Authors:
Myalnitsa Heorgii Pylypovich, chief metallurgist of the Zorya-Mashproekt Gas Turbine Research and Development Complex, Ph.D., Docent.
Zorya-Mashproekt Gas Turbine Research and Development Complex, Mykolayiv, Ukraine;
Bohoiavlenskyi Ave, 42А, Mykolaiv, Mykolaivs’ka oblast, 54018
Contact tel.:+38050-418-22-30
е-mail: mialniza@gmail.com
ORCID 0000-0003-2144-4519
Scopus Author ID 6507837195
Verkhovliuk Anatolii Mikhailovich, Head of the Department of Physical and Chemistry Alloys, doctor of technical sciences, foundry production, professor
Physico-technological Institute of Metals and Alloys of the National Academy of Science of Ukraine, Kyiv, Ukraine;
Academician Vernadsky Boulevard, 34/1, Kyiv, Ukraine, 03142
Contact tel.: +38044-424-10-65; +38095-533-40-31
professor of the department “Foundry production of ferrous and non-ferrous metals”, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine.
е-mail: anatoliiverkhovliuk@gmail.com
ORCID 0000-0002-2670-4052
Scopus Author ID 57200538798
Narivskiy Anatoliy Vasylovych, Director of the Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, Corresponding Member National Academy of Sciences of Ukraine, doctor of technical sciences, foundry production, professor
Physico-technological Institute of Metals and Alloys of the National Academy of Science of Ukraine, Kyiv, Ukraine;
Academician Vernadsky Boulevard, 34/1, Kyiv, Ukraine, 03142
Contact tel.: +38044-424-35-15; +38098-833-34-28
е-mail: av.narivskii@gmail.com
ORCID 0000-0002-1596-6401
Scopus Author ID 57209851884
ResearcherID AAE-8282-2022
https://scholar.google.com.ua/citations?hl=uk&user=MxSOEPAAAAAJ
Shinsky Oleg Yosypovych, head of the Department of Physical and Chemistry Casting Processes , doctor of technical sciences, foundry production, professor
Physico-technological Institute of Metals and Alloys of the National Academy of Science of Ukraine, Kyiv, Ukraine;
Academician Vernadsky Boulevard, 34/1, Kyiv, Ukraine, 03142
Contact tel: +38067-506-71-11
ORCID 0000-0001-6200-0709
Scopus Author ID 57224343399
Kvasnytska Iuliia Heorgiivna, Leading Research Scientist of the Department of Physical and Chemistry Casting Processes , doctor of technical sciences, foundry production, Senior Research Officer;
Physico-technological Institute of Metals and Alloys of the National Academy of Science of Ukraine, Kyiv, Ukraine;
Academician Vernadsky Boulevard, 34/1, Kyiv, Ukraine, 03142
Contact tel: +38066-715-80-31
ORCID 0000-0003-3790-2035
Scopus Author ID 57204351126
ResearcherID AAB-9833-2022
https://scholar.google.com/citations?user=mhgpoXMAAAAJ&hl=en
Maksiuta Innola Ivanivna, Senior Research Officer of the Department of Physical and Chemistry Casting Processes , Ph.D., Senior Research Officer;
Physico-technological Institute of Metals and Alloys of the National Academy of Science of Ukraine, Kyiv, Ukraine;
Academician Vernadsky Boulevard, 34/1, Kyiv, Ukraine, 03142
Contact tel: +38067-662-01-62
ORCID 0000-0001-9517-9709
Reviewers:
Naumyk Valeriy Vladidenovych, Vice-Rector for Scientific and Pedagogical Work and International Affairs National University «Zaporizhzhia Polytechnic», Doctor of Technical Sciences, Professor.
National University «Zaporizhzhia Polytechnic», Zhukovsky st., 64, Zaporizhzhia, Ukraine 69063
Е-mail: vnaumyk@gmail.com; naumik@zp.edu.ua
Contact phone: +380503415834; +380676144330
ORCID 0000-0002-0657-4510
Scopus Author ID 57211920912
https://scholar.google.com/citations?view_op=list_works&hl=ru&hl=ru&user=A9XEr7gAAAAJ
Zviagintseva Ganna Vitaliivna, Leading Researcher of department “Metallurgy and welding technology of high-alloyed steels and alloys” E.O. Paton Electric Welding Institute of the NAS of Ukraine , doctor of Technical Sciences, Senior Research Officer
E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail:zvanna@paton.kiev.ua
Contact phone: +38050-685-41-12;
ORCID 0000-0002-6450-4887
Scopus Author ID 57193516346
Affiliation:
Project: Scientific book
Year: 2023
Publisher: PH "Naukova Dumka"
Pages: 180
DOI:
https://doi.org/10.15407/978-966-000-1810-5
ISBN: 978-966-000-1810-5
Language: Ukrainian
How to Cite:
Myalnitsa, H., Verkhovliuk, A., Narivskiy, A., Shinsky, O., Kvasnytska, I., Maksiuta, I. (2022) Materials and technologies for blades of domestic industrial gas turbine engines. Kyiv, Naukova Dumka. p. [in Ukrainian].
Abstract:
The monograph examines the peculiarities of obtaining heat-resistant corrosion-resistant nickel-based alloys, their use, the influence of chemical composition, heat treatment on the structure and physical and mechanical properties.
According to the results of the analysis of modern scientific bases of the processes of structure formation in castings and obtaining blades for gas turbine engines, the directions for improving of the production and increase of operational characteristics of cast metal from superalloys were determined.
The temperature-time dependences of the formation of fragiled phases in superalloys, as well as effective methods of alloying them with refractory metals (chromium, tungsten, molybdenum, niobium, rhenium and tantalum) were determined. The influence of alloying elements on phase-structural stability, corrosion resistance the physical and mechanical properties of turbine blades was studied and a new corrosion-resistant nickel-based superalloy was created for their production.
The optimal technological parameters of the process of obtaining from nickel-based superalloy the turbine blades with a directed structure (cooling rate and solidification of castings, temperature gradient at the front of their crystallization etc.) were determined.
To improve the strength properties and purity with gases and non-metallic inclusions of cast metal, obtaining a dispersed structure of a given orientation in castings, reducing the burn and increasing the geometric accuracy of the blades, compositions of refractory materials have been developed, which are modified with aluminum, silicon and boron, for the produce of ceramic crucibles, molds and rods, filters.
For scientific and engineering-technical workers employed in the fields of materials science, metallurgy and foundry production, as well as teachers, graduate students and students of higher schools of relevant specialties.
Keywords:
superalloy, gas turbine engine, turbine blade, corrosion, vacuum induction melting, directed crystallization of castings, cooling rate, refractories, modification, corundum, fused quartz, ceramic crucible, form, rod and filter
References:
1 C.T. Sims, N.S. Stoloff & U.K. Khahel (Eds.) (1995) Supersplavyi II: Zharoprochnyie materialyi dlya aerokosmicheskih i promyishlennyih energoustanovok. Metallurgiya.
2 A.G. Bratuhina, G.K. Yazova, B.E. Karaseva (Eds.) (1997) Sovremennyie tehnologii v proizvodstve gazoturbinnyih dvigateley. Mashinostroenie.
3 Demin F.I. (2012) Tehnologiya izgotovleniya osnovnyih detaley gazoturbinnyih dvigateley. SGAU
4 Fedorov O.G. (2013) Gazovi turbiny i gazoturbinni ustanovky. ONAHT.
5 GP NPGK «Zorya»-«Mashproekt» (2014). Povyishenie resursa energeticheskih GTD. Kompleksnaya programma.
6 GP NPKG «Zorya»-«Mashproekt», NO IAU (2004). Sudovoe i energeticheskoe gazoturbostroenie. Nauchno-tehnicheskiy sbornik.
7 Orlov M.R. (2008). Tehnologicheskoe obespechenie resursa rabochih lopatok pervyih stupeney turbinyi aviatsionnyih i nazemnyih gazoturbinnyih dvigateley [Avtoref. dis. d.t.n.]. https://www.dissercat.com/content/tekhnologicheskoe-obespechenie-resursa-rabochikh-lopatok-pervykh-stupenei-turbiny-aviatsionn
8 A.I. Gravchenko (Eds.) (2008). SuchasnI tehnologii v mashinobuduvanni. NTU «HPI».
9 Inozemtsev A.A. (2008). Gazoturbinnyie dvigateli. Mashinostroenie. https://nashol.biz/searchdoc/92344
10 Petrushin N.V., Svetlov I.L. & Ospennikova O.G. (2012) Liteynyie zharoprochnyie nikelevyie splavyi. Vse materialyi. VIAM. https://viam.ru/sites/default/files/scipub/2012/2012-205973.pdf
11 GP NPGK «Zorya»-«Mashproekt» (2016). Specification Z88YF1-S2 for supplying remelting stocks of alloy CM-88Y.
12 GP NPKG «Zorya»-«Mashproekt» (2001). Splavyi zharoprochnyie liteynyie dlya lopatok gazovyih turbin. Pasport na splav nikelevyiy marki HN57KVYUTMBRL-VI(ChS88U – VI).
13 Wahl J.B., Harris K. (2016). CMSX-4 plus single alloy development, characterization and application development. Superalloys 2016: Proc. Of the 13th International Symposium on Superalloys, TMS (the Minerals, Metals&Materials Society) (p.25-33). https://link.springer.com/book/10.1007/978-3-319-48254-5
14 Burkholder P.S., Thomas M.S., Frasier D.J. (1995) Allison engine testing CMSX-4 single crystal turbine blades and vanes. Proc. of the 3-rd National Conf. “Materials Engineering inTurbines and Compressors” (p.1-16)
15 Сaron P. (2000). In Superalloys 2000 T.M. Pollock (Eds.) Publ. Of the Minerals, Metals & Materials Society (p. 737-746). Seven Springs Mountain Resort. https://www.researchgate.net/publication/291349810_Superalloys-2000
16 Erickson G.L. (1997) Superalloys Resist Hot Corrosion and Oxidation. ADVANCED MATERIALS&PROCESSES, 3, 27-30.
17 Walston S., Cetel A., MacKay R. (2004) In Superalloys 2004. K.A.Green (Eds.) Publ. Of the Minerals, Metals&Materials Society (p. 15-24). Seven Springs Mountain Resort. https://www.researchgate.net/publication/288953241_Superalloys_2004
18 Koizumi Y., Kobayashi T., Yokokawa T. (2004) In Superalloys 2004. K.A.Green. (Eds.) Publ. Of the Minerals, Metals&Materials Society (p. 35-43). Seven Springs Mountain Resort. https://www.researchgate.net/publication/288953241_Superalloys_2004
19 Kablov E.N., Svetlov I.L., Petrushin N.V. (1996) Nikelevyie zharoprochnyie splavyi dlya littya s napravlennoy i monokristallicheskoy strukturoy (part II). VIAM. https://www.viam.ru/public/
20 Antipov Yu.A., Shatalov I.K., Sobennikov E.V., Belova E.V. (2013) Dolgovechnost gazoturbinnoy ustanovki pri rabote s izmenyayuscheysya po vremeni temperaturoy gaza pered turbinoy. Vestnik rossiyskogo universiteta druzhbyi narodov. Seriya: Inzhenernyie issledovaniya, 3, 10-16. https://eposlink.com/ru/catalog/library/elibrary/book/vestnik_rossiyskogo_universiteta_druzhby_narodov_seriya-_inzhenernye_issledovaniya-2060/publication/72830/
21 Kvasnitskaya Yu.G. (2015). Povyishenie ekspluatatsionnyih harakteristik rabochih lopatok turbin sovremennyih promyishlennyih gazoturbinnyih dvigateley. Metall i lite Ukrainyi, 8, 29-31.
22 Kablov E.N. (2001). Lityie lopatki gazoturbinnyih dvigateley. MISIS. https://obuchalka.org/2016090690883/litie-lopatki-gazoturbinnih-dvigatelei-kablov-e-n-2001.html
23 Halatov A.A., Yuschenko K.A., Isakov B.V., Dashevskiy Yu.Ya. & Shevtsov A.P. (2013) Gazoturbobuduvannya v Ukraini: suchasniy stan i perspektyvy rozvytku. Visnik NAN Ukrainy, 12, 40-49. http://dspace.nbuv.gov.ua/handle/123456789/68516
24 Paton B., Halatov A., Kostenko D., BIieka B., Pismennyy O., Botsula A., ParafIynik V., & Konyahyn V. (2008) Kontseptsiya (proekt) derzhavnoi naukovo-tehnIchnoi programy «Stvorennya promislovyh gazoturbinnyh dvyguniv novogo pokolinnya dlya gazovoi promyslovosti ta energetyky». Visnik NAN Ukrainy, 4, 3-9. http://dspace.nbuv.gov.ua/xmlui/handle/123456789/1/browse?value=%D0%9F%D0%B8%D1%81%D1%8C%D0%BC%D0%B5%D0%BD%D0%BD%D0%B8%D0%B9%2C+%D0%9E.&type=author
25 Kishkin S.T. (2006) Sozdanie, issledovanie i primenenie zharoprochnyih splavov: izbrannyie trudyi (k 100-letiyu so dlya rozhdeniya). Nauka. https://www.livelib.ru/book/1000384468-litejnye-zharoprochnye-splavy-effekt-stkishkina-nauchno-tehnicheskij-sbornik-kablov-en
26 Kablov E.N., Golubovskiy E.R. (1998) Zharoprochnost nikelevyih splavov. Mashinostroenie. https://www.twirpx.com/file/11851/
27 Paton B.E., Stroganov G.B. & Kishkin S.T. (1987). Zharoprochnost liteynyih nikelevyih splavov i zaschita ih ot okisleniya. Naukova dumka. http://books.zntu.edu.ua/book_info.pl?id=103967
28 Kuznetsov V.P., Lesnikov V.P., Zamkovoy V.E. & Koryakovtsev A.S. (2010). Struktura i prochnostnyie svoystva monokristallicheskih splavov na nikelevoy osnove, legirovannyih reniem i tantalom. Kvist.
29 Kachanov E.B. (2005). Sostoyanie i perspektivyi razvitiya rabot po zharoprochnyim splavam dlya lopatok turbin. Tehnologiya legkih splavov, 1-4, 10-18.
30 Boguslaev V.A, Muravchenko F.M. & Zhemanyuk P.D. (2007) Tehnologicheskoe obespechenie ekspluatatsionnyih harakteristik detaley GTD. Lopatki turbinyi. Chast II. [Monografiya. Izd. 2-e, pererabotannoe i dopolnennoe] OAO «Motor Sich». https://www.twirpx.com/file/53775/
31 Pedash O.O. (2011) Vplyv sposobiv modifikuvannya na strukturu ta vlastivosti zharomitsnyh nikelevyh splaviv. [Avtoref. dis. kand. tehn. nauk.]: Zaporiz`kiy natsionalny tehnichniy universytet. http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=S&I21DBN=EC&P21DBN=&S21FMT=JwU_B&S21ALL=%28%3C.%3EU%3D%D0%9A26$%3C.%3E%29&Z
32 Sidorov V.V., Morozova G.I., Kulebyakina A.M. & Gnevshena A.I. (1988). Vliyanie mikrolegirovaniya splava ZhS-6U ittriem na ego fazovuyu stabilnost. Metallovedenie i termicheskaya obrabotka metallov, 12, 2-5.
33 E.N. Kablov (Eds.). (2006). Liteynyie zharoprochnyie splavyi. Effekt S.T. Kishkina. Nauka. https://www.livelib.ru/book/1000384468-litejnye-zharoprochnye-splavy-effekt-stkishkina-nauchno-tehnicheskij-sbornik-kablov-en
34 S. I. Yatsyik (Eds.). (1995). Proizvodstvo vyisokotemperaturnyih lityih lopatok aviatsionnyih GTD. Mashinostroenie. http://webirbis.spsl.nsc.ru/irbis64r_01/cgi/cgiirbis_64.exe?Z21ID=&I21DBN=CAT&P21DBN=CAT&S21STN=1&S21REF=&S21FMT=fullwebr&C21COM=S&S21CNR=&S21P01=0&S21P02=0&S21LOG=1&S21P03=K=&S21STR=%D0%BB%D0%BE%D0%BF%D0%B0%D1%82%D0%BA%D0%B8
35 Kablov E.N., Toloraiya V.N. & Orehov N.G. (2002). Monokristallicheskie nikelevyie reniysoderzhaschie splavyi dlya turbinnyih lopatok. Metallovedenie i termicheskaya obrabotka metallov, 7, 2–5. https://viam.ru/sites/default/files/scipub/2002/2002-203529.pdf
36 Kablov E.N. (2005) Fiziko–himicheskie i tehnologicheskie osobennosti sozdaniya zharoprochnyih splavov soderzhaschih reniy (Vol. 46). Vestnik Moskovskogo universiteta, 3, 155–157. https://cyberleninka.ru/article/n/fiziko-himicheskie-i-tehnologicheskie-osobennosti-sozdaniya-zharoprochnyh-splavov-soderzhaschih-reniy
37 Petrushin N.V., Elyutin E.S., Chabina E.B. & Timofeeva O.B. (2008) O fazovyih i strukturnyih prevrascheniyah v zharoprochnyih reniysoderzhaschih splavah monokristallicheskogo stroeniya. Liteynoe proizvodstvo, 7, 2-6.
38 Kablov E.N., Petrushin N.V. & Morozova G.I. (2006) Fiziko-himicheskie faktoryi zharoprochnosti nikelevyih splavov, soderzhaschih reniy. Liteynyie zharoprochnyie splavy. Effekt S.T. Kishkina, Nauka, 116 – 130.https://www.livelib.ru/book/1000384468-litejnye-zharoprochnye-splavy-effekt-stkishkina-nauchno-tehnicheskij-sbornik-kablov-en
39 Morozova G.I., Timofeeva O.B. & Petrushin N.V. (2009) Osobennosti strukturyi i fazovogo sostava vyisokorenievogo nikelevogo zharoprochnogo splava. Metallovedenie i termicheskaya obrabotka, 2,10-16. http://www.foundrymag.ru/lp_2012_11bibl.html
40 Sidorov V.V., Rigin V.E. & Burtsev V.T. (2004) Osobennosti vyiplavki reniysoderzhaschih bezuglerodistyih zharoprochnyih splavov dlya litya monokristallicheskih lopatok GTD. Aviatsionnyie materialyi i tehnologi «Vyisokorenievyie zharoprochnyie splavyi, tehnologii i oborudovanie dlya proizvodstva splavov i litya monokristallicheskih turbinnyih lopatok GTD, VIAM, 72-80.
41 Kablov V.N, Petrushin N.V., Bronfin M.B. & Alekseyev A.A. (2006). Osobennosti monokristallichnskikh zharoprochnykh splavov, legirovannykh reniyem. Metally, 5. http://www.viam.ru/public.
42 Kablov V.N, Petrushin N.V., Vasilenok L.B. & Morozova G.I. (2000). Reniy v zharoprochnykh nikelevykh splavakh dlya lopatok gazovykh turbin. Materialovedeniye, 2, 23-29.
43 Toloraya V.N., Orekhov N.G. & Chuvarova Ye.N. (2012). Bezuglerodistyye reniysoderzhashchiye splavy dlya turbinnykh lopatok. Liteynoye proizvodstvo, 6, 16.
44 Petrushin N.V., Svetlov I.L., Samoylov A.I. & Timofeyeva O.B. (2008). Vysokotemperaturnyye fazovyye i strukturnyye prevrashcheniya v monokristallakh zharoprochnykh nikelevykh splavov, soderzhashchikh reniy i ruteniy. Materialovedeniye, 10, 13-18, 11, 26-31.
45 Svetlov I.L., Petrushin N.V., Golubovskiy Ye.R., Khvatskiy K.K. & Shchegolev D.V. (2008). Mekhanicheskiye svoystva monokristallov nikelevogo splava, soderzhashchego reniy i ruteniy. Deformatsiya i razrusheniye materialov, 11, 26-35. http://www.foundrymag.ru/mm_2013_01_bibl.html
46 Wahl J.B., Harris K. (2014). New Single Crystal Superalloys, CMSX-7 and CMSX-8 ASME. Turbo Expo 2014: Turbine Technical Conferenceand Exposition (p. 14) Manufacturing Materials and Metallurgy. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1908341
47 Pankratov V.A. (2007). Osobennosti legirovaniyasplavov dlya lit’ya s vysokoskorostnoy napravlennoy kristallizatsiyey. Liteynoye proizvodstvo, 12, 11-12. https://library.bmstu.ru/Catalog/Details/174654
48 Bykov YU.G., Zakharova T.P. & Monastyrskaya Ye.V. (2006). Mekhanicheskiye svoystva zharoprochnogo splava ZHS32 pri 1150-1250 ºC. Metallovedeniye i termicheskaya obrabotka metallov, 1, 38–40.
49 Kuznetsov V.P., Lesnikov V.P. & Konakova I.P. (2010). Struktura i svoystva zharoprochnogo nikelevogo splava ZHS-32VI. «Kvist».
50 Kuznetsov V.P., Lesnikov V.P. & Konakova I.P. (2010). Struktura, fazovyy sostav i prochnostnyye svoystva monokristallicheskogo nikelevogo splava, soderzhashchego tantal i reniy. Metallovedeniye i termicheskaya obrabotka metallov, 10, 28 – 31.
51 Sato A., Harada H. & Yen An C. (2008). In Superalloys 2008. R.C. Ree (Eds.) Publ. Of the Minerals, Metals & Materials Society (p. 131-138). Seven Springs Mountin Resort. https://www.tms.org/Meetings/specialty/superalloys2008/home.html
52 DeAntonio D.A., Duhl D., Howson T. & Rothman M.F. (1991). Heat Treating of Superalloys. Heat Treating, 4, 793–814. https://www.docsity.com/pt/asm-metals-handbook-volume-4-heat-treating/4759724/
53 Petrenya YU.K. & Nikitin V.I. (2002). Zadachi v oblasti razrabotki korrozionnostoykikh nikelevykh splavov. Tyazheloye mashinostroyeniye, 10, 47.
54 Nikitin V.I. (1987). Korroziya i zashchita lopatok gazovykh turbin. Mashinostroyeniye.
55 Nikitin V.I., Komissarova I.P. & Pigrova G.D. (1982). Osobennosti gazovoy korrozii splavov na nikelevoy osnove. Izvestiya AN SSSR, Metally, 5, 117.
56 Tolorayya V. N., Orekhov N. G. & Lomberg B. S. (2001). Korrozionno-stoykiye zharoprochnyye splavy dlya krupnogabaritnykh monokristal’nykh turbinnykh lopatok. Metallovedeniye i termicheskaya obrabotka metallov, FGUP VIAM, 1. 30-32.
57 Myal’nitsa G.F., Maksyuta I.I., Kvasnitskaya Yu.G., Mikhnyan Ye.V. & Neyma A.V. (2012). Polucheniye oriyentirovannoy struktury v otlivkakh iz zharoprochnogo nikelevogo splava, legirovannogo reniyem. Protsessy lit’ya, 6, 54-63.
58 Kuznetsov V.P., Lesnikov V.P., Inozemtsev A.A. & Koryakovtsev A.S. (2006). Monokristallicheskiy nikelevyy splav ZHS36VI: struktura, svoystva, primeneniye. Gazoturbinnyye tekhnologii, 3, 22-23.
59 Agal’tsova V.O., Kolyasnikova N.V. & Golovanenko S.A. (1998). Vliyaniye legiruyushchikh elementov na svoystva korrozionno-stoykikh zharoprochnykh monokristallicheskikh splavov na nikelevoy osnove. Metallovedeniye i termicheskaya obrabotka metallov, 3, 8-10.
60 Kuznetsov V.P., Lesnikov V.P., Konakova I.P., Popov N.A. & Kvasnitskaya Yu.G. (2015). Strukturnyye i fazovyye prevrashcheniya v monokristallicheskom nikelevom splave, legirovannom reniyem i ruteniyem, v usloviyakh ispytaniy na dlitel’nuyu prochnost’. Metallovedeniye i termicheskaya obrabotka metallov, 8, 55-59. https://elibrary.ru/item.asp?id=23801035
61 FTIMS NAN Ukrayiny (2014) Stvorennya tekhnolohichnykh osnov oderzhannya monokrystalichnykh lopatok HTD z vykorystannyam termostabilʹnykh modyfikovanykh vohnetryvkykh formuvalʹnykh materialiv 2011-2013 rr zvit NDR (№ DR 0110U007338).
62 Lashneva V.V., Kostenko A.D., Maksiuta I.I. & Kvasnytska Iu. G. (2014). Tribological properties of heat-resistant alloys for gas turbines. Proceedings of the International Conference: «Powder metallurgy: ITS current status and future», 74.
63 Maksyuta I.I., Kvasnytsʹka YU.H. & Simanovsʹkyy V.M. (2007). Optymizatsiya skladu zharomitsnohonikelevoho splavu dlya lytykh detaley hazoturbinnykh dvyhuniv. Metaloznavstvo ta obrobka metaliv, 4, 43-47.
64 Myalʹnytsya H.P., Maksyuta I.I., Kvasnytsʹka YU.H. & Mykhnyan O.V. (2013). Vybir lehuyuchoho kompleksu novoho koroziynostiykoho splavu dlya soplovykh lopatok HTD. Metaloznavstvo ta obrobka metaliv, 2, 29-34. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/MOM_2013_2_8.pdf
65 Maksyuta I.I., Kvasnitskaya YU.G. & Lashneva V.V. (2011). Tekhnologicheskiye protsessy polucheniya vysokorafinirovannykh meditsinskikh splavov na kobal’to-khromovoy osnove. Sovremennaya elektrometallurgiya, 3, 46-50.
66 Maksyuta I.I., Kvasnytsʹka YU.H. & Simanovsʹkyy V.M. (2008). Pryntsypy lehuvannya novykh kompozytsiy zharomitsnykh splaviv dlya enerhetychnykh HTD. Mizhnarodn. naukovo-tekhnichnoyi konferentsiyi «50 let v Akademyy nauk Ukrayny: «YLP, YPL, FTYMS – proshloe, nastoyashchee, budushchee», 160-162.
67 Seber Dzh. (1980). Lineynyy regressionnyy analiz. M.B Malyutova (Eds). Mir.
68 Novik F.S. & Arsov YA.B. (1980). Optimizatsiya protsessov tekhnologii metallov metodami planirovaniya eksperimentov. Mashinostroyeniye.
69 Petrushin N.V., Svetlov I.L. & Ospennikova O.G. (2012). Liteynyye zharoprochnyye splavy. Vse materialy. Entsiklopedicheskiy spravochnik. https://viam.ru/public/files/2012/2012-205998.pdf
70 Morinaga M., Yukawa N., Adachi H., Ezaki H. & Murata Y. (1984). New PHACOMP and its application to alloy design. In Superalloys 1984 (p. 523-532). The Metallurgical Society of AIME.
71 Zhang J.S. Matsugi K. & Murata Y. (1992). Evaluation of the Phase Stability of modified IN738LC Alloys with New PHACOMP. J. Mater. Sci. Lett., 11, 8, 444-448.
72 Gadalov V.N. (1991). Ispol’zovaniye programmy RHASOMP pri prognozirovanii fazovoy stabil’nosti zharoprochnykh splavov na nikel’khromovoy osnove. Materialy i uprochnyayushchiye tekhnologii 91 (p. 10-13).
73 Gayduk S.V. & Kononov V.V. (2015). Primeneniye CALPHAD metoda k raschetu fazovogo sostava liteynogo svarivayemogo zharoprochnogo korrozionnostoykogo nikelevogo splava s tantalum. Vesnik dvigatelestroyeniya, 1, 131-137. https://zp.edu.ua/kafedra?page=124
74 Tammann, G. (1920). Über Anlauffarben von Metallen. Zeitschrift für anorganische und allgemeine Chemie, 111 (1), 78-89.
75 Klyass O.V. & Kreshchenko V.A. (2004). Primeneniye metodiki fazovogo rascheta «RHASOMP» dlya prognozirovaniya prochnostnykh svoystv i kontrolya vydeleniya TPU-faz v lopatochnykh izdeliya GTG-110. Sbornik statey konferentsii v GP NPKG «Zorya»-«Mashproyekt», 91-94.
76 Maksyuta I.I., Kvasnytsʹka YU.H. & Neyma O.V. (2012). Otsinka stabilʹnosti zharomitsnykh splaviv z vykorystannyam rozrakhunkovoho metodu RHASOMP. «Lyteynoe proyzvodstvo: tekhnolohyy, materyaly, oborudovanye, ékonomyka y ékolohyya» (p. 190-191). FTYMS NANU.
77 Zhukov A.A. & Smirnova O.A. (2005). Otsenka ekspluatatsionnoy prigodnosti zharoprochnykh splavov dlya GTD i GTU. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 10, 60-66.
78 Gnatenko O.V., Gayduk S.V. & Naumik V.V. (2011). Prognozirovaniye strukturnoy i fazovoy stabil’nosti ekonomnolegirovannogo zharoprochnogo splava dlya otvetstvennykh otlivok. Vísnik Donbas’koí̈ derzhavnoí̈ mashinobudívnoí̈ akademíí̈, 4, 40-43.
79 Gayduk S.V. & Tikhomirova T.V. (2015). Primeneniye analiticheskikh metodov dlya rascheta khimicheskogo sostava γ-, γ’- faz i parametrov fazovoy stabil’nosti liteynykh zharoprochnykh nikelevykh splavov. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 9(126), 33-36.
http://nti.khai.edu:57772/csp/nauchportal/Arhiv/AKTT/2015/AKTT915/Gayduk.pdf
80 Kablov E.H., Petrushin N.V. & Svetlov I.L. (2006). Sovremennyye lityye nikelevyye zharoprochnyye splavy. Trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii posvyashchennoy 100-letiyu so dnya rozhdeniya akademika S.T. Kishkina (p. 39-55), VIAM.
81 Lubenets V.P., Kats E.L. Skorobagatykh V.N., Kuznetsov K.YU., Dub V.A. & Yakovlev Ye.I (2014). Zharoprochnyy splav na osnove nikelya dlya detaley goryachego trakta gazoturbinnykh ustanovok (Pat. № 2519075 RU S1).
82 Doshkarzh. I.P. (1979). Proizvodstvo tochnykh otlivok. Mashinostroyeniye.
83 Doroshenko V.S., Kvasnitskaya YU.G., Shinskiy O.Y., Klimenko S.I., Malyar V.A. & Shalevkaya I.A. (2016). Posledniye razrabotki Fiziko-tekhnologicheskogo instituta metallov i splavov NAN Ukrainy v oblasti lit’ya po gazifitsiruyushchim modelyam. Liteynoye proizvodstvo, 11, 34-39. https://elibrary.ru/item.asp?id=27487007
84 Maksyuta I.I., Kvasnytsʹka YU.H., Neyma O.V. & Mykhnyan O.V. (2016). Poluchenye otlyvok metodom kombynyrovanyya sposoba LVM y vyzhyhanyya. Materialy VIII Mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi «Novi materialy i tekhnolohiyi v mashynobuduvanni» (p. 92-93), KPI. https://foundry.kpi.ua/wp-content/uploads/2020/03/conferenziya_2016.pdf
85 Lashneva V.V., Maksyuta I.I., Kvasnitskaya YU.G., Mikhnyan Ye.V. & Neyma A.V. (2015) Ispol’zovaniye korundovykh form s vyzhigayemymi modelyami dlya polucheniya detaley gazoturbinnykh ustanovok. Sovremennyye problemy fizicheskogo materialovedeniya, 24, 53-60.http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=UJRN&P21DBN=UJRN&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=A=&S21COLORTERMS=1&S21STR=%D0%9C%D0%B0%D0%BA%D1%81%D1%8E%D1%82%D0%B0%20%D0%98$
86 Shinskiy O.I., Maksyuta I.I., Kvasnitskaya YU.G., Mikhnyan Ye.V. & Neyma A.V. (2016). Polucheniye slozhnoprofil’nykh detaley kombinirovannym sposobom lit’ya po vyplavlyayemym i vyzhigayemym modelyam. Lit’ye i metallurgiya, 3 (84), 31-37. https://lim.bntu.by/jour/article/view/1451
87 Skipidar zhivichnyy. Tekhnicheskiye usloviya. (2015). (GOST 1571-82). http://internet-law.ru/gosts/gost/13308/
88 Zhukov A.A. & Smirnova O.A. (2005). Otsenka ekspluatatsionnoy prigodnosti zharoprochnykh splavov dlya GTD i GTU. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 10, 60-66. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=aktit_2005_10_13
89 Avdyukhin S.P., Dub A.V., Kvasnitskaya YU.G., Kovalev G.D., Kul’mizev A.Ye., Lubenets V.P. & Skorobagatykh V.N. (2015). Zharoprochnyy splav na osnove nikelya dlya littya rabochikh lopatok gazoturbinnykh ustanovok. (Pat. 2542194 RU C22C19/05).
90 Lubenets V.P., Kats E.L., Dub A.V., Skorobagatykh V.N., Kul’mizev A.Ye. & Yakovlev Ye.I. (2014). Zharoprochnyy splav na osnove nikelya dlya lit’ya rabochikh lopatok gazoturbinnykh ustanovok. (Pat. 2525883 RU C22C19/05).
91 Avdyukhin S.P., Dub A.V., Kvasnitskaya YU.G., Kovalev G.D., Kul’mizev A.Ye., Lubenets V.P. & Skorobagatykh V.N (2015). Zharoprochnyy splav na osnove nikelya dlya lit’ya soplovykh lopatok s ravnoosnoy strukturoy gazoturbinnykh ustanovok. (Pat. 2542195 RU C22C19/00).
92 Yakovlev Ye.I. (2015). Issledovaniye i razrabotka protsessa napravlennoy kristallizatsii s okhlazhdeniyem form argonom dlya lit’ya krupnogabaritnykh lopatok gazovykh turbin. [Avtoref. dis. kand. tekhn. nauk]. https://www.dissercat.com/content/issledovanie-i-razrabotka-protsessa-napravlennoi-kristallizatsii-s-okhlazhdeniem-form-argono
93 AEROSPACE STANDARD SAE AS5491 (2000). https://www.sae.org/standards/content/as5491d/
94 British Standard HR100 Appendix Ais specified in some Material Specifications for wrought nickel base materials (N115 and N118) SPACE version 4 (Superalloy Phase Analysis Computation Engineering).
95 Montanari R., Tassa O. & Varone A. Early Instability Phenoma of IN 792 DS Superalloy. Materials Science Forum, ISSN 1662-9752, vol.879, p. 2026-2031. doi:10.4028/www.scientific.net/MSF.879.2026
96 Boguslayev V.A., Muravchenko F.M. & Zhemanyuk P.D. (2003). Tekhnologicheskoye obespecheniye ekspluatatsionykh kharakteristik detaley GTD. Lopatki turbiny, II. Monografiya, OAO «Motor Sich», 137-147. http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=EC&P21DBN=EC&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=I=&S21COLORTERMS=1&S21STR=%D0%92347177$
97 Myal’nitsa G.F., Maksyuta I.I., Kvasnitskaya YU.G., Mikhnyan Ye.V. & Neyma A.V. (2012). Obespecheniye fazovo-strukturnoy stabil’nosti vysokokhromistykh zharoprochnykh splavov dlya lopatok GTU. Metall i lit’ye Ukrainy, 11, 16-20.
98 Kuznetsov V.P., Lesnikov V.P. & Khadyyev M.S. (2012). Struktura i fazovyye prevrashcheniya v monokristallicheskom splave ZHS36-VI [001] posle vyderzhek v intervale temperatur 1050-1300ºC. Metallovedeniye i termicheskaya obrabotka metallov, 2, 38-44.
99 Petrushin N.V., Chabina Ye.B. & D’yachkova L.A (1996). Fazovaya stabil’nost’ monokristallov zharoprochnykh nikelevykh splavov Ni-Al-Cr-V-Ta-Mo. Metally, 3, 104-112.
100 J. Saida, M. Matsuhide & A. Inoue (2002). Stability of supercooled liquid and transformation behavior in Zr-based glassy alloys. Materials Transactions, 43, 8, 1937-1946. https://www.jstage.jst.go.jp/article/matertrans/43/8/43_8_1937/_article
101 L.Q.Xing, J. Eckert, W. Loser & L. Schultz (1999). High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr-Ti-Cu-Ni-Al amorphous alloys. Appl. Phys. Lett., 74, 5, 664-666.
102 Kovneristyy Yu.K. (2005). Ob`yemno-amorfiziruyushchiyesya metallicheskiye splavy i nanostrukturnyye materialy na ikh osnove. Metallovedeniye i termicheskaya obrabotka metallov, 7, 14-16.
103 Monastyrskaya Ye.V., Morozova G.I. & Vlasov Yu.B. (2006). Struktura, fazovyy sostav i svoystva korrozionnostoykogo zharoprochnogo splava CHS88U. Metallovedeniye i termicheskaya obrabotka metallov, 8, 39-44. https://viam.ru/sites/default/files/scipub/2006/2006-204528.pdf
104 Maksyuta I.I., Kvasnitskaya YU.G., Verkhovlyuk A.M. & Myal’nitsa G.F. (2016). Povysheniye resursnykh vozmozhnostey gazoturbinnykh ustanovok putem optimizatsii legiruyushchego kompleksa. Protsessy lit’ya, 4, 63-70. https://plit-periodical.com.ua/procesy-lyttya-no4-118-2016
105 GP NPKG «Zorya»-«Mashproyekt» (2014). Tekhnicheskiy otchet po teme «Issledovaniye opytnogo splava SM88MRT dlya rabochikh lopatok turbiny, rasschitannykh na dlitel’nuyu prochnost’ 34-39 kg/mm2 (T=900 ºS, t=100 ch) s privedeniyem tekhnologicheskikh issledovaniy», OOO «Turbomet».
106 Mykhnyan O.V. (2017). Oderzhannya tochnykh vylyvkiv z oriyentovanoyu strukturoyu zharomitsnykh splaviv v obolonkovykh formakh z termostiykoyi keramiky. [Avtoref. dys. kand. tekhn. Nauk]. Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=S&I21DBN=EC&P21DBN=UJRN&S21FMT=JwU_B&S21ALL=%28%3C.%3EU%3D%D0%9A263$%3C.%3E%29&Z21ID=&S21SRW=AVHEAD&S21SRD=DOWN&S21STN=1&S21REF=10&S21CNR=20
107 Verkhovlyuk A.M., Maksyuta, I.I., Kvasnytsʹka Yu.H., Myalʹnitsa H.P. & Mykhnyan O.V. (2016). Fazovo-strukturna stabilʹnistʹ zharomitsnoho koroziynostiykoho splavu dlya lytykh robochykh lopatok HTD. Metaloznavstvo ta obrobka metaliv, 3, 3-9. https://momjournal.com.ua/sites/default/files/3_10.pdf
108 Simanovsʹkyy V. M., Myalʹnitsa H. F., Maksyuta I. I., Kvasnytsʹka YU. H., Prytulyak A. S. & Mykhnyan O. V. (2011). Perspektyvy rozvytku tekhnolohiyi otrymannya detaley HTD z oriyentovanoyu strukturoyu. Tezysy dokladov «Lytʹe 2011», Promyshlennoho ynvestytsyonnoho foruma «Ynvestytsyy, yndustryya, ynnovatsyy» (p. 171-172). Zaporozh’ye.
109 Maksyuta Í.Í., Kvasnits’ka YU.G. & Mikhnyan O.V. (2013). Vliyaniye temperaturno-skorostnykh parametrov polucheniya oriyentirovannoy struktury na osobennosti makro- i mikrostruktury zharoprochnykh splavov. Sbornik tezisov dokladov ÍKH Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Lit’ye 2013» (p. 128-129). Zaporozh’ye.
110 Simanovsʹkyy V.M., Maksyuta I.I. & Kvasnytsʹka Yu.H. (2008). Otrymannya vysokorafinovanykh lytykh zahotovok z zharomitsnykh splaviv za dopomohoyu nyzʹkoshvydkisnoyi krystalizatsiyi. Mizhnarodna naukovo-tekhnichna konferentsiya «50 let v Akademyy nauk Ukrayny: «YLP, YPL, FTYMS – proshloe, nastoyashchee, budushchee» (p. 100-101). Kyiv.
111 Simanovskiy V.M., Maksyuta I.I., Kvasnitskaya YU.G., Pritulyak A.S. & Mikhnyan Ye.V. (2010). Teplofizicheskiye osobennosti formirovaniya struktury otlivok, poluchennykh metodom napravlennoy kristallizatsii. Protsessy lit’ya, 6, 8-13.
112 Narivskiy A.V., Maksyuta I.I., Kvasnitskaya YU.G. & Mikhnyan Ye.V. (2017). Primeneniye usovershenstvovannoy tekhnologii dlya polucheniya oriyentirovannoy struktury v vysokotochnykh otlivkakh iz zharoprochnogo splava, soderzhashchego reniy i tantal. Sovremennaya elektrometallurgiya, 4 (129), 37-43. https://patonpublishinghouse.com/sem/pdf/2017/pdfarticles/04/6.pdf
113 Maksyuta I.I., Kvasnitskaya Yu. G. & Mikhnyan Ye. V. (2017). Usovershenstvovaniye sposobov polucheniya otlivok s oriyentirovannoy strukturoy dlya rabochikh lopatok GTD. Protsessy lit’ya, 4, 66-74. https://plit-periodical.com.ua/procesy-lyttya-no4-124-2017
114 Simanovskiy V.M., Maksyuta I.I., Kvasnitskaya Yu.G., Pritulyak A.S. & Mikhnyan Ye.V. (2010). Protsessy formirovaniya oriyentirovannoy struktury litykh detaley v zharoprochnykh splavakh na nikelevoy osnove. Protsessy lit’ya, 3, 69-75
115 Maksyuta I.I., Kvasnytsʹka YU.H. & Mykhnyan O.V. (2011). Optymalʹni tekhnolohichni kryteriyi otrymannya oriyentovanoyi struktury zharomitsnykh splaviv. Materyaly nauchno-praktycheskoy konferentsyy-vystavky «Lyteynoe proyzvodstvo: tekhnolohy, materyaly, oborudovanye, ékonomyka y ékolohyya» (p. 176-178). FTYMS NAN Ukrayny.
116 GP NPKG «Zorya»-«Mashproyekt» (2011). Instruktsiya. Sistema kachestva. Tekhnicheskiye trebovaniya. Kontrol’ i pravila priyemki: TI NPKG-157-2011.
117 Gerasimov V.V. & Visik Ye.M. (2012). Polucheniye i svoystva monokristallicheskikh lopatok malogabaritnykh dvigateley. Liteynoye proizvodstvo, 1, 18-20.
118 Gell M., Duhl D.N. & Giamei A.F. (1980). The development of single crystal superalloy turbine blades. Superalloys, 205-214. https://www.semanticscholar.org/paper/The-Development-of-Single-Crystal-Superalloy-Blades-Gell-Duhl/77dcc74060cc0770f6fa1f7b32b79b0c0049c5fd
119 Broomfield R.W., Ford D.A., Bhangu J.K., Thomas M. C., Frasier D. J., Burkholder P. S., Harris K., Erickson G. L., & Wahl J. B. (1998). Development and turbine performance of three advanced rhenium containing superalloys for single crystal and directionally solidified blades and vanes. Journal of Engineering for Gas Turbines and Power, 120(7):595. https://www.osti.gov/biblio/665380
120 Harris K., Erickson G.L., Sikkenga S.L., Brentnall W.D., Aurrecoechea J.M., & Kubarysh K.G. (1992). Development of the Rhenium containing superalloy CMSX-4&CM186LC for single crystal blade and directionally solidified vane applications in advanced turbine engines. Superalloys, 297-306. https://www.tms.org/Superalloys/10.7449/1992/Superalloys_1992_297_306.pdf
121 Pustovgarov Yu.L. (2004). Monokristallicheskoye lit’ye lopatok TVD kak sposob povysheniya ekspluatatsionnoy nadezhnosti privoda AL-31ST. Gazoturbinnyye tekhnologii, 30-34. https://cyberleninka.ru/article/n/monokristalicheskoe-litie-lopatok-turbiny-gtd
122 Semenov V.I. (2011). Vliyaniye termodinamicheskikh faktorov na formirovaniye struktury zatverdevayushchey otlivki. Liteyshchik Rossii, 10, 37-40.
123 Kablov Ye.N., Bondarenko Yu.A. & Yechin A.B. (2017). Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom. Aviatsionnyye materialy i tekhnologii, 3, 24-38. https://cyberleninka.ru/article/n/razvitie-tehnologii-napravlennoy-kristallizatsii-liteynyh-vysokozharoprochnyh-splavov-s-peremennym-upravlyaemym-temperaturnym
124 Monastyrskiy V.P. (2016). Razvitiye metodov modelirovaniya protsessov zatverdevaniya olivok s napravlennoy i ravnoosnoy strukturoy [Avtoref. dis. d- ra tekhn. nauk]. Moskva.
125 Mal’tseva Yu.Yu. & Monastyrskiy A.V. (2010). Modelirovaniye protsessa napravlennoy kristallizatsii otlivok iz zharoprochnykh splavov. Liteynoye proizvodstvo, 1, 19-22.
126 Bondarenko Yu.A., Yechin A.B., Surova V.A. & Narskiy A.R. (2012). Vliyaniye usloviy napravlennoy kristallizatsii na strukturu detaley tipa lopatki GTD. Liteynoye proizvodstvo, 7. https://viam.ru/public/files/2012/2012-206011.pdf
127 Gayduk C.B., Kononov V.V., Petrik I.A. & Nalesnyy N.B. (2005). Vliyaniye skorosti kristallizatsii i termicheskoy obrabotki na strukturu i svoystva monokristallov zharoprochnykh nikelevykh splavov. Vestnik dvigatelestroyeniya, 1, 150–153.
128 Kalyukin Yu.N. (2007). Sovremennyye metody upravleniya kristallizatsiyey turbinnykh lopatok iz zharoprochnykh splavov. Gazoturbinnyye tekhnologii, 5, 6-11.
129 Monastyrskiy V.P. & Logunov A.V. (1984). Ob upravlenii protsessom napravlennoy kristallizatsii. Fizika i khimiya obrabotki materialov, 4, 60-66.
130 Svetlov I.L., Kuleshova Ye.A., Monastyrskiy V.P., Toloraiya V.N., Krivko A.I., Pankratov V.A., Orekhov N,G., Bashashkina Ye.V. & Golovko B.A. (1990). Vliyaniye napravlennoy kristallizatsii na fazovyy sostav i dispersnost’ struktury nikelevykh splavov. Metally, 1, 86-93.
131 Tolorayya V.N., Aleshin I.N. & Ostroukhova G.A. (2012). Lit’ye soplovykh lopatok metodom vysokogradiyentnoy napravlennoy kristallizatsii. Liteynoye proizvodstvo, 6, 17-20.
132 Yeliseyev YU.S., Golanov S.P. & Moiseyev V.S. (2010). Sovershenstvovaniye metoda lit’ya lopatok GTD s napravlennoy kristallizatsiyey. Liteyshchik Rossii, 10, 25-28.
133 Kablov. Ye. (2000). Proizvodstvo turbinnykh lopatok GTD metodom napravlennoy kristallizatsii. Gazoturbinnyye tekhnologii, 10-13. https://viam.ru/sites/default/files/scipub/2000/2000-203008.pdf
134 Rybkin, V. A. (2010). Napravleniya razvitiya spetsial’nykh sposobov lit’ya. Liteynoye proizvodstvo, (4), 36-40.
135 Yeliseyev, Yu. S. Perspektivnyye tekhnologii proizvodstva lopatok GTD.
http://engine.aviaport.ru/issues/17/page04.html
136 Koroleva, M. M., Lobashev, O. G., & Shevelev, Yu. P. (2001). Optimizatsiya rezhimov vysokoskorostnoy napravlennoy kristallizatsii gazoturbinnykh lopatok, Liteynoye proizvodstvo. (2), 24-26.
137 Tsatsulina, I. Ye. (2000). Kontseptsiya superskorostnoy napravlennoy kristallizatsii zharoprochnykh splavov, Liteynoye proizvodstvo(10), 24-25.
138 Azhazha, V. M., Sverdlov, V. Ya., Ladygin, A. N., Boguslayev, A. V., Klochikhin, V. V., & Lysenko, N. A. Perspektivnyye napravleniya v sovershenstvovanii struktury monokristallicheskikh lopatok gazoturbinnykh dvigateley. http://ptsm.donntu.org/arhiv%20nambe/36%20pdf/003-009.pdf
139 Visik, Ye. M., Kablov, Ye. N., Gerasimov, V. V., & Dubrovskiy, V. A. (1995). Reglamentirovannaya tonkostolbchataya struktura – neispol’zovannyy rezerv vysokoskorostnoy napravlennoy kristallizatsii. Liteynoye proizvodstvo,(12), 7-8.
140 Neustroyev A. A., & Kats E. L. (1980). Issledovaniye teplofizicheskikh parametrov vysokogradiyentnoy napravlennoy kristallizatsiyey lopatok iz zharoprochnykh splavov, V MATI (pp74–79). Moskva.
141 Ivanov, V. N., Kazenov, S. A., & Kurchman, B. S. (1984). Lit’ye po vyplavlyayemym modelyam (Ya.I. Shklennik & Ozerov, Eds.V.A.). Mashinostroyeniye.
142 Ivanina, Ye. S., & Batyshev, K. A. (2017). Modernizatsiya ustanovki UVNK-8P dlya napravlennoy kristallizatsii otlivok iz Ni-zharoprochnykh splavov. Liteynoye proizvodstvo, (1), 34-36.
143 Denisov, A, Savin, V, Zelentsov, A., & Avdyukhin, S. (2000). Monokristallicheskiye turbinnyye lopatki. Gazoturbinnyye tekhnologii, (5-6), 24-25.
144 Bondarenko, Yu. A., Kablov, Ye. N., & Demonis, I. M. (2007). Vysokogradiyentnaya napravlennya kristallizatsiya lopatok GTD s monokristallicheskoy strukturoy. Gazoturbinnyye tekhnologii, (4), 26-30.
145 Bondarenko, Yu. A., Kablov, Ye. N., Surova, V. A., & Yechin, A. B. (2006). Vliyaniye vysokogradiyentnoy napravlennoy kristallizatsii na strukturu i svoystva reniysoderzhashchego monokristallicheskogo splava // Metallovedeniye i termicheskaya obrabotka metallov,(8), 33-35.
146 Petrushin, N. V., Osipennikova, O. G., Visik, Ye. M., Rassokhina, L. I., & Timofeyeva, O., B. (2012). Zharoprochnyye nikelevyye splavy nizkoy plotnosti. Liteynoye proizvodstvo, (6), 5-11.
147 Kalyukin, Yu. N., Timofeyev, A. V., & Sokolova, S. M. (2008). Napravlennaya kristallizatsiya zharoprochnykh splavov s melkostolbchatoy strukturoy na ustanovkakh tipa UVNK 9P s zhidkometallicheskim okhladitelem. Liteyshchik Rossii, (1), 19-20.
148 Tolorayya, V. N., Kablov V.N., & Svetlov I.L. (2006). Rostovaya tekstura pri napravlennoy kristallizatsii nikelevykh zharoprochnykh splavov // Metallovedeniye i termicheskaya obrabotka metallov, (8), 25-32. https://viam.ru/sites/default/files/scipub/2006/2006-204526.pdf
149 Stroganov, G. B., Logunov, A. V., Gerasimov, V. V., & Kats, E. L. (1983) Vysokoskorostnaya napravlennaya kristallizatsiya zharoprochnykh splavov. Liteynoye proizvodstvo, (12), 20-22.
150 Neustroyev, A. A., & Matveyeva, O. V. (2001). Temperaturno-skorostnyye parametry vysokoskorostnoy napravlennoy kristallizatsii. Liteynoye proizvodstvo, (8), 29.
151 Bazyleva, O. A., Belyayev, A. A., Visik, Ye. M., & Shvanova, N. F. (2012). Vliyaniye kristallograficheskoy oriyentatsii otlivok iz splava tipa VKNA na soprotivleniye malotsiklovoy ustalosti. Liteynoye proizvodstvo, (1), 21-30.
152 Yelenevskiy, D. S., & Pavlinich, S. P. (2011). Vliyaniye azimutal’noy kristallograficheskoy oriyentatsii monokristallicheskikh lopatok turbin nazemnikh GTD na ikh soprotivleniye obrazovaniyu treshchin v ekspluatatsii. Gazoturbinnyye tekhnologii, (10), 34-38.
153 Zhemanyuk, P. D, Yatsenko, V. K., Rubel’, O. V., & Orlov, M. R. (2002). Reglamentatsiya vybora KGO lopatok turbiny, poluchennykh metodom napravlennoy kristallizatsii. Vestnik dvigatelestroyeniya,(1), 157-164.
154 Petrushin, N. V., Svetlov, I. L., & Osipennikova, O. G. (2012). Liteynyye zharoprochnyye nikelevyye splavy.
155 Yepishin, A. I., Svetlov, I. L., & Bryukner, U. G. (1999). Vysokotemperaturnaya polzuchest’ monokristallov nikelevykh zharoprochnykh splavov s oriyentatsiyey [001] // Materialovedeniye, (5), 32–42.
156 Pozdnyakov, A. N., Monastyrskiy, V. P., Yershov, M. Yu., & Monastyrskiy, A. V. (2015). Modelirovaniye konkurentnogo rosta pri napravlennoy kristallizatsii nikelevogo zharoprochnogo splava. Fizika metallov i metallovedeniye, 116(1), 67-75.
https://www.researchgate.net/publication/282245750_Analysis_of_Competitive_Grains_Growth_Conditions_in_Helix_During_Directional_Solidification_of_Ni-base_Superalloy
157 Pikunov, M. V., Sidorov, Ye. V., Belyayev, I. V., & Rastegayev, V. S. (1997).O vyrashchivanii monokristallov chistykh metallov i polucheniye otlivok so stolbchatoy i monokristallicheskoy strukturoy.Liteynoye proizvodstvo,(6), 8.
158 Petukhov, A. (2004). Ob osobennostyakh razrusheniya monokristallicheskikh lopatok. Dvigatel'(6). http://engine.aviaport.ru/issues/36/page18.htm
159 Grankin, S. S., & Sverdlov, V. Ya. (2008). Issledovaniye gradiyenta temperatury na fronte kristallizatsii monokristallov Ni-W – splavov. Voprosy atomnoy nauki i tekhniki, Seriya: Vakuum, chistyye materialy, sverkhprovodniki, (1), 162–165. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2008_1/article_2008_1_162.pdf
160 Konter, M., Kats, E., & Hofmann N. (2000). Аnovel casting process for single crystal gas turbine components. Superalloys,189-200.
161 Pat. 6311760US, B22D27/04, – Publ. 06.11.2001.
162 Gerasimov, V. V., Kablov, Ye. N., & Demonis, I. M. (2000). Ustroystvo dlya polucheniya otlivok s napravlennoy i monokristallicheskoy strukturoy (Patent № 2152844 RU).
163 Spiridonov, Ye. V., & Tsatsulina, Ye. V. (2000). Sposob izgotovleniya napravlennoy kristallizatsiyey detali s monokristallicheskoy strukturoy i ustroystvo dlya yego osushchestvleniya. (Patent № 2157296 RU).
164 Toloraiya, V. N., Kablov, Ye. N., & Orekhov, N. G. (2001). Sposob polucheniya otlivok s napravlennoy i monokristallicheskoy strukturoy i ustroystvo dlya yego osushchestvleniya (Patent № 2211746 RU).
165 Chyrkin, A., Sloof, W. G., Pillai, R., Galiullin, T., Grüner, D., & Quadakkers, W. J.(2015). Modelling compositional changes in nickel base-alloy 602 CA during high temperature oxidation. Materials at high temperatures, 32 (1-2), 102-112.
166 Yakovlev, Ye. I. (2015). Issledovaniye i razrabotka protsessa napravlennoy kristallizatsii s okhlazhdeniyem form argonom dlya lit’ya krupnogabaritnykh lopatok gazovykh turbin. [Avtoref. dis. kand. tekhn. nauk, moskovskiy institut aviatsionnykh materialov].https://www.dissercat.com/content/issledovanie-i-razrabotka-protsessa-napravlennoi-kristallizatsii-s-okhlazhdeniem-form-argono
167 Kats, E., L., Lubenets, V. P., Skorobogatykh, V. N., Kuznetsov, K. Yu.,Yakovlev, Ye. I., Vinogradov, A. I., Berestevich, A. I., Kopin, P. A., & Zhabrev, S. B.(2014). Sposob polucheniya olivki lopatki gazovoy turbiny s napravlennoy i monokristallicheskoy strukturoy(Patent № 2536853 RU).
168 Hopgood, A. A., Nicholls, A. G., Smith, D. W., & Martin, J. W.(1992).Effekts of heat treatment on phase chemistry and microstructure of singl crystal nickel base superalloy Mater. Science and Technology,4(12), 146-156.
169 Zhitkova, S. B., & Kreshchenko, V. A. (2004). Vliyaniye rezhimov termicheskoy obrabotki monokristallicheskikh lopatok iz splava CHS88-VI na morfologiya strukturnikh sostavlyayushchikh. Sudovoye i energeticheskoye gazoturbostroyeniye 2(70-73). NPKG «Zorya»-«Mashproyekt».
170 Godovanets, M. A., Prusakov, B. A., & Lysenko I. I. Regeneriruyushchaya termicheskaya obrabotka lopatok iz zharoprochnykh nikelevykh splavov. Metallovedeniye i termicheskaya obrabotka metallov, (5), 16-20.
171 Lysenko, N. A., Klochikhin, V. G., Dolgov, B. V. & Tsivirko, E. I.(1997).Razrabotka rezhima gomogenizatsii zharoprochnogo nikelevogo splava, poluchennogo metodom vysokoskorostnoy napravlennoy kristallizatsii. Metallovedeniye i termicheskaya obrabotka metallov,(1), 25-27.
172 Veksler, YU. G., Maslakova, T. M., Lesnikov, V. P., Kukhtin, M. V., & Bogayevskiy, V. V.(1985). Strukturnyye prevrashcheniya pri nagreve zharoprochnogo liteynogo nikelevogo splava KHN62MKVBTYU Metallovedeniye i termicheskaya obrabotka metallov,(10). 26-28.
173 Markovskiy, Ye. A., Mikhnyan, Ye. V., Kvasnitskaya, Yu. G.; Simanovskiy, V. M., & Myal’nitsa, G. F.(2013). Issledovaniye vliyaniya temperaturno-vremennoy obrabotki zharoprochnogo splava CHS70 na yego svoystva Protsessy lit’ya,(1), 51-55.
174 Avdyukhin, S. P., Dub, A. V., Kvasnitskaya, Yu. G., Kovalev G. D., Kul’mizev A. Ye., Lubenets V. P., Myal’nitsa G. F., & Skorobagatykh V. N. (2015). Zharoprochnyy splav na osnove nikelya dlya izgotovleniya lopatok gazoturbinnykh ustanovok i sposob yego termicheskoy obrabotki (Patent № 2539643 RU).
175 Kvasnitskaya, Yu. G., Klyass, O. V., & Kreshchenko V. A. (2004). Optimizatsiya rezhimov termicheskoy obrabotki krupnogabaritnykh olivok iz splava CHS88U-VI dlya robochikh lopatok izdeliya GTG-110. Sudovoye i energeticheskoye gazoturbostroyeniye 2(91-95). NPKG «Zorya»-«Mashproyekt».
176 Simanovskiy, V. M., Mikhnyan, Ye. V., Kvasnitskaya, Yu. G., & Markovskiy, Ye. A.(2010).Vliyaniye temperaturno-vremennoy obrabotki na svoystva zharoprochnogo splava Perspektivnyye tekhnologii, materialy i oborudovaniye v liteynoy industrii(p.69-70).
177 Maksyuta, I. I., Kvasnitskaya, Yu. G., Mikhnyan, Ye. V., & Neyma, O. V. (2012). Osobennosti termoobrabotki zharoprochnogo splava s oriyentirovannoy strukturoy, Lit’ye 2012 1(p. 163-165). Prom.-investitsionnogo foruma «Investitsii, industriya, innovatsii». http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/30298/1/Litye_Metallurgiya_2012.pdf
178 Maksyuta, I. I.; Klyass, O. V.; Kvasnitskaya, Yu. G., Myal’nitsa, G. F. & Mikhnyan, Ye. V. (2014). Tekhnologicheskiye osobennosti vysokokhromistogo nikelevogo splava, kompleksno-legirovannogo reniyem i tantalom. Sovremennaya elektrometallurgiya, (1), 41-48. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=sovele_2014_1_7
179 Petrushin, N. V., & Cherkasova, Ye. R. (1993). Zavisimost’ temperatur fazovikh prevrashcheniy i struktury zharoprochnykh nikelevykh splavov ot temperatury nagreva rasplavov. Metallovedeniye i termicheskaya obrabotka metallov, (1), 22-25.
180 Maksyuta, I. I., Kvasnytsʹka, Yu. H., Mykhnyan, O. V., & Neyma, O. V. (2013). Osoblyvosti termoobroblennya zharomitsnoho nikelevoho splavu z oriyentovanoyu strukturoyu Metaloznavstvo ta obrobka metaliv, (4), 59–63. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=MOM_2013_4_12
181 Khryashchev, I. I. (2017). Razrabotka ekonomnolegirovannogo nikelevogo zharoprochnogo splava dlya monokristallicheskogo littya robochikh lopatok GTD [Avtoref. dis. kand. tekhn. nauk, Rybinskiy gosudarstvennyy aviatsionnyy tekhnicheskiy universitet imeni P.A. Solov’yeva].
182 Maksyuta, I. I., Kvasnitskaya, Yu. G., Verkhovlyuk, A. M., & Myal’nitsa, G. F. (2016). Povysheniye resursnykh vozmozhnostey gazoturbinnykh ustanovok putem optimizatsii legiruyushchego kompleksa. Protsessy lit’ya, (4), 63-70. https://plit-periodical.com.ua/procesy-lyttya-no4-118-2016
183 Kofstad P. (1988). High temperature oxidation. Elsevier Applied Science: London and New York, 558 p.. https://onlinelibrary.wiley.com/doi/abs/10.1002/maco.19880390713
184 Young D. J. (2008). High temperature oxidation and corrosion of metals. Elsevier: Oxford, 592 p. https://www.elsevier.com/books/high-temperature-oxidation-and-corrosion-of-metals/young/978-0-08-044587-8
185 Young D. J., Burg M. L., & Munroe P. R. (2004) Internal precipitation of Al2O3 and Cr2O3 in austenitic alloys. In High Temperature Corrosion and Protection of Materials (6), Prt 1 and 2, Proceedings, 461-464.
186 Young, D. J., & Gleeson B. (2002). Alloy phase transformations driven by high temperature corrosion processes. Corrosion Science, 44 (2), 345-357. https://www.sciencedirect.com/science/article/abs/pii/S0010938X01000658
187 Akhtar, A., Hegde, S., & Reed, R. C. (2006). The oxidation of single-crystal nickel-based superalloys. Journal of Materials JOM, 58 (1), P. 37-42. https://link.springer.com/article/10.1007/s11837-006-0066-0
188 Chyrkin, A., Pillai, R., Ackermann, H., Hattendorf, H., Richter, S., Nowak, W., Grüner, D., & Quadakkers, W.J. (2015). Modeling carbide dissolution in alloy 602 CA during high temperature oxidation. Corrosion Science, (96), 32-41. https://www.infona.pl/resource/bwmeta1.element.elsevier-98c33c77-0316-3a77-93de-fe597c2b8417
189 Dmitriyeva, G. P., Kostyrko, O. S., Maksyuta, I. I., Razumova N. A., & Shurin, A. K. (1987). Vysokotemperaturnaya solevaya korroziya nikel’-karbidnykh evtekticheskikh splavov. Zashchita metallov, (2), 20-25.
190 Oryshich, I. (1986). O kinetike i mekhanizme vysokotemperaturnoy korrozii zharoprochnykh splavov na nikelevoy osnove. Aviatsionnaya promyshlennost’, (1), 57-59.
191 Danilov, D.V. (2015). Razrabotka vysokozharoprochnogo nikelevogo splava s povyshennoy korrozionnoy stoykost’yu v usloviyakh vozdeystviya morskoy solevoy sredy dlya monokristallicheskikh lopatok GTU [Avtoref. dis. kand. tekhn. nauk, Rybinskiy gosudarstvennyy aviatsionnyy tekhnicheskiy universitet imeni P.A. Solov’yeva].https://www.dissercat.com/content/razrabotka-vysokozharoprochnogo-nikelevogo-splava-s-povyshennoi-korrozionnoi-stoikostyu-v-us
192 Kvasnytsʹka, Yu., Klyass O.V., Kreshchenko V.A., Myalʹnitsa, H., Maksyuta, I., & Shynsʹkyy, O. (2016). Zharomitsnyy koroziynostiykyy splav na nikeleviy osnovi dlya lopatok hazoturbinnykh dvyhuniv (Patent № 110529 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=219233
193 Samedov, A., & Usubaliyev, T. (2008). Kompleksnaya metodika vybora sostava zashchitnykh pokrytiy dlya lopatok gazovykh turbin. Dvigateli i yenergoustanovki aerokosmicheskikh letatel’nykh apparatov, (2), 73-77. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=aktit_2008_2_13
194 Gayduk, S., Gnatenko, O., Andriyenko, A., & Naumik, V. (2012). Issledovaniye strukturnykh prevrashcheniy zharoprochnykh nikelevykh splavov v usloviyakh polzuchesti. Novi materialy i tekhnolohiyi v metalurhiyi ta mashynobuduvanni, (2), 37-40. http://irbis-nbuv.gov.ua/publ/REF-0000388159
195 Metally. (2018). Metody opredeleniya zharostoykosti (ГОСТ 6130-71). Derzhspozhyvstandart Ukrayiny
196 Sistema kachestva. (2000). Splavy zharostoykiye i pokrytiya. Metod ispytaniy na vysokotemperaturnuyu solevuyu korroziyu (I ZHAKI 105.506-2000). Nikolayev: GP NPKG «Zorya»-«Mashproyekt».
197 Kvasnitskaya, Yu. (2016). Korrozionnnyye svoystva zharoprochnykh splavov na osnove nikelya. Protsessy lit’ya, (3), 55-62. https://plit-periodical.com.ua/procesy-lyttya-no3-117-2016
198 Balyts’kyi, O. I., Kvasnytska, Yu. H., Ivaskevych, L. M. & Mialnitsa, H. P. (2018). Corrosion and hydrogen resistance of heatproof blade nickel-cobalt alloys. Materials Science, 54(2), 289–294. https://doi.org/10.1007/s11003-018-0178-z
199 Maksyuta, І. I. Kvasnitskaya YU.G., Verkhovlyuk A.M. (2016). Issledovaniye stoykosti k korrozii v vysokotemperaturnom gazo-solevom potoke zharoprochnykh nikelevykh splavov., LIT’Ye-2016 (p. 155-157). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. http://repository.kpi.kharkov.ua/handle/KhPI-Press/30304
200 Reising, R. F. (1977). High temperature corrosion of nickel by sodium Sulffat Corrosion.(33), 84-91.
201 Balytsʹkyy, O. I., Kvasnytsʹka, Yu. H., Ivasʹkevych, L. M., & Myal’nitsa, H. P. (2018). Koroziyna ta vodneva tryvkistʹ zharomitsnykh lopatkovykh nikelʹ-kobalʹtovykh splaviv. Fizyko-khimichna mekhanika materialiv, 54(2), 89-97.https://doi.org/10.1007/s11003-018-0178-z.
202 Kvasnitskaya, Yu. G., Maksyuta, I. I., & Myal’nitsa, G. F. (2016). Povysheniye stoykosti k vysokotemperaturnoy korrozii zharoprochnykh splavov kak rezerv vozrastaniya resursnykh vozmozhnostey gazoturbinnykh dvigateley. Metall i lit’ye Ukrainy, (5), 3-7. https://steelcast.com.ua/metal-ta-lyttya-ukrayiny-no5-2016
203 Kvasnitskaya, Yu. G., Maksyuta, I. I., & Verkhovlyuk, A. M. (2016). Ispytaniya na stoykost’ k vysokotemperaturnoy korrozii zharoprochnykh splavov na nikelevoy osnove dlya lopatok gazoturbinnykh dvigateley, Novi materialy i tekhnolohiyi v mashynobuduvanni (p. 68–69). Natsionalʹnyy tekhnichnyy universytet Ukrayiny “Kyyivsʹkyy politekhnichnyy instytut imeni Ihorya Sikorsʹkoho”. http://metalcasting.kpi.ua/2016/paper/viewFile/4290/933
204 Balitskii, A. I., Kvasnitska, Y. H., Ivaskevich, L. M., & Mialnitsa H. P. (2018). Hydrogen and corrosion resistance of Ni-Co superalloys for gasturbine engines blades. Archives of Materials Science and Engineering, 91(1), 5 – 14. https://doi.org/ 10.5604/01.3001.0012.1380
205 ASM handbook (1991), Volume 4 (с. 793–814). Heat Treatment Copyright.
206 Boguslayev, V., Repyakh, S., Mogilatenko, V., Ivchenko, Z., Matveyeva, M., Lekhovitser, Z., & Proydak, Y. (2016). У S. Repyakh & V. Mogilatenko (Ред.), Liteynyye svoystva metallov i splavov dlya pretsizionnogo lit’ya (p. 228-234). http://books.zntu.edu.ua/book_info.pl?id=319407
207 Stepanov, V.M., Shayev, O.V., & Trefilov, A.F. (1981). Issledovaniye vozmozhnosti primeneniya mullito-karborundovykh tigley dlya littya lopatok GTD na pechakh UPPF. Aviatsionnyye materialy. Progressivnyye protsessy lit’ya okhlazhdayemykh lopatok, (6), 16-19.
208 Kuromitsu, Y., Yoshida, H., Takebe, H., & Morinaga K.. (1997). Interaction between Alumina and Binary Glasses. Journal of the American Ceramic Society, 80(6), 1583 – 1587.
209 D. Yong Lee, Dae-Joon Kim, Bae-Yeon Kim & Yo-Seung Song. (2003). Effect of aluminaparticle size and distributionon in filtration rate and fracture toughness of alumina–glass composites prepared by melt in filtration. Materials Science and Engineering, 341(1 – 2), 98–105.
210 Chen, E., & Buyukozturk, O. (1985). Modeling of Long Term Corrosion Behavior of Refractory Linings in Slagging Gas fiers. American Ceramic Society Bulletin, 64(7), 995–1000.
211 Kaynarovskiy, I., Degtyareva, E., & Orlova, I. (1981). Korundovyye ogneupory i keramika. Metallurgiya.
212 Degtyareva, E. V., Skorodumova, Ye. B., & Prasko, A. S. (1980). Sposob podgotovki shikhty na osnove glinozema (Patent № А.с. 717009 SSSR)
213 Dabizha, A.A., & Pliner S.Yu. (1986). Uprochneniye keramicheskikh materialov za schet fazovogo perekhoda ZrO2. Ogneupory, (2), 23-29.
214 Gogotsi, Yu.G., Grigor’yev, O.N., & Orlovskaya, N.A. (1989). Uprochnennaya keramika na osnove Al2O3. Ogneupory, (2), 11-13.
215 Hurenko, L.P. (2005). Enerhozberihayucha tekhnolohiya otrymannya vohnetryvkykh materialiv systemy Al2O3 – SiO2 – Cr2O3 iz samotverdiyuchykh mas. Integrirovannyye tekhnologii i energosberezheniye, (2), 140-144.
216 Smirnov, V.V., Andrianov, V.T., & Lukin, Ye.S. (1994). Struktura i prochnost’ korundovoy keramiki s dobavkami, soderzhashchimi komponenty s nizkim poverkhnostnym natyazheniyem. Ogneupory, (2), 14-18.
217 Lukin, Ye.S., Vlasov, A.S., & Makarov, N.A. (2004). Ogneupory na osnove oksida alyuminiya i díoksida tsirkoniya. Novyye ogneupory, (14), 37-38.
218 Senchenko, G. D., Kolesnichenko, L. P., & Derevyanko, G. D. (1980). Shikhta dlya izgotovleniya ogneupornykh izdeliy (Patent № А.с. 717008 SSSR)
219 Prakticheskoye primeneniye mullitovykh ogneuporov v agregatakh, dlya plavki i razlivki spetssplavov(1988). Mekkoni gidzyutsu nyusu, (435), 3-4.
220 Kao, D., Dong, Sh. Yu., & Chang, M. (2002). Vliyaniye slozhnykh dobavok na svoystva periklazoshpinel’nykh kirpichey. Refractories, (6), 204-206.
221 Nemets, I. I., Zagoskin, V. T., Vysotskiy, D. A., & Kondakov, P. D. (1973). Shikhta dlya izgotovleniya ogneuporov (Patent № А.с. 393248 SSSR)
222 Tonkov, V. N., Dolotov, G. P., & Kondakov, Ye. A. (1978). Ogneupornaya massa (Patent № А.с. 620460 SSSR)
223 Bratukhin, A. G., YAzov, G. K., & Karasev, B. Ye.(Red). (1997). Sovremennyye tekhnologii v proizvodstve gazoturbinnykh dvigateley. Mashinostroyeniye.
224 Tyagunov, A. G. (1998). Vliyaniye vysokotemperaturnoy obrabotki rasplava na strukturu i svoystva zharoprochnykh nikelevykh splavov v litom i termoobrabotannomsostoyaniyakh [Avtoref. dis. kand. tekhn. nauk,]. https://www.dissercat.com/content/vliyanie-vysokotemperaturnoi-obrabotki-rasplava-na-strukturu-i-svoistva-zharoprochnykh-nikel
225 Kvasnytsʹka, Yu., Maksyuta, I., Myalʹnitsa, H., Shynsʹkyy, O., Verkhovlyuk, A., & Mykhnyan, O.(2013). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv (Patent № 77848 UA) https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=183830
226 Repyakh, S. (2006). Tekhnologicheskiye osnovy lit’ya po vyplavlyayemym modelyam. Lira LTD.
227 Kablov, Ye., Deyev, V., & Bondarenko, Yu. (2003). Beskremnezemnyye keramicheskiye formy dlya napravlennoy kristallizatsii pri lit’ye lopatok GTD. Liteynoye proizvodstvo, (5), 16-18.
228 Pisarev, I. (1993). Povysheniye kachestva otlivok i effektivnosti lit’ya pri optimizatsii tekhnologicheskikh faktorov izgotovleniya obolochkovykh form i keramicheskikh sterzhnem [Avtoref. d–ra tekhn. nauk, MGTU] Repozytariy MGTU.
229 Boguslayev, V., Repyakh, S., Mogilatenko, V., Ivchenko, Z., Matveyeva, M., Lekhovitser, Z., & Proydak, Y. (2016). У S. Repyakh & V. Mogilatenko (Ред.), Liteynyye svoystva metallov i splavov dlya pretsizionnogo lit’ya (p. 235–239). http://books.zntu.edu.ua/book_info.pl?id=319407
230 Yefimov, V. (1991). Spetsial’nyye sposoby lit’ya. Mashinostroyeniye.
231 Shatul’skiy, A. (2001). Razvitiye teorii zapolneniya rasplavom form lit’ya po vyplavlyayemym modelyam i sredstv upravleniya formirovaniyem mikrostruktury otlivok tipa «Lopatka» iz zharoprochnykh splavov. [Avtoref. d–ra tekhn. nauk, Rybinskiy gosudarstvennyy aviatsionnyy tekhnicheskiy universitet imeni P.A. Solov’yeva]. https://www.dissercat.com/content/razvitie-teorii-zapolneniya-rasplavom-form-litya-po-vyplavlyaemym-modelyam-i-sredstv-upravle
232 Kulakov, B., Aleksandrov, V., & Dubrovin, V. (1992). Povysheniye kachestva otlivok, poluchayemykh metodom napravlennoy kristallizatsii. Liteynoye proizvodstvo, (4), 16-18.
233 Gelszinnus, G., Liesch, G., & Horn G. (1992). Dinderlösung für die Herstellung keramischer Maskenformer (Patent № 299047 DRD)
234 Parshukova, N. (2001). Povysheniye tekhnologicheskikh svoystv keramicheskikh form v lit’ye po vyplavlyayemym modelyam. Liteynoye proizvodstvo, (10), 21-23.
235 Vandermeer, J. (2001). Investment casting mold and method of manufacture (Patent № 6257316 USA)
236 Shklennik, Ya., & Ozerov, V. (1984). Lit’ye po vyplavlyayemym modelyam. Mashinostroyeniye.
237 Ozerov, V., Garanin, V., & Ivanova, V. (1994). Lit’ye po vyplavlyayemym modelyam. Mashinostroyeniye.
238 Savel’yev, Yu., Gribanov, A., & Kucherenko, V. (2005). Opyt primeneniya plavlenogo kvartsa v LVM. Liteyshchik Rossii, (10), 31-33.
239 Lesnikov, A., Roshan, N., & Shklennik, L. (1992). Plavlenyy kvarts v lit’ye po vyplavlyayemym modelyam U Metody kontrolya i issledovaniy v proizvodstve otlivok po vyplavlyayemym modelyam (s. 95-98). TSRDZ.
240 Bryukhanova, Ye., & Golotenkov, O. (2013). Sovershenstvovaniye tekhnologii izgotovleniya keramicheskikh form dlya lit’ya korrozionnostoykikh staley. Liteyshchik Rossii, (7), 23-24.
241 Simanovskiy, V., Shevchenko, B., & Smirnov, S. (1984). Nekotoryye osobennosti tekhnologii primeneniya plavlenogo kvartsa pri lit’ye po vyplavlyayemym modelyam. U Sovershenstvovaniye protses tochnogo lit’ya i ikh intensifikatsiya (s. 47-50). TSRDZ.
242 Martynov, K., Yemel’yanov, V., & Brechko, A. (2006). Osobennosti formirovaniya struktury i poverkhnostnogo kontaktnogo sloya keramicheskikh form na osnove ETS-40 i Sialit-20S. Liteyshchik Rossii, (2), 24-27.
243 Garanin, V., Murkina, A, & Lokhankin, A. (1992). Metodika kontrolya gotovykh etilsilikatnykh svyazuyushchikh i vybor ikh dlya razlichnykh metodov sushki. U Metody kontrolya i issledovaniy v proizvodstve otlivok po vyplavlyayemym modelyam (s. 28-30). TSRDZ.
244 Chulkova, A., Ivanov, V., & Yakovleva, G. (1989). Metodika kontrolya kachestva etilsilikata U Povysheniye kachestva i effektivnosti lit’ya po vyplavlyayemym modelyam (s. 33-35). MDNTP.
245 Nikiforov, S., Terent’yev, N., & Gilevich, I. (2000). Suspenziya dlya izgotovleniya obolochkovykh form v lit’ye po vyplavlyayemym modelyam (Patent № 2146983 RU)
246 Karpovich, Yu., Demonis, I., & Panina, M. (1995). Suspenziya dlya form po vyplavlyayemym modelyam (Patent № А.с. 1656761 SSSR)
247 Ozerov, V., & Murkina, A. (1992). Metod otsenki kachestva gidrolizovannykh rastvorov etilsilikata 40. U Metody kontrolya i issledovaniy v proizvodstve otlivok po vyplavlyayemym modelyam (s. 30-33). TSRDZ.
248 Petrov, V., Telesh, V., & Yevstigneyev, A. (1992). Sposob kontrolya kachestva ETS-40. U Metody kontrolya i issledovaniy v proizvodstve otlivok po vyplavlyayemym modelyam (s. 26–28). TSRDZ.
249 Ivanov, V., Graber, I., & Zheleznyakov, L. (1997). Ispol’zovaniye kolloidal’nogo kremnezema dlya form dlya lit’ya po vyplavlyayemym modelyam. Liteynoye proizvodstvo, (5), 32-34.
250 Vasin, Yu., Nikiforov, S., & Bortnikov, M. (1992). Svyazuyushchiye kompozitsii na osnove zhidkogo kolloidnogo kremnezema. У Tekhnologiya polucheniya i primeneniya novykh materialov poroshkovoy metallurgii i mashinostroyenii(s.143-147). RAN DVO. Institut mashinovedeniya i metallurgii.
251 Lassow, E., Strabel, G., & Koziol K. (2001). Method of casting with improved detestability of subsurface inclusions (Patent № 6237671 USA)
252 Malygin Yu. (1995). Sposob izgotovleniya keramicheskikh form po udalyayemym modelyam (Patent № 204895 RU)
253 Shmagina, S., Shlenev, Yu., & Tsepova, V. (2001). Sposob izgotovleniya litykh keramicheskikh form, poluchayemykh po vyplavlyayemym modelyam (Patent № 2177856 RU)
254 Greskovich, Ch (2007). Method for making investment casting molds for casting superalloys (Patent № 4026344 USA)
255 Kablov, Ye., Demonis, I., Deyev, B., & Narskiy, A. (2008). Suspenziya dlya keramicheskikh form po vyplavlyayemym modelyam (Patent № 2332278 RU)
256 Garanin, V., Murkina, A., & Baranov, D. (1993). Povysheniye kachestva form, izgotovlennykh metodom vakuumno-ammiachnoy sushki. Tez. dokl. nauchn.-tekhn. konf.(p.93)
257 Pisarev I. & Pisarev O. (1995). Sposob izgotovleniya obolochkovykh form po vyplavlyayemym modelyam(Patent № 2033292RU).
258 Zamkovoy, V. (2005). Udoskonalennya protsesiv formuvannya vnutrishnʹoyi porozhnyny okholodzhuvanykh lopatok GTD [Avtoref. kand. tekhn. nauk, Ukrayisʹkyy naukovo-doslidnyy instytut aviatsiynykh tekhnolohiy]. Repozytariy UNDIAT. http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=S&I21DBN=ARD&P21DBN=ARD&S21FMT=JwU_B&S21ALL=%28%3C.%3EU%3D%D0%9E551.41$%3C.%3E%29&Z21ID=&S21SRW=TIPVID&S21SRD=&S21STN=1&S21REF=10&S21CNR=20
259 Simanovskiy, V., Malashonok, N., & Kreshchuk, N. (1984). Kompozitsii dlya izgotovleniya sterzhnem pri lit’ye fasonnykh modeley metodom tochnogo lit’ya. У Sovershenstvovaniye protsessov tochnogo lit’ya i ikh intensifikatsiya (pp. 44–47).
260 Odarchenko, I., & Prusenko, I. (2015). Upravleniye kachestvom liteynykh sterzhney i vnutrennikh poverkhnostey otlivok. Liteynoye proizvodstvo, 78(1), 12-16.
261 Kurenkova, O. (1998). Vodnyye etilsilikatnyye svyazuyushchiye v lit’ye po vyplavlyayemym modelyam. Sb. tez. dokl. Vserosiysk. molodezhn. konferentsii (с. 93–94).
262 Bennison, S., & Harmer, M (1983). Microstructural Studies of normal Grain Grow the Development in Al2O3. Ceramic Powders, Elsevier Scientific (1), 929-938.
263 Budnikov, P. (1968). Tekhnologiya keramiki i ogneuporov. Promstroyizdat.
264 Kingeri, U. (1964). Vvedeniye v keramiku. Stroyizdat.
265 Ogneupory. (1995) Metod opredeleniya kazhushcheysya plotnosti, otkrytoy i obshchey poristosti, vodopogloshcheniya (GOST 2409-95). Derzhstandart Ukrayiny.
266 Simanovsʹkyy, V. (2008). Teoriya ta tekhnolohiya modyfikuvannya formuvalʹnykh sumishey dlya vylyvkiv zi spetsialʹnykh splaviv [Avtoref. d–ra tekhn. nauk, Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny].
267 Yefimov G. (1980). Novyye perspektivnyye termostoykiye i vysokoplotnyye shamotne materialy dlya ispol’zovaniya v razlivochnykh ustroystvakh. У Progressivnyye sposoby polucheniya stal’nykh slitkov. Kiyev: IPL AN USSR.
268 Yefimova, V., Yefimov, G., Simanovskiy, V., Maksyuta, I., Kvasnitskaya, Yu., & Shaban, V. (2011). Povysheniye ustoychivosti ogneupornykh materialov k rasplavam zharoprochnykh splavov. Protsessy lit’ya, (1), 23-27. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/114947/04-Efimova.pdf?sequence=1
269 Simanovskiy, V., Maksyuta, I., Kvasnytsʹka, Y., & Pritulyak, A. (2013). Tekhnologiya i materialy dlya tochnogo lit’ya zharoprochnykh i tugoplavkikh splavov. У Lit’ye 2007.
270 Simanovsʹkyy V.M., Kvasnytsʹka YU.H., Maksyuta I.I., Yefimova V.H., &Havrylyuk V.P. (2007). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv (Patent № 25749 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=101585
271 Simanovsʹkyy, V. Kvasnytsʹka, Yu., Maksyuta, I., Yefimova, V., Havrylyuk, V., & Ukrayinetsʹ, O. (2007). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv (Patent № 25427 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=108905
272 Simanovsʹkyy, V., Kvasnytsʹka, Yu., Maksyuta, I., Yefimova, V., Simanovsʹkyy, A., & Mykhnyan, O. (2013). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv (Patent № 46164 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=183830
273 Kvasnytsʹka YU.H., Maksyuta I.I., Myalʹnitsa H.P., Shynsʹkyy O.Y., Verkhovlyuk A.M., & Mykhnyan O. (2013). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv (Patent №77848 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=183830
274 Kvasnytsʹka, Yu., Maksyuta, Yu., Myalʹnitsa, H., Shynsʹkyy, O., Verkhovlyuk, A., & Mykhnyan, O. (2013). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv (Patent № 79678 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=186319
275 Simanovsʹkyy, V., Maksyuta, I., Kvasnytsʹka, Y., Prytulyak, A., & Mykhnyan, O. (2009). Zastosuvannya suchasnykh vohnetryvkykh sumishey pry otrymanni lytykh vyrobiv z pretsyziynykh splaviv. У Perspektivnyye tekhnologii, materialy i oborudovaniye v liteynom proizvodstve (183-186). Donbasʹka derzhavna mashynobudivna akademiya.
276 Maksyuta, I., Kvasnytsʹka, Y., & Mykhnyan, O. (2013). Vohnetryvka masa dlya vyhotovlennya plavylʹnykh tyhliv. У Perspektivnyye tekhnologii, materialy i oborudovaniye v liteynom proizvodstve (150-152). Donbasʹka derzhavna mashynobudivna akademiya.
277 Kablov, Ye., Deyev, V., & Bondarenko, Yu. (2003). Beskremnezemnyye keramicheskiye formy dlya napravlennoy kristallizatsii pri lit’ye lopatok GTD. Liteynoye proizvodstvo, (5), 16-18.
278 Kaynarovskiy, I., Degtyareva, E., & Orlova, i. (1981). Korundovyye ogneupory i keramika. Metallurgiya.
279 Degtyareva, E., Boyarina, I., & Skorodumova, Ye. (1982). Svoystva korundovoy vysokoogneupornoy keramiki so steklofazoy i ikh vliyaniye na sherokhovatost’ poverkhnosti posle mekhanicheskoy obrabotki. Ogneupory, (2), 92-99.
280 Karaulov, A., Gal’chenko, T., & Chudnova, N. (1997). Ogneupory iz díoksida tsirkoniya, modifitsirovannogo metallom. Ogneupory i tekhnicheskaya keramika, (4), 31-33.
281 Bobkova, N., & Semchenko, D. (2007). Fizicheskaya khimiya tugoplavkikh nemetallicheskikh i silikatnykh materialov Fizicheskaya khimiya. Vyshaja shkola. https://elib.belstu.by/handle/123456789/11987
282 Tret’yakov, Yu., & Putlyayev, V. (2006). Vvedeniye v khimiyu tverdofaznykh materialov. Nauka. https://obuchalka.org/20210513132365/vvedenie-v-himiu-tverdofaznih-materialov-uchebnoe-posobie-tretyakov-u-d-putlyaev-v-i-2006.html
283 Pat. 5921310 US, B22D27/ 04. – Publ. 13.07.1999.
284 Stromberg, A., & Semchenko, D. (1999). Fizicheskaya khimiya. Vyshaja shkola.
285 Proskurovskaya, L., Khabas, G., Il’in, A., & Ikrin, V. (1988). Aktivirovannoye spekaniye oksida alyuminiya dobavkami sverkhtonkikh metallicheskikh poroshkov. Vysokotemperaturnaya khimiya silikatov i oksidov (с. 47–49).
286 Leushina, L., Ul’yanov, V., & Nishchenkov, A. (2013). Innovatsionnyye tekhnicheskiye resheniya povysheniya treshchinostoykosti obolochkovykh form lit’ya po vyplavlyayemym modelyam. Teoriya i tekhnologiya metallurgicheskogo proizvodstva, 1 (13), 48-49.
287 Pavlyukevich, Yu., Machuchko, S., & Shaban, V. (2014). Termodinamicheskiy analiz obrazovaniya mullita v keramicheskikh massakh. Mekhanika i tekhnologii, (1), 92-99.
288 Simanovsʹkyy, V. (2006). Obosnovaniye vybora modifikatorov dlya liteynykh keramicheskikh form i sterzhney. Metall y lytʹe Ukrainy, (9-10), 31-32.
289 Sobolev, V. (1978). Issledovaniye i sovershenstvovaniye etilsilikatnykh svyazuyushchikh i form dlya lit’ya po vyplavlyayemym modelyam [Avtoref. dis. kand. techn.nauk].
290 Primachenko, V., Kolesnikov, A., & Tkachenko, S. (1992). Shikhta dlya izgotovleniya korundovykh ogneupornykh izdeliy (Патент № А.с. 1715772 SSSR).
291 Grivko, V., Lachkov, Yu., Dubrovin, V., & Gorev, L. (1997). Shikhta dlya proizvodstva korundovykh ogneupornykh materialov(Patent № 2090813 RU)
292 Savel’yev, Yu., Gribanov, A., & Kucherenko, V. (2005). Opyt primeneniya plavlenogo kvartsa v LVM. Liteyshchik Rossii, (10), 31-33.
293 Chechetkin, L., Podol’skiy, M., & Nezametdinov, Kh. (1974). Keramicheskaya massa dlya izgotovleniya sterzhney (Patent № А.с. 435048 SSSR).
294 Kulakov, B., Znamenskiy, L., Dubrovin, V., Kulakov, A., & Kochetova, G. (1997). Smes’ i sposob izgotovleniya liteynykh keramicheskikh sterzhney (Patent № 2098220 RU)
295 Simanovsʹkyy, V. (2006). Tekhnologiya i materialy form i sterzhney dlya polucheniya litykh lopatok GTD. Metall y lytʹe Ukrainy, (6), 47–48.
296 Shevchenko, V., Simanovskiy, V., & Malashonok, N. (1982). Smes’ dlya izgotovleniya ogneupornykh liteynykh sterzhney (Патент № А.с. 933174 SSSR).
297 Gelszinnus, G., Liesch, G., & Horn, G. (1992). Dinderlösung für die Herstel lungkeramischer Masken former (Patent № 299047 DRD).
298 Ganeyev, A., Demenok, O., Mamleyev, R., Pavlinich, S., Demenok, A., & Kulakov, B. (2017). Vybor i optimizatsiya khimicheskogo i fraktsionnogo sostava sterzhnya dlya pustotelykh lopatok. Bulletin of the South Ural State University. Ser., 17(3), 54–63. https://cyberleninka.ru/article/n/vybor-i-optimizatsiya-himicheskogo-i-fraktsionnogo-sostava-sterzhney-dlya-pustotelyh-lopatok
299 Ivanov, A., Nasekan, Yu., Peychev, G., Kalashnikov, G., Litvin, V., Zamkovoy, V., Klochikhin, V., Medvedev, V., Sevas’yanov, V., & Kolyada, V. (1992). Sposob udaleniya korundovykh sterzhney iz vnutrennikh polostey izdeliy Patent № А.с. 1491162 SSSR).
300 Sapchenko, I., Zhilin, S., & Shtern, M. (2005). Tochnost’ udalyayemykh modeley i kachestvo obolochkovykh form v lit’ye po vyplavlyayemym modelyam. Liteynoye proizvodstvo, (2), 20-22.
301 Poklad, V., Ospennikova, O., Orlov, M., & Sudinin, M. (2006). Tekhnologiya udaleniya keramicheskikh sterzhney iz okhlazhdayemykh lopatok gazoturbinnykh dvigateley. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 35(9), 24–30.
302 Yagodnikov, D., & Gusachenko, Ye. (2004). Eksperimental’noye issledovaniye dispersnosti kondensirovannykh produktov sgoraniya aerovzvesi chastits alyuminiya. Fizika goreniya i vzryva, 40(2), 33-41.
303 Kulakov, B., Dubrovin, V., Martynov, K., & Kulakov, A. (1997). Izgotovleniye legkoudalyayemykh keramicheskikh sterzhney modelyam. Liteynoye proizvodstvo, (4), 35-36.
304 Denisov, A., Savin, V., Zelentsov, A., & Avdyukhin, S. (2000). Monokristallicheskiye turbinnyye lopatki. Gazoturbinnyye tekhnologii, (5-6), 24–26.
305 Orlov, M., Bykov, Y., Zamkovyy, E., & Hasyk, L. (2002). Sklad rechovyny dlya vyhotovlennya keramichnykh stryzhniv (Patent Ukrayiny № 46881 UA). https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=20965
306 Judd, J. (1991). Investment cast air foil core shell lock and method of casting (Patent № 5050665USA)
307 Svetlov, I., Folomeykin, Yu., & Kablov, Ye. (2005). Sposob lit’ya polykh okhlazhdayemykh izdeliy i litoye poloye okhlazhdayemoye izdeliye (Patent № 2252109 RU)
308 Rybkin, V. (1997). Osnovnyye napravleniya razvitiya lit’ya po vyplavlyayemym modelyam. Liteynoye proizvodstvo, (6), 19-21.
309 Simanovskiy, V., Maksyuta, I., & Kvasnytsʹka, Y. (2007). Tekhnologicheskiye osobennosti polucheniya otlivok iz zharoprochnykh splavov. Protsessy lit’ya, (6), 71-76.
310 Simanovsʹkyy V.M., Kvasnytsʹka Yu.H., Yefimova V.H., Yefimov G. & Maksyuta I.I. (2006). Sumish dlya vyhotovlennya lyvarnykh form (Patent Ukrayiny № 18889 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=96697
311 Simanovsʹkyy, V., Maksyuta, I., Kvasnytsʹka, Y., Mikhnyan, Ye., & Neyma, A. (2011). Osnovnyye trebovaniya k formovochnym materialam dlya polucheniya detaley s oriyentirovannoy strukturoy Visnyk Donbasʹkoyi derzhavnoyi mashynobudivnoyi akademiyi, (4), 139-141. http://www.dgma.donetsk.ua/docs/kafedry/tolp/publication/tolpkonf/%D1%82%D0%B5%D0%B7%D0%B8%D1%81%D1%8B2011.pdf
312 Arlyuk, B. I. (1966). O termodinamicheskom analize tverdofaznykh reaktsiy obrazovaniya dvoynykh soyedineniy. Zhurnal prikladnoy khimii, 34, 454–455.
313 Maksyuta, I., Kvasnytsʹka, Y., Verkhovlyuk, A., Mikhnyan, Ye & Levchenko, Y. (2017). Vzaimodeystviye komponentov v sisteme «oksid – modifikatory» v korundovoy formovochnoy keramike dlya detaley s oriyentirovannoy strukturoy. Metall i lit’ye Ukrainy, (8-10), 43-49. http://dspace.nbuv.gov.ua/handle/123456789/163231
314 Tkachenko, S., Yemel’yanov, V., Martynov, K., & Kuznetsov, R. (2018). O formirovanii kontaktnoy poverkhnosti pri lit’ye po vyplavlyayemym modelyam. Liteynoye proizvodstvo, (1), 35-37.
315 Denisov, M. (2000). Razrabotka sostavov keramicheskikh suspenziy i issledovaniye svoystv obolochkovykh form dlya lit’ya po vyplavlyayemym modelyam na osnove metallofosfatnykh svyazuyushchikh kompozitsiy [Avtoref. dis. kand. techn.nauk]. https://www.dissercat.com/content/razrabotka-sostavov-keramicheskikh-suspenzii-i-issledovanie-svoistv-obolochkovykh-form-dlya-
316 Simanovsʹkyy, V., Volʹsʹka, V., Prach, T., & Shynsʹkyy, O. (2001). Suspenziya dlya vyhotovlennya lyvarnykh form po modelyam, shcho vplavlyayutʹsya (Patent Ukrayiny № 37036 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=60667
317 Simanovsʹkyy, V., Maksyuta, I., Kvasnytsʹka, Y., Pritulyak A., & Levchenko, Yu. (2010). Usovershenstvovaniye materialov keramicheskikh form, sterzhney i fil’trov dlya polucheniya litykh detaley gazoturbinnykh dvigateley Visnyk Donbasʹkoyi derzhavnoyi mashynobudivnoyi akademiyi, 3(20), 239- 242.
http://www.dgma.donetsk.ua/science_public/ddma/2010-3-20/article/10SVMPCP.pdf
318 Simanovsʹkyy, V., Maksyuta, I., Kvasnytsʹka, Y., & Levchenko, Yu. (2008). Modifitsirovannyye formovochnyye smesi dlya izgotovleniya otlivok i iz zharoprochnykh splavov. Liteynoye proizvodstvo, (9), 14-16.
319 Verkhovlyuk, A. (2014). Vzaimodeystviye zhidkikh i tverdykh faz v metallurgicheskikh protsessakh. Naukova dumka.
320 Simanovsʹkyy, V., Maksyuta, I., Kvasnytsʹka, Y., Prytulyak, A., & Levchenko, Y. (2009). Keramicheskiye sterzhni i fil’truyushchiye elementy dlya lit’ya okhlazhdayemykh lopatok GTD. Protsessy lit’ya, (1), 43–47. http://dspace.nbuv.gov.ua/handle/123456789/114096
321 Simanovsʹkyy, V., Kvasnytsʹka, Y., Shynsʹkyy, O., Maksyuta, I., Sushkov, M., & Yefimova, V. (2008). Sumish dlya vyhotovlennya lyvarnykh keramichnykh stryzhniv (Patent Ukrayiny № 82603 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny.
https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=3403
322 Simanovsʹkyy, V., Volʹsʹka, V., Prach, T., & Shynsʹkyy, O. (2001). Sumish dlya vyhotovlennya lyvarnykh keramichnykh stryzhniv (Patent Ukrayiny № 37037A UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny.
https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=84452
323 Simanovskiy, V., Maksyuta, I., Kvasnitskaya, Y., Yefimova, V., Mikhnyan, Y., & Neyma, A. (2011). Keramicheskiye sterzhni na osnove kvartsa dlya slozhnoprofil’nykh otlivok s oriyentirovannoy strukturoy. Liteynoye proizvodstvo: tekhnologii, materialy, oborudovaniye, ekonomika i ekologiya (с. 248–250). FTIMS NAN Ukrainy.
324 Simanovsʹkyy V.M., Kvasnytsʹka Yu.H., Yefimova V.H., Maksyuta I.I., Sushkov M.O., & Rzhevytsʹkyy M.Ye. (2007). Sumish dlya vyhotovlennya lyvarnykh keramichnykh stryzhniv(Patent Ukrayiny № 80076 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=4632
325 Maksyuta, I., Kvasnytsʹka, Y., Verkhovlyuk, A., Myalʹnitsa, H., & Lakhnenko, V. (2013). Sumish dlya vyhotovlennya lyvarnykh keramichnykh stryzhniv (Patent Ukrayiny № 79421 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=186062
326
Maksyuta, I., Kvasnytsʹka, Y., Shynsʹkyy, O., Myalʹnitsa, H., & Havrylyuk, V. (2013). Sumish dlya vyhotovlennya lyvarnykh keramichnykh stryzhniv (Patent Ukrayiny № 79420 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny.https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=186061
327
Simanovsʹkyy, V., Maksyuta, I., Kvasnytsʹka, Y., Prytulyak, A., & Levchenko, Y. (2008). Vdoskonalennya tekhnolohichnoho protsesu vyhotovlennya keramichnykh stryzhniv dlya okholodzhuvanykh lopatok GTD. Metall y lytʹe Ukrainy, (11-12), 42–45.
328 Maksyuta, I., Kvasnitskaya, Yu., Mikhnyan, E., & Neyma, A. (2014). Povysheniye tochnosti slozhnoprofil’nykh otlivok pri primenenii kompleksno-modifitsirovannoy sterzhnevoy keramiki. Metall i lit’ye Ukrainy, (4), 33–37.
http://dspace.nbuv.gov.ua/handle/123456789/159669?show=full
329 Ivashchenko, Y. N., Bogatyrenko, B. B., & Yeremenko, V. N. (1963). K voprosu poverkhnostnogo natyazheniya zhidkosti po razmeram lezhashchey kapli. AN USSR.
330 Babushkin, V., Matveyev, G., & Mchedlov-Petrosyan, O. (1986). Termodinamika silikatov. Stroi. Izdat.
331 Verkhovlyuk, A. (2002). Mezhfaznoye vzaimodeystviye zharoprochnogo nikelevogo splava s oksidami. Adgeziya rasplavov i payka materialov, (35), 80-84.
332 Simanovsʹkyy, V., Kvasnytsʹka, Y., Myalʹnitsa, H., Havrylyuk, V., Maksyuta, I., & Mykhnyan, O. (2011). Suspenziya dlya vyhotovlennya lyvarnykh form po modelyakh, shcho vyplavlyayutʹsya (Patent Ukrayiny № 63715 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=164960
333 Kvasnitskaya, Y. (2009). Otsenka stepeni vzaimodeystviya zharoprochnogo nikelevogo splava s materialom formy pri vakuumnoy vyplavke. Metall i lit’ye Ukrainy., (3), 31–32. http://dspace.nbuv.gov.ua/handle/123456789/31564
334 Verkhovlyuk, A. M. (1985). Poluavtomaticheskaya ustanovka dlya issledovaniya kinetiki rastvoreniya. Adgeziya rasplavov i payka materialov, (15), 45–48.
335 Vitusevich, V., Verkhovlyuk, A., Grishchenko, V., Biletskiy, A., & Shumikhin, V. (1989). Ustroystvo dlya provedeniya elektrokhimicheskikh issledovaniy v khimicheski aktivnykh rasplavakh (Patent № А.с. 1491162 SSSR)
336 Maksyuta, I., Kvasnitskaya, Yu & Simanovskiy, V. (2007). Povysheniye koeffitsiyenta ispol’zovaniya otkhodov zharoprochnykh splavov metodami elektrometallurgii. Sovremennaya elektrometallurgiya, (1), 51–55.
337 Sidorov, V. (1989). Vozdeystviye primesey i poverkhnostno-aktivnykh dobavok na formirovaniye struktury i svoystva vysokozharoprochnykh liteynykh splavov [Avtoref. dis. doct. techn. nauk]. Moskovskiy institut aviatsionnykh materialov.
338 Sidorov, V., Goryunov, A & Kosenkov, O. (2018). . Osnovnyye polozheniya metallurgii liteynykh zharoprochnykh splavov. Liteynoye proizvodstvo, (6), 6–11.
339 Sistema kachestva. (2001). Splavy zharoprochnyye liteynyye dlya lopatok gazovykh turbin (Pasport splavov CHS70VI, CHS88UVI, CHS88VI, CHS104VI, EK9VI (I ZHAKI 105.509-2001). Nikolayev: GP NPKG «Zorya»-«Mashproyekt».
340 Kondrat’yev, A., & Popov, V. (1990). Vozmozhnosti fil’truyushchego rafinirovaniya metallov i trebovaniya k ogneuporam fil’truyushchim elementam. Ogneupory, (7), 13–19.
341 Selivanov, Y., & Azarov, E. (1991). Fil’try dlya vysokotemperaturnykh rasplavov. Liteynoye proizvodstvo, (12), 11–12.
342 Ten, E. (2000). Vklad liteyshchikov MISiS v razvitiye teorii i tekhnologii fil’tratsionnogo rafinirovaniya zhidkikh metallov. Liteynoye proizvodstvo, (9), 11–13.
343 Brockmeyer, J., & Aubrey, L. (1987). Application of ceramic foam filter in molten metal filtration. Ceramic Eng. Sci.Proc, 8(1-2), 63–67.
344 Staroverov, Y., & Chernov, Y. (1992). Primeneniye penokeramicheskikh fil’trov v liteynom i staleplavil’nom proizvodstve za rubezhom. Ogneupory, (1), 38–40.
345 Ali, S., Martharasan, R., & Apelia, D. (1985). The clianing steels by filtration. Metallurgical Transactions, 168(4), 725–742.
346 Ten, E.B.(1996). Raschet fil’tra pri rafinirovanii zhidkikh metallov. Liteynoye proizvodstvo(8). 13-15.
347 Kallisch, W., Stotzel, R, Reitzscher, R(1992). Keramik zum Filtrieren von Metalls chmelzen (Patent № 679748SW)
348 Hoshino, K., Kunisaki, T., & Seto, H. (1999). Filter medium for molten metals Metal melting crucible (Patent № 5998322USA)
349 Mogilevskiy, Y., & Burtsev, Y. (2000). Tekhnologiya izgotovleniya i ispytaniye keramicheskikh fil’trov dlya rafinirovaniya pretsizionnykh splavov. Ogneupory i tekhnicheskaya keramika, (1), 43–45.
350 Suvorov, S., Smil’nitskiy, A., & Dolgushev, N. (1995). Sposob izgotovleniya ogneupornogo fil’tra (Patent № 2136432 RU)
351 Krasnyy, B., Tarasovskiy, V., & Kislyakov, A. (2007). Sposob izgotovleniya fil’truyushchey penokeramiki (Patent № 2304568 RU).
http://www.findpatent.ru/patent/230/2304568.html
352 Kvasnytsʹka YU.H., Maksyuta I.I., Shynsʹkyy O.Y., Myalʹnytsya H.P., Verkhovlyuk A.M., & Mykhnyan O.V.(2014) Sumish dlya vyhotovlennya pinokeramichnykh filʹtriv (Patent № 2304568 UA). Fizyko-tekhnolohichnyy instytut metaliv ta splaviv NAN Ukrayiny. https://uapatents.com/4-90425-sumish-dlya-vigotovlennya-pinokeramichnikh-filtriv.html
353. Simanovskiy V.M., Yefimov G.V., Maksyuta I.I., Kvasnitskaya Yu.G., Pritulyak A.S., & Yefimova V.G.(2008) Puti povysheniya kachestva ogneupornykh materialov dlya staleplavil’nogo proizvodstva. Protsessy lit’ya, (3.), 31–34. http://dspace.nbuv.gov.ua/xmlui/bitstream/handle/123456789/49843/02-Simanovsky.PDF?sequence=1
354. Maksyuta I. I. Kvasnitskaya Yu. G., Mikhnyan E. V., & Neyma A.V. (2013). Primeneniye keramicheskikh fil’trov pri vyplavke zagotovok iz zharoprochnykh splavov. Protsessy lit’ya, (4.), 69–74.
355. Kvasnitskaya Yu. G. (2009). Osobennosti povysheniya kachestva litykh detaley gazoturbinnykh dvigateley. Protsessy lit’ya, (4.), 50–55. http://dspace.nbuv.gov.ua/handle/123456789/31658