperatur. Tekhnolohycheskye systemy. 2014. №66/1. C.68-75.
[21] Makarenko H.N., Fedorus V.B. Syntez, zharostoykost’ y optycheskye svoystva sylytsyda bora y materyalov na eho osnove. Poroshkovaya metallurhyya. 2007. №3/4. S. 45-51.
[22] Berezyna E.V., Hodlevskyy V.A., Zheleznov A.H., Fomychёv D.S. Analytycheskoe opysanye strukturyrovannoho smazochnoho sloya. Zhydkye krystally y ykh praktycheskoe yspol’zovanye. 2014. № 1. S. 74-79.
[23] Dmytrychenko N.F., Mnatsakanov R.H. Smazochnye protsessy v uslovyyakh nestatsyonarnoho trenyya. Zhytomyr: ZhYTY, 2002. 308 s.
[24] Al-quraan Tareq M.A., Mikosyanchіk О.О., Mnatsakanov R.G. Temperature Resistance of the Boundary Lubrication Layers Under Rolling With Slippage Condition. International Journal of Mechanical Engineering and Applications. 2017. Vol. 5, № 2. Р. 78-86.
[25] Al-quraan Tareq M.A., Mikosyanchіk О.О., Mnatsakanov R.G. The Effect of the Slippage Degree at Rolling with Slipping on the Wear Resistance of Contact Surfaces. Mechanical Engineering Research. 2016. Vol. 6, № 2. Р. 48-61.
[26] Mashkov Yu.A. Trybolohyya konstruktsyonnykh materyalov. Omsk.: OmHTU. 2001. 299s.
[27] Osnovy trybolohyy / Pod red. A.V. Chychynadze. M.: Mashynostroenye. 2001. 664s.
[28] Hsu S. M. Boundary lubrication of advanced materials. Mrs Bulletin. 1991. Vol. 16, № 10. P. 54-58.
[29] Mikocyanchyk O., Mnatsakanov R., Zaporozhets A., Kostynik R. Influence of the nature of boundary lubricating layers on adhesion component of friction coefficient under rolling conditions. Eastern-European J. Enterprise Technologies. 2016. № 4/1 (82). P. 24-31.
[30] Babak V.P., Baysa D.F., Rizak V.M. ta in. Konstruktsiyni ta funktsional’ni materialy. K.: Tekhnika. 2003 – 344s.
[31] Khomenko A.V., Lyashenko Ya.A. Statystycheskaya teoryya hranychnoho trenyya atomarno-hladkykh tverdykh poverkhnostey pry nalychyy smazochnoho sloya. Uspekhy fyzycheskykh nauk. 2012. T. 182, № 10. S. 1083-1110.
[32] Shevelya V.V., Oleksandrenko V.P. Trybokhymyya y reolohyya yznosostoykosty. Khmel’nytskyy: KhNU, 2006. 278 s.
[33] Jiadao W., Darong C., Xianmei K., Kaiyuan J. Lubricating calculation for area contact of regular concave profiles. Journal of Tsinghua University. 2001. Vol. 41, № 2. Р. 42-45.
[34] Ludwig M., Müller C., Groche P. Simulation of Dynamic Lubricant Effects in Sheet Metal Forming Processes. Key Engineering Materials. 2010. Vol. 438. P. 171-178.
[35] Yanzhong W., Bin W., Xiangyu W. Wet Friction-Elements Boundary Friction Mechanism and Friction Coefficient Prediction. Tribology in Industry. 2012. Vol. 34, № 4. Р. 198-205.
[36] Nedayborshch S.D., Bys’ S.S. Zakonomernosty yznashyvanyya detonatsyonnykh pokrytyy systemy Cr-Si-B v uslovyyakh hranychnoy smazky. Visnyk KhNU. 2010. №5. S.154-157.
[37] Shchepetov V.V., Kadyrov V.Kh. Yznosostoykost’ detonatsyonnykh pokrytyy yz poroshkov Ni-Al-Si, Ni-Al-B v uslovyyakh hranychnoy smazky. Poroshkovaya metallurhyya. 1999. №11. S. 74−77.
[38] Kombalov V.S. Metody y yspytanyya na ternye y yznos konstruktsyonnykh y smazochnykh materyalov. – M.: Mashynostroenye. 2008. 384s.
[39] Shchepetov V.V., Nedayborshch S.D., Kharchenko O.V. Vlyyanye эlementoorhanycheskykh prysadok na protsessy trenyya y yznashyvanyya detonatsyonnykh pokrytyy. Problemy tekhniky. 2012. №1. S.57-65.
[40] Usachev V.V., Pohodaev L.Y. Smazochnye materyaly s dobavkamy. Problemy mashynostroenyya y nadёzhnosty mashyn. 2009. №3/4. S. 63−68.
[41] Babak V.P., Shchepetov V.V. Yznosostoykost’ detonatsyonnykh pokrytyy FeAl2-Ti-Si, soderzhashchykh dysul’fyd molybdena. Tekhnolohycheskye systemy. 2015. №73/4. C.84-89.
[42] Taranova E.S. Vlyyanye smazochoy sredy na yzmenenye kharakterystyk trenyya pry kachenyy. Mynsk: Aktual’ne voprosy mashynostroenyya. 2016. S.285-289.
[43] Mikosyanchyk O.O., Mnatsakanov R.H., Khimko A.M ta in. Teoretychni aspekty strukturno-reolohichnoho stanu hranychnykh zmashchuval’nykh shariv v parakh tertya. K.: Problemy trybolohiyi. 2018. T.89. S.132-134.
[44] Babak V.P., Shchepetov V.V, Nedayborshch S.D. Zakonomirnosti tertya ta znoshuvannya v vakuumi detonatsiynykh pokryttiv Cr-Si-B, shcho mistyat’ dysul’fid molibdenu. Visnyk Natsional’noho tekhnichnoho universytetu «KhPI». Seriya: Mekhaniko-tekhnolohichni systemy ta kompleksy. 2016. №17. C.24-29.
[45] Lyashenko B.A., Zenkyn N.A., Pypa B.F.y dr. Analyz sostoyanyya, tendentsyy razvytyya y rekomendatsyy po prymenenyyu zashchytnykh pokrytyy. K.: HALPU. 1999. 49s.
[46] Freher H.E., Aptekar’ M.D., Yhnat’ev B.B. y dr. Osnovy mekhanyky y tekhnolohy kompozytsyonnykh materyalov. K.: Arystey. 2004. 524s.
[47] Skorokhodov V.V. Fyzycheskoe materyalovedenye y fyzyko-khymycheskye osnovy sozdanyya novykh materyalov. Kyev. 1994. 182s.
[48] Babak V.P., Shchepetov V.V., Astakhov E.A., Nedayborshch S.D. Yznosostoykost’ v vakuume detonatsyonnykh amorfno-krystalycheskykh pokrytyy, soderzhashchykh tverduyu smazku. Trenye y yznos. 2017. T38. №1. C.32-40.
[49] Stepanova T.Yu. Tekhnolohyya poverkhnostnoho uprochnenyya detaley mashyn. Yvanovo. 2009. 64s.
[50] Babak V.P., Shcepetov V.V., Suprun T.T., Gladkii Ya.N. Intrastrucnural regeneration of coatings under friction. Material science. 2018. №6. C.42-47.
[51] Babak V.P., Shchepetov V.V., Suprun T.T., Kharchenko O.V., Kharchenko S.D. Thermal barrier coatings on niobium-based alloys structural materials. Mechanics and Advanced Technologies. 2019. Р86. №2. C.44-60.
[52] Nedayborshch S.D., Bys’ S.S. Soprotyvlenye yznosu detonatsyonnykh pokrytyy Cr-Si-B v эkstremal’nykh uslovyyakh trenyya. Visnyk KhNU. 2013. №6. S.20-24.
[53] Tyagi A., Banerijee S.Materials under extreme conditions recent trends and future prospects edited. BARC.:Mumbai, India. 2017. 841p.
[54] Suslov A.H. Kachestvo poverkhnostnoho sloya detaley mashyn. M.: Mashynostroenye. 2000. 319s.
[55] Malyshkyn N.K., Pytrokovtsev M.Y. Trenye, smazka, yznos. Fyzycheskye osnovy y tekhnycheskye prylozhenyya trybolohyy. M.:Fyzmatlyt. 2007. 368s.
[56] Mellor B.G. Surface coating for protection against wear / B.G.Mellor. CRC Press: Boca Raton Boston New York Washington, DC. 2006. 430p.
[57] Babak V.P., Shchepetov V.V., Kharchenko S.D. Antyfryktsyonnye nanokomponentnye pokrytyya, soderzhashchye karbyd mahnyya. Trenye y yznos. 2019. T40. №6. C.783-790.
[58] Harkunov D.N. Trybotekhnyka / D.N. Harkunov. M.: MSKhA. 2001. 616s.
[59] Shpen’ko H.P. Fyzykokhymyya trenyya. Mynsk: Unyversytetskoe. 1991. 396s.
[60] Babak V.P., Shchepetov V.V., Harchenko S.D. Antifriction Nanocomposite Coatings that Contain Magnesium Carbide. Journal of Friction and Wear. 2019. Р40. №6. C.593-598.
[61] Nazarenkov N.A., Lytovchenko S.V., Neklyudov Y.M. Korrozyya y zashchyta metallov. Kh.:KhNU. 2007. 187s.
[62] Fedotom A.K., Anyshchyk V.M., Tyvanov M.S. Fyzycheskoe materyalovedenye. M.:Vysshaya shkola. 2016. 465s.
[63] Uayt R., Dzhebell T. Dal’nyy poryadok v tverdykh telakh. M.: Myr. 1999. 446 s.
[64] Kharlamov Yu.A, Budyh’yants N.A Osnovy tekhnolohyy vosstanovlenyya y uprochnenyya detaley mashyn. Luhansk: Yz-vo ym. V.Dalya. 2003. 496 s.
[65] Husev A.Y., Rempel’ A. Nanokrystallycheskye materyaly. M: Fyzmatlyt, 2001, s. 224
[66] Shape memory effects in alloys, Ed. Perkins J. Springer, 1975. v– 2.
[67] Terriault P., Brailovski V. Modeling of Shape Memory Alloy Actuators Using Likhachev’s Formulation. Journal of Intelligent Material Systems and Structures. 2011. T. 22. v–4. C. 353-368.
[68] Yun S.; Kym Dzh.; Bae G.; Kym B.; Ly C. Formyrovanye pokrytyya y trybolohycheskoe povedenye kynetycheskoho napylennoho metallycheskoho stekla na osnove Fe. J. Alloys Compd. 2011, 509, 347–353.
[69] Khoanh V., VH; Shen Dzh. Systemy tverdosty, udarnoy vyazkosty, khrupkosty y rastreskyvanyya v obъemnom metallycheskom stekle na osnove zheleza putem vdavlyvanyya. Yntermetallys 2009, 17, 211–217.
[70] Trexler M.M.; Tadkhany N.N. Mekhanycheskye svoystva obъemnykh metallycheskykh stekol. Prog. Mater. Sci. 2010, 55, 759–893.
[71] Van W.H.; Donh S.; Shek C.H. Bulk metallycheskye stakany. Mater. Sci. Eng. R 2004, 44, 45–89.
[72] Henao J.; Concustell A.; Kano Y.H.; Cinca N.; Dosta S.; Guilemany J.M. Vlyyanye uslovyy protsessa kholodnoho hazovoho raspylenyya na mykrostrukturu amorfnykh pokrytyy na osnove Fe. J. Alloys Compd. 2015, 622, 995–999.
[73] Voyer J. Uluchshenye poverkhnostnoho yznosa Al-splavov s pomoshch’yu plamenno-napylennykh pokrytyy na osnove amorfnoho zheleza. Mater. Sci. Forum 2011, 690, 405–408.
[74] Lu Z.P.; Tompson J.R.; Porter V.D. Konstruktsyonnye amorfnye staly. Phys. Prepodobnyy Lett. 2004, 92, 245-503.
[75] Whang S.H. (red.) Nanostrukturyrovannye metally y splavy: obrabotka, mykrostruktura, mekhanycheskye svoystva y oblasty prymenenyya; Woodhead Publishing: Kembrydzh, Velykobrytanyya, 2011; p. 299.
[76] Yushchenko K.A., Borysov Yu.S., Kuznyetsov V.D., Korzh V.M. Inzheneriya poverkhni. K.: Naukova dumka, 2007-557s.
[77] Kharchenko E.V. Amorfnye pokrytyya systemy Zr-Al-B. MNTK «Avya-2009» – K.: NAU, 2010. s.15.41-15.44.
[78] Nosovskyy Y.H., Shchepetov V.V., Marchyk V.E. Detonatsyonnye pokrytyya dlya zashchyty uzlov trenyya ot yznashyvanyya. Nauka i oborona. K.: Varta. 1999.-s.126-135.
[79] Feller H., Klinger R. Zum tribologischen verhalten von metallischen glasern. Metall. 2007. 39, №7. p. 627-631.
[80] Kimura H., Masumoto T., Fabrication applications – oriented properties of amorphous metal matrix composittes. Sci. repts. Res.Inst. Tohoku Univ. 2001.№2.p.248-266.
[81] Utyevskaya O.L., Molotylov V.B. Mekhanycheskye svoystva amorfnykh splavov. Metallofyzyka. 1993, №3. s.28-45.
[82] Obshchetekhnycheskyy sprav ochnyk/Pod red. E.A. Skorokhodova. 2e yzd. M.: Mashynostroenye, 1990.-415s.
[83] Belotskyy A.V., Kunytskyy Yu.A. Struktura y svoystva bystrozakalёnnykh splavov. K.: KPY, 2002.-130s.
[84] Babak V.P., Bilchuk Ye.Yu., Shcepetov V.V. Increased wear coatings due intrastructural self-correction. Journal of Engineering Sciences. 2019. Р6. №1. C.11-15.
[85] Pynchuk V., Korotkevych S. Kynetyka uprochnenyya y razrushenyya poverkhnostnoho sloya metallov pry trenyy. Saarbryuken: LAP. 2013. 180s.
[86] Dotsenko A.Y., Buyanovskyy Y.A. Osnovy trybotekhnyky. M.: YNFRA-M. 2014. 336s.
[87] Babak V.P., Shchepetov V.V. Wear Resistance of Amorphous-Crystalline Coatings with Lubricants. Journal of Friction and Wear. 2018. Р39. №1. C.38-43.
[88] Makarenko H.N., Fedorus V.B. Syntez zharostoykost’ y optycheskye svoystva sylytsyda bora y materyalov na eho osnove, Poroshkovaya metallurhyya. 2007. №3/4. S. 45-51.
[89] Osnovy trybolohyy / Pod red. Chychynadze A.V. M.: Mashynostroenye. 2001. 664s.
[90] Shevelya V. V. Trybokhymyya y reolohyya yznosostoykosty. Khmel’nytskyy: KhNU, 2006. 278 s.
[91] Vladymyrov V.Y. Fyzyka yznosostoykosty poverkhnosty materyalov. L.: FTY. 2011. 252s.
[92] Polyshchuk Y.E., Olyker V.E., Voytovych V.B. y dr Osobennosty yznashyvanyya hazotermycheskykh pokrytyy yz еvtektycheskykh splavov. Trenye y yznos. 1987. T.8 − №3. S. 467−472.
[93] Freher H.E., Aptekar’ M.D., Yhnat’ev B.B. et al. Osnovy mekhanyky y tekhnolohy kompozytsyonnykh materyalov. K.: Arystey. 2004. 524 s.
[94] Yan W., Tilvawala G., Kan Q. Numerical investigation of the mechanical behaviour of shape memory bulk metallic glass composites. Proc. of SPIE. 2012. T. 8409.
[95] He J. Liquid phase separation in immiscible Ag-Ni-Nb alloy and formation of crystalline/amorphous composite. Journal of Non-Crystalline Solids. 2011. T. 357. №21. C. 3561-3564.
[96] He J. Al-based metallic glass composites containing fee Pb-rich crystalline spheres. Applied Physics Letters. 2008. T. 93. № 13. C. 131907.
[97] Chang S.H., Wu S.K., Kimura H. Annealing effects on the crystallization and shape memory effect of Ti50Ni25Cu25 melt-spun ribbons. Intermetallics. 2007. T. 15. № 3. P. 233-240.
[98] Resnina N., Belyaev S., Shelyakov A. Martensitic transformation in amorphous-crystalline Ti-Ni-Cu and Ti-Hf-Ni-Cu thin ribbons. The European Physical Journal Special Topics. 2008. T. 158. № 1. C. 21-26.
[99] Waitz Т., Kazykhanov V., Karnthaler H.P. Martensitic phase transformations in nanocrystalline NiTi studied by ТЕМ. Acta Materialia. 2004. T. 52. № 1. C. 137-147.
[100] Phase Transformations and Functional Properties of NiTi Alloy with Ultrafine-Grained Structure / Prokofiev E. Materials Science Forum. 2010. T. 667-669. C. 1059-1064.
[101] Formation of the nanocrystalline structure in the Ti50Ni25Cu25 shape-memory alloy under severe thermomechanical treatment / Pushin V.G. The Physics of Metals and Metallography. 2011. Т. 112. № 6. С. 603-612.
[102] Waitz Т., Karnthaler H.P. Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Materialia. 2004. T. 52. № 19. C. 5461-5469.
[103] Santamarta R., Schryvers D. Effect of amorphous-crystalline interfaces on the martensitic transformation in Ti50Ni25Cu25. Scripta Materialia. 2004. T. 50. № 12. C. 1423-1427.
[104] Tong Y., Liu Y., Xie Z. Characterization of a rapidly annealed Ti50Ni25Cu25 melt-spun ribbon. Journal of Alloys and Compounds. 2008. T. 456. № 1-2. C. 170-177.
[105] Liu Y. et al. Properties of rapidly annealed Ti50Ni25Cu25 melt-spun ribbon. Journal of Alloys and Compounds. 2006. T. 416. № 1-2. C. 188-193.
[106] Belyaev S.P., Resnyna N.N., Shelyakov A.V. Martensytnye prevrashchenyya y эffekt pamyaty formy v chastychno krystallyzovannom splave Ti40.7Hf9.5Ni44.8Cu5. Zhurnal funktsyonal’nykh materyalov. 2007. T. 1. № 4. S. 152-155.
[107] Budiansky В. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids. 1965. T. 13. № 4. C. 223-227.
[108] Christensen R.M. Mechanics of Composite Materials. Dover Publications, 2005, c. 384
[109] Tanaka K., Kobayashi S. and Sato Y. Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. International Journal of Plasticity, vol. 2, pp. 59-72, 1986.
[110] Lagoudas D.C. Shape memory alloys. Modeling and Engineering Applications. Springer, 2008, c. 456
[111] Terriault P., Brailovski V. Modeling of Shape Memory Alloy Actuators Using Likhachev’s Formulation. Journal of Intelligent Material Systems and Structures. 2011. T. 22. № 4. C. 353-368.
[112] Terriault P., Brailovski V. Implementation of Likhachev’s Model into a Finite Element Program. Materials Science Forum. 2013. T. 738-739. C. 160-164.
[113] Lagoudas D. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. International Journal of Plasticity. 2012. T. 32-33. C. 155-183.
[114] Choudhry S., Yoon J.W. A General Thermo-Mechanical Shape Memory Alloy Model: Formulation and Applications. 2004. № 1. C. 1589-1594.
[115] Taylor P. A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mechanics of Composite Materials and Structures. 2007. № March 2012. C. 37—41.
[116] Huang J.Y. Amorphization of TiNi induced by high-pressure torsion. Philosophical Magazine Letters. 2004. T. 84. № 3. C. 183-190.
[117] Characterization of amorphous and nanocrystalline Ti-Ni-based shape memory alloys / Inaekyan К. Journal of Alloys and Compounds. 2009. T. 473. № 1-2. C. 71-78.
[118] Peterlechner M., Waitz Т., Karnthaler H.P. Nanocrystallization of NiTi shape memory alloys made amorphous by high-pressure torsion. Scripta Materialia. 2008. T. 59. №5. C. 566-569.
[119] Peterlechner M. Study of relaxation and crystallization kinetics of NiTi made amorphous by repeated cold rolling. Acta Materialia. 2010. T. 58. № 20. C. 6637-6648.
[120] Hlezer A.M. et al. Mekhanycheskoe povedenye amorfnykh splavov Novokuznetsk: Yzd. SybHYU, 2006, s. 416.
[121] Pushyn V.H., Volkova S.B., Matveeva N.M. Strukturnye y fazovye prevrashchenyya v kvazybynarnykh splavakh systemy TiNi-TiCu bystrozakalennykh yz rasplava. III. Mekhanyzmy krystallyzatsyy. Fyzyka metallov y metallovedenye. 1997. T. 83. №4. S. 156-167.
[122] Babak V.P., Shchepetov V.V., Suprun T.T., Kharchenko O.V. Tekhnolohycheskye ostatochnye napryazhenyya v amorfyzyrovannykh detonatsyonnykh pokrytyyakh. Tekhnolohycheskye systemy. 2019. №86/1. C.29-32.
[123] Babak V.P., Shcepetov V.V., Kharchenko O.V., Gladkii Ya.N. Wear detonation amorphously-crystalline coverages at ladening friction. Problems of Tribology. 2015. R73. №3. C.28-34.
[124] Babak V.P., Shchepetov V.V. Yznosostoykost’ amorfno-krystalycheskykh pokrytyy detonatsyonnykh pokrytyy v uslovyyakh hranychnoho trenyya. Tekhnolohycheskye systemy. 2014. №69/4. C.75-81.
[125] Kharchenko E.V., Shchepetov V.V. Yznosostoykost’ amorfno-krystallycheskykh pokrytyy na osnove tsyrkonyya. Problemy tekhniky: nauk.-vyr. zhurn.–O.: Vyd-vo ONMU. 2012. №4. S. 103-108.
[126] Kharchenko E.V. Tekhnolohycheskye faktory formyrovanyya amorfnykh detonatsyonnykh pokrytyy systemy Zr-Al-B. Problemy tertya ta znoshuvannya. 2013.–№ 59.–S.98-103.
[127] Kharchenko E.V., Bys’ S.S. Vlyyanye tekhnolohycheskykh parametrov detonatsyonnoho napylenyya na strukturu pokrytyy Zr-Al-B y stepen’ ykh amorfyzatsyy. Visnyk KhNU: nauk. zhurn. 2013. Vyp.5. S.75-77.
[128] Kharchenko E.V., Bys’ S.S. Trybostoykost’ detonatsyonnykh amorfno-krystallycheskykh pokrytyy Zr-Al-B pry nahruzhenyy trenyem. Visnyk KhNU. 2013. №6. S24-27.
[129] Babak V.P., Hladkyy Ya.N., Kharchenko E.V., Shchepetov V.V. Yznashyvanye detonatsyonnykh amorfno-krystallycheskykh pokrytyy pry nahruzhenyy trenyem. Problemy trybolohiyi. 2014. №3. 28-34.
[130] Pashechko M., Kharchenko O., Shchepetov V., Lenik K., Gladkiy Y. Features of Formation Stress State of Amorphized Detonation Coatings of the Zr-Al-B Systems. Advances in Science and Technology Research Journal. 2019. V.13. Is. 2. P. 46-50.
[131] Kharchenko O.V. Formuvannya amorfnykh pokryttiv Zr-Al-B pry nanesenni detonatsiyno-hazovym metodom. Materialy XI MNTK „AVIA-2013”. 2013. T. 3. S.15.5-15.8.
[132] Kharchenko O.V. Strukturoobrazovanye detonatsyonnykh pokrytyy systemy Zr-Al-B. Materialy 4-yi MK HighMatTech. 2013. S.330.
[133] Kharchenko O.V. Amorfno-krystallycheskye detonatsyonnye pokrytyya Zr-Al-V v uslovyyakh trenyya. Materialy MNTK „Suchasni problemy mashynoznavstva”. 2013. S.10.
[134] Kharchenko E.V. Soprotyvlenye yznosu amorfno-krystallycheskykh detonatsyonnykh pokrytyy systemy Zr-Al-B. Materialy 8-yi MK „Materyaly y pokrytyya v эkstremal’nykh uslovyyakh: yssledovanyya, prymenenye, эkolohychesky chystye tekhnolohyy proyzvodstva y utylyzatsyy yzdelyy”. 2014. S.94.
[135] Kharchenko O.V. Regulregularities of friction and wear amorphouscrystalline coating on the basis of zirconium. THE SIXTH WORLD CONGRESS „AVIATION IN THE XXI-st CENTURY”. 2014. P.1.1.56-1.1.59.
[136] Kharchenko O.V. Tribological problems of efficiency of machine parts. The Fourteenth International Conference of Science and Technology „AVIA-2019”. 2019. С.17.35-17.38.

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх