Groundwater purification methods using elements of iron and manganese biogeochemical cycles

Authors:

Dmytro Volodimirovich Charnyi – Leading researcher of the Department of Nuclear Physics Technologies Institute of Environmental Geochemistry of the National Academy of Sciences of Ukraine Doctor of Engineering Sciences  defended a thesis on specialty Agricultural Melioration (Engineering Sciences). Academic title of Senior Researcher in Agricultural Reclamation (Engineering Sciences); State Institution “The institute of Environmental Geochemistry of National Academy of Sciences of Ukraine”: Kyiv, Ukraine, Chief Researcher of the Department of Water Supply and Sewerage of the Institute of Water Problems and Land Reclamation of National Academy of Agrarian Sciences of Ukraine, Kyiv, Ukraine.

https://orcid.org/0000-0001-6150-6433

ResearcherID: AAG-8741-2020

Scopus Author ID: 55776816400

 

Reviewers:

Mykola Gomelya – Head of the Department. Professor. Doctor of Engineering Sciences; Head of the Department of Ecology and Technology of Plant Polymers, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine.

https://orcid.org/0000-0003-1165-7545

 

Victor Maksin – Professor. Doctor of Chemical Sciences, Professor of the Department of Analytical and Bioinorganic Chemistry and Water Quality and the Department of Agroecological Ecology and Environmental Control of the National University of Bioresources and Nature Management of Ukraine; Professor of the Department of Analytical and Bioinorganic Chemistry and Water Quality and the Department of Agroecological Ecology and Environmental Control of the National University of Bioresources and Nature Management of Ukraine Kyiv, Ukraine.

https://orcid.org/0000-0001-8903-6744

ResearcherID: H-6930-2018

Scopus Author ID: 7003705879

 

Petro Hvozdyak – Professor, Doctor of Biological Sciences, Chief Researcher of the Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine; Chief Researcher of the Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine  Kyiv, Ukraine.

https://orcid.org/0000-0003-0861-1028

 

Viktor Nesterovskyi – Professor, Doctor of geological sciences, Director of the Geological Museum of T. Shevchenko Kyiv National University; Director of the Geological Museum of T. Shevchenko Kyiv National University Kyiv, Ukraine.

https://orcid.org/0000-0002-7065-8962

ResearcherID: I-2341-2018

Scopus Author ID: 57195201315

 

Affiliation:

Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 132

DOI:

https://doi.org/10.15407/978-966-00-1847-1

ISBN: 978-966-00-1847-1

Language: Ukrainian

How to Cite:

Charnyi, D. (2023) Groundwater purification methods using elements of iron and manganese biogeochemical cycles. Kyiv, Naukova Dumka. 132 p. [in Ukrainian].

Abstract:

For billions of years, natural biogeochemical processes are taking place on the Earth, one of the main driving forces of which is water. In the water constant changes take place in the concentrations of various elements, their compounds and substances in various physical and chemical states – solution, gas, suspension and the like. Natural processes provide both dissolution and conversion to insoluble forms of most ingredients of natural water. Based on this, we believe that on the basis of already existing water treatment facilities using natural processes, it is possible to prepare the clean water without using or minimally using traditional reagIn the case of the preparation of groundwater with excess Mn(II) content for demanganation, it is possible to attract the feature that in the underground waters prevalent in Ukraine, in the case of above normative manganese concentrations, iron ions are almost always present at much higher concentrations.

Relying on the scientific research of geochemists studying the formation of iron-manganese nodules and the formation of manganese ores, we assumed that, by attracting abiotic and biotic factors, it is possible to remove surplus iron and manganese without the use of traditional pH-corrected approaches for demanganization and oxidizing potentials, higher atmospheric oxygen concentrations or artificial catalytic filter loadingsents.

To test this hypothesis, a thermodynamic model of real underground water was created for a water intake in the town of Uzin, Kyiv Oblast with an excess permissible content of manganese, ammonium nitrogen and iron-silicon compounds in the form of inorganic ligands. The aim of the simulation was to determine during the aeration of this water the possibility of formation  of compounds capable of catalyzing the oxidation of Mn2+ with soluble O2, primarily non-hydrolyzed Fe(OH)2+ and the already formed amorphous Fe(OH)3+ colloids, as possible Mn2+ adsorption sites. The simulation consisted in calculating the equilibrium in the system “natural underground water intake Uzin – atmospheric oxygen,” depending on the amount of atmospheric oxygen. Calculations, carried out by minimizing the Gibbs free energy, using the GEMS3 software. The gross composition of the system corresponds to the natural composition of the ground water of the Uzin water intake: 1000 g H2O + dissolved components. During the simulation, portions of oxygen were successively added to the feed water – at each step ~ 0,0031986 mg.

A total of 2501 calculations were performed at 7,9997 mg of oxygen in the system. In the process of modelling, it was revealed that during the oxidation of Fe(II) to Fe(III) various iron-containing compounds are formed, including. Fe(OH)2+ and, in especially large amounts, amorphous Fe(OH)3. They contribute to the creation of conditions (oxidation, adsorption of Mn2+ and catalysis) to overcome the energy barrier and to obtain an efficient kinetical oxidation process Mn(II) → Mn(IV), with the aim of demanganating groundwater. Also, the simulation confirmed that during the aeration of water, Eh is increased, mainly due to oxidation of Mn2+ and Fe2+ by atmospheric oxygen  and nitrogen compounds to nitrates. Correspondingly rH2 of aerated water increases to 14,43, and this already indicates favourable conditions for the development of chemolithotrophic microbiota, which further accelerates the oxidation of Mn2+. The oxygen concentrations necessary for the passage of these processes are also established. The simulated consumption of oxygen by abiotic oxidation of Mn2+ and Fe2+ and nitrogen compounds is rather insignificant and ranges from 2.5 to 3mg/dm3. Therefore, to saturate the water with oxygen, a simplified aeration system can be used, which is guaranteed to provide a dissolved oxygen concentration of 5 mg/dm3 or more.

Based on the results of the simulation, a technology was developed for the reconstruction of the de-ironing station in Uzin. The main task was to create conditions that effectively remove excess manganese and iron – silicon ligands by introducing only one reagent – atmospheric oxygen. To do this, it is necessary to create conditions under which gradual changes in Fe2+→ Fe3+ concentrations occur continuously and where the partially hydrolyzed Fe(OH)2+ ion stably exists. Also, the constant presence of a significant amount of solid phases is necessary. Their role is played by polystyrene charge grains – the nucleus for the formation of ferromanganese concretions. After the formation of the ferromanganese concretions on their surface, the process Mn(II) → Mn(IV) will proceed as a heterogeneous catalysis. In addition, due to the mass distribution of chemilithotrophic microbiota, and at the given pH/Eh characteristics of the source water, – this should be Leptothrix ochracea and Galliumella ferruginea -, it is necessary to create carriers for their immobilization in a zone with a low concentration of Fe2+, to transfer their vital activity from Fe2+ to Mn2+ and further acceleration of the oxidation process Mn2+→ Mn4+. Technologically, this resulted in a new combined column-type structure. In this structure, a unit of simplified aeration, a sub-filtration layer of suspended sediment is combined, where in the primary water probes a gradual change in the concentration of dissolved oxygen in the Fe2+ → Fe3+ process occurs, that is, an oxygen concentration zone appears that corresponds to Fe(OH)2+ and in the final phase to amorphous Fe ferricite Fe(OH)3+. Above the Fe(OH)3+ layer is a light (lighter than water) filter load from the polystyrene pellets. These granules play the role of nuclei for the formation of ferromanganese concretions and carriers for the immobilization of chemolithotrophic microbiota. From the ascent of the granules, the filtering load is held by a false bottom, equipped with reverse filter elements. The water that has passed through the filtering charge is collected in the superfiltration space. As a result of purification, the concentration of manganese varied depending on the operation of these or other wells, within the range of 0,53 ÷ 0,64 mg/dm3, and after purification – within the range of 0,02 ÷ 0,08 mg/dm3, depending on the phase of the filter cycle. In the clean water reservoir the concentration did not exceed 0,05 mg/dm3. The iron content in the initial water was more stable  2 ± 0,4 mg/dm3. In purified water, according to the proposed technology, the concentration of iron in clean water reservoir did not exceed 0,2 mg/dm3.

During the filtration process, the filtering granules became a substrate for the formation of the ferromanganese concretions crusts. The thicknesses of the existing MF film were: 0,518 ± 0,209 mm at P = 0,95 and  = 40,347%, the film mass on the granules was 0,0039 ± 0,0004 g at P = 0,95 and  = 10,256%. The concentration of manganese, was from Vilgouvani from one gram of filter load, was:
115,593 ± 4,332 mg / dm3 at P = 0,95 and  = 3,747%, the concentration of total iron, was Viluguvani from the film, was: 55,333 ± 30,853 mg /dm3 at P = 0,95 and 55,777%. The interpretation of the results of X-ray fluorescence spectrometry of the granules of the filtering charge of the combined structure showed the following elemental composition: Mn = 64,63%; Fe = 30,57%; Ca = 3,2%; Br = 1,6%. The crystal structure of the film was determined by X-ray diffractometry. This showed that the synthesized ferromanganese concretions of manganite are the most similar in its crystal structure to Todorokit – (Mn2+,Ca)Mn4++3O7*nH2O). Having a significant negative surface charge and open crystalline structures, manganites capture a number of low-valence cations, thereby neutralizing their charge. This effect explains some softening of water after its treatment and the content of Ca in the structure of CMM crusts. Obtained in practice, Todorokit consists of higher manganese oxides and accordingly has catalytic properties in the oxidation of Mn2+ and Fe2+. The results of the measurement – the potential of the obtained ferromanganese concretions t is -9,33 ± 0,341 mV, and the electrical conductivity is 0,168 mS/cm.

The process of forming a cortex on the surface of polystyrene pellets is disclosed. It combines adsorption, electrostatic and electro-kinetic interactions and catalytically oxidative processes of both abiotic and biotic origin. In their formation a special role is played by a layer of suspended sediment from colloidal iron compounds. This is experimentally proved by comparing two technologies for the purification of groundwater of the same water intake. Both technologies are based on the aeration of the initial water and its subsequent filtration on the filtering charge from the polystyrene pellets, the only difference is that one unit, prior to filtration, ensures the passage of pro-aerated water in the sub-filtration space through a layer of suspended sediment from iron colloids of the general formula – nFe(X)+. Due to this, excess manganese is removed and a manganite film is formed on the polystyrene pellets. In the absence of a layer of suspended sediment from iron colloids, the deposition of manganese in technologically significant volumes does not occur, and a film mainly formed of amorphous Fe(OH)3 is formed on the surface of the granules. The electro-kinetic properties of colloidal particles forming a layer of suspended sediment in the sub-filtration space are established and their hydrodynamic diameters are determined. Empirical relationships are constructed that describe the regularities of the height distribution of a suspended layer of colloidal sediments in accordance with their hydrodynamic diameter, as well as changes in the concentrations of total iron. Developed on the proposed principles, the technology of deferrization and demanganation, they are implemented in the form of operating facilities in industrial and municipal water pipelines in the settlements of Kyiv, Zhytomyr, Poltava, Chernivtsi, Cherkassy, Sumy regions, and implemented as a technique for engineering the calculation of combined column structures.

The monograph is intended for specialists in water treatment engaged in scientific and teaching activities, graduate and doctoral students in this area, as well as employees of water supply and sewerage facilities of various departments, primarily chief engineers of water supply and sewerage projects

Keywords:

underground waters, removal of manganese, removal of iron, biogeochemical cycles, thermodynamic modeling.

References:

  1. Lykhatska O. A. Pyshna N. H., Blinova M. M. (2014) Stan pidzemnykh vod Ukrainy, shchorichnyk: Derzhavna sluzhba heolohii ta nadr Ukrainy, Derzhavne naukovo-vyrobnyche pidpryiemstvo «Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy». [State of underground waters of Ukraine. State Service of Geology and Subsoil of Ukraine, State Scientific and Production Enterprise]. Kyiv: [“State Geological Information Fund of Ukraine”]. [in Ukrainian]
  2. Lykhatska O. A. Pyshna N. H., Blinova M. M. (2013). Stan pidzemnykh vod Ukrainy, shchorichnyk 2013 [State of underground waters of Ukraine]: Derzhavna sluzhba heolohii ta nadr Ukrainy, Derzhavne naukovo-vyrobnyche pidpryiemstvo «Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy», Kyiv: [“State Geological Information Fund of Ukraine”]. [in Ukrainian]
  3. Zalesskyi I. I. Suchasnyi stan resursnoho potentsyala pidzemnykh pytnykh vod artezyanskykh baseinov Ukrainy [The current state of the resource potential of underground drinking water of artesian basins of Ukraine].Visnyk NUVHP. Silskohospodarski nauky: zb. nauk. prats: NUVHP, 2012. – Vyp. 4(60). Rivne, 101-107. [in Ukrainian]
  4. Voloshyn P. K. (2003). Monitorynhovi doslidzhennia pidzemnykh vod urbosystemy Lvova [ Monitoring studies of underground waters of the urban system of Lviv]. Lviv: pratsi UkrNDHMI. 80. [in Ukrainian]
  5. Molchak Ya. O. Fesiuk V. O. (2006). Otsinka vplyvu hospodarskoi diialnosti v mezhakh zon sanitarnoi okhorony pidzemnykh vodozaboriv mist pivnichno – zakhidnoi Ukrainy. [Assessment of the impact of economic activity within the zones of sanitary protection of underground water intakes of cities in northwestern Ukraine]. Lutsk: pratsi UkrNDHMI. 127-134. [in Ukrainian]
  6. Shestopalov V., &Yakovliev Ye. (2005)Pidzemni vody yak stratehichnyi resurs [Groundwater as strategic resource]. Kyiv: NAN Ukrainy. 32-39. [in Ukrainian]
  7. Koshliakova T.O. (2011). Suchasnyi stan vykorystannia pytnykh pidzemnykh vod [The current state of drinking groundwater use]. Zb. nauk. statei III Vseukrainskoho zizdu ekolohiv z mizhnarodnoiu uchastiu. Vinnytsia. 204–207. [in Ukrainian]
  8. Pashkov A. (2011). Problemy zabrudnennia poverkhnevykh, pidzemnykh i stichnykh vod ta zakhody shchodo yikh likvidatsii i zapobihannia v Ukraini [Problems of surface, underground and wastewater pollution and measures for their elimination and prevention in Ukraine]. Bezpeka zhyttiediialnosti. Kyiv. 10-16. [in Ukrainian]
  9. Lykhatska O. A. Pyshna N. H., &Blinova M. M. (2014). Stan pidzemnykh vod Ukrainy, shchorichnyk [State of underground waters of Ukraine, yearbook]. «Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy», Kyiv: [“State Geological Information Fund of Ukraine”]. Kyiv, [in Ukrainian]
  10. Cappelier M. Laurendeau P., Siben D. (1990). Elimination biologique du manganèse pour la production d’eau potable. L’eau, L’industrie, Les nuisances. 141, 73 – 77. [in Ukrainian]
  11. Bernard S. Chazal P., Mazet M.( 1997). Removal of organic compounds by adsorption on pyrolusite (β-mno2). Paris: Water Research.Vol. 5, No. 31,1216–1222. [in Ukrainian]
  12. Chernova N. M. (2014). Ochyshchennia pryrodnykh vod vid spoluk marhantsiu iz zastosuvanniam sorbenta-katalizatora. [ Purification of natural waters from manganese compounds using a sorbent-catalyst]. Kyiv: Instytut koloidnoi khimii ta khimii vody im. A.V. Dumanskoho NAN Ukrainy, [in Ukrainian]
  13. Vernadskyi V. Y. (1978). Zhyvoe veshchestvo [Living substance]. Moscow: Nauka,   [in Russian]
  14. Vernadskyi V. Y.( 2001). S troenie biosferi zemli i yee okruzhenie. [The structure of the earth’s biosphere and its environment]. Moscow: Nauka,   [in Russian]
  15. Hirol M. M. (2005). Natsionalna dopovid pro yakist pytnoi vody ta stan pytnoho vodopostachannia v Ukraini u 2003 rotsi. [National supplementary report on the quality of drinking water and the drinking water supply station in Ukraine in 2003].  Rivne, 22-23. [in Ukrainian]
  16. Stashuk V. A. (2009). Naukovi zasady upravlinnia vodohospodarsko-melioratyvnym kompleksom Ukrainy [Scientific plantings of the management of the water supply and reclamation complex of Ukraine]. Kyiv: : Instytut hidrotekhniky i melioratsii UAAN, [in Ukrainian]
  17. Vinogradov A. P. (1962). Srednee soderzhanie khimicheskikh elementov v glavnikh tipakh izverzhennikh gornikh porod zemnoi kori [The average content of chemical elements in the main types of igneous rocks of the earth’s crust]. Geokhimiya. Moscow, No. 7. 555–571. [in Russian]
  18. Kazak Є. S. (2010). Formirovanie zheleza v podzemnikh vodakh vodozabornikh uchastkov po dannim eksperimentalnikh issledovanii i geomigratsionnogo modelirovaniya. [Formation of iron in groundwater of water intake areas according to experimental studies and geomigration modeling]. Moscow: MGU imeni M. V. Lomonosova,. 178. [in Russian]
  19. Voitkevich G. V. (1970). Kratkii spravochnik po geokhimii. [Quick reference guide to geochemistry]Moscow: Nedra. [in Russian]
  20. Meison B. (1970). Osnovi geokhimii. [Fundamentals of geochemistry].Moscow: Nedra, 311. [in Russian]
  21. Krainov S. R. (1973). Geokhimiya redkikh elementov v podzemnikh vodakh. [Geochemistry of rare elements in groundwater]. Moscow: Nedra,   [in Russian]
  22. Shcherbina V. V.( 1956). Kompleksnie soedineniya i perenos khimicheskikh elementov v zone gipergeneza. [Complex Compounds and the Transfer of Chemical Elements in the Hypergenesis Zone]. Moscow: Geokhimiya.  5. 54–60. [in Russian]
  23. Shcherbina V. V.( 1972). Osnovi geokhimii. [Fundamentals of geochemistry]. Moscow: Nedra,  [in Russian]
  24. Karavaiko G. I., &Golomzik A. I. (). Rol mikroorganizmov v vishchelachivanii metallov iz rud.[ The role of microorganisms in the leaching of metals from ores]. Moscow: Nedra. 248. [in Russian]
  25. Troshanov E. P. (1964). Bakterii, vosstanavlivayushchie zhelezo i marganets v donnikh osadkakh [Bacteria that reduce iron and manganese in bottom sediments].Rol mikroorganizmov v obrazovanii zhelezomargantsevikh ozernikh rud[The role of microorganisms in the formation of ferromanganese lake ores]. Moscow: Nedra, 118–122. [in Russian]
  26. Solomin G. A. (1960). Okislitelno-vosstanovitelnoe sostoyanie vod i porod raiona stroitelstva stalingradskoi ges [Oxidation-reduction state of waters and rocks in the construction area of the Stalingrad hydroelectric power station]. Novocherkassk: Institut gidrokhimi, 125. [in Russian]
  27. Trufanov A. I. (1982). Formirovanie zhelezistikh podzemnikh vod [Formation of ferruginous groundwater]. Moscow: Nauka. [in Russian]
  28. Shcherbakov A. V. (1956).Geokhimicheskie kriterii okislitelno-vosstanovitelnikh obstanovok v podzemnoi gidrosfere[Geochemical criteria for redox conditions in the underground hydrosphere]. Moscow:  geologiya. No. 56.  72–82. [in Russian]
  29. Shniukov S. Ye. Hozhyk A. P.(2011). Osnovy heokhimii [Fundamentals of geochemistry]. Kyiv: Kyivskyi natsionalnyi universytet imeni Tarasa Shevchenka. [in Ukrainian]
  30. Kuznetsov S. (1970). Mikroflora ozer i yee geokhimicheskaya deyatelnost [Lake microflora and its geochemical activity]. Moscow:   Nauka. 440. [in Russian]
  31. Wilmański K. (2005). Usuwanie substancji organicznych z wód podziemnych na pylistym węglu aktywnym. Ochrona Środowiska. Vol. 3, No. 27. 13–16.
  32. Nikoladze G. I. (1987). Uluchshenie kachestva podzemnikh vod [Improvement of underground water quality] Moscow. 240  [in Russian]
  33. Vodyanitskii Yu. N. (2002). Khimiya i mineralogiya pochvennogo zheleza [Chemistry and mineralogy of soil iron]. Moscow: Pochvennii institut im. V. Dokuchaeva RASKhN.  236. [in Russian]
  34. Aleksin, O. A. (1970). Osnovi gidrokhimii [Microbiology]. Leningrad: Gidrometioizdat. 444. [in Russian]
  35. Gusev M. V. Mineeva L. A. (2004). Mikrobiologiya [Microbiology]. Moscow: Izd-vo MGU. 448. [in Russian]
  36. Krainov, S. R. Shvets V. M. ( 1992). Gidrokhimiya [Hydrochemistry]. Moscow: Nedra. 463. [in Russian]
  37. Styopin, S. G., Surkov A. V., Galkin A. N. (2012). Issledovanie sulfidnogo zagryazneniya podzemnikh vod [Study of sulfide contamination of groundwater]. Vestnik Vitebskogo gosudarstvennogo tekhnologicheskogo universiteta. No. 23. 119. [in Russian]
  38. Sokolov I. Yu. (1974). Tablitsi i nomogrammi dlya rascheta rezultatov khimicheskikh analizov prirodnikh vod [Tables and nomograms for calculating the results of chemical analyzes of natural waters]. Moscow: Nedra. 160. [in Russian]
  39. Perelman A. I. (1982). Geokhimiya prirodnikh vod [Geochemistry of natural waters].  Moscow: Nauka. 152. [in Russian]
  40. Kudelskii, A. O. (2010). Ocherki po regionalnoi gidrogeologii belarusi [Essays on regional hydrogeology of Belarus]. Minsk: Belarus. Navuka. 192. [in Belarus]
  41. Gusev M. V. Mineeva L. A. (1985). Mikrobiologiya [Microbiology]. Moscow: Izd-vo Mosk. un-ta. 376. [in Russian]
  42. Zavarzin G. A. (2003).Lektsii po prirodovedcheskoi mikrobiologii [Lectures on Natural History Microbiology] Moscow: Nauka.  348 s. [in Russian]
  43. Tebo B. M. Ghiorse W. C., van Waasbergen L. G. (1997). Bacterial-mediated mineral formation: insight into manganese (ii) oxidation from molecular genetic and biochemical studies. Geomicrobiology: Interaction Between Microbes and Minerals.  Washington, D.C.: Min. Soc. Amer. 225–266.
  44. Larsen E. I., Sly L. I., McEwan A. G. (1999). Manganese (ii) adsorption and oxidation by whole cells and a membrane fraction of pedomicrobium sp. acm 3067. Archives of Microbiology. 171. 257–264.
  45. Dubinina G. A. (1977). Biologiya zhelezobakterii i ikh geokhimicheskaya deyatelnost [Biology of iron bacteria and their geochemical activity]. Moscow: INMI. [in Russian]
  46. Zhurba M. G., Govorova Zh. M., Kvartenko A. N. (2006). Biokhimicheskoe obezzhelezivanie i demanganatsiya podzemnikh vod [Biochemical iron removal and demanganization of groundwater]. Moscow: Vodosnabzhenie i sanitarnaya tekhnika. 9. 17–23. [in Russian]
  47. Kvartenko A. N. (2009). Zhelezobakterii v podzemnikh vodakh ukraini i ikh rol v okislenii soedinenii zheleza i magrantsa [Iron bacteria in underground waters of Ukraine and their role in the oxidation of iron and magnesium compounds].Gіdromelіoratsіya ta gіdrotekhnіchne budіvnitstvo. 34.  180–186. [in Russian]
  48. Charnyi D. V. (2012). Dosvid zastosuvannia biolohichnoho metodu ochystky bahatokomponentnykh pidzemnykh vod [Experience in applying the biological method of multicomponent groundwater purification]. Voda i vodoochysni tekhnolohii. No. 2(8). 17–29. [in Ukrainian]
  49. Mushe, P. , Gerasimov G. N. (2006). Biologicheskaya deferrizatsiya vodi : obosnovanie i realizatsiya [Biological deferrization of water: justification and implementation].
  50. Mushe, P. Gerasimov N. (2006). Biologicheskaya deferrizatsiya vodi : obosnovanie i realizatsiya [Biological deferrization of water: justification and implementation]. Minsk: Belarus. Navuka. No. 12. 35–39. [in Belarus]
  51. Volobaiev I. I. (2015). Formuvannia bioflokuliantiv na osnovi klityn mikrovodorostei ta nanochastok spoluk zaliza ta yikh vykorystannia v protsesakh vyluchennia zolota z rud [Molding of bioflocculants based on clitin microalgae and nanoparticles from semi-collision and victoria in the processes of gold extraction from ores]. Kyiv: IBKKh NANU. 140. [in Ukrainian]
  52. Belyaev A. A. Kuleshov V. N. (1994). Izotopnii sostav i proiskhozhdenie karbonatnikh margantsevikh rud karskoi zoni pai-khoya [Isotopic Composition and Origin of Manganese Carbonate Ores of the Pai-Khoi Kara Zone]. Litogenez i geokhimiya osadochnikh formatsii timano-uralskogo regiona.  222—223 [in Russian]
  53. Vernadskii V. I. (1983). Geokhimicheskaya istoriya margantsa [Geochemistry of rare and trace elements in soils].Ocherki geokhimii. No. 7. 82–100. [in Russian]
  54. Vinogradov A. P. Geokhimiya redkikh i rasseyannikh elementov v pochvakh [Geochemistry of rare and trace elements in soils]. Moscow: AN SSSR. 237 c. [in Russian]
  55. Yudovich Ya. E., Ketris M. P. (2005). Toksichnie elementi-primesi v iskopaemikh uglyakh [Toxic elements-impurities in fossil coals]. Yekaterinburg: UrO RAN. 655. [in Russian]
  56. Yudovich Ya. E., Ketris M. P. (1994). Elementi-primesi v chernikh slantsakh [Impurity elements in black shales].Yekaterinburg: UIF Nauka. 304. [in Russian]
  57. Andreichuk V., Klimchuk A., Boston P., Galuskin Ye. (2009). Unikalnie zhelezo-margantsevie kolonii mikroorganizmov v peshchere zolushka (ukraina-moldova)[ Unique iron-manganese colonies of microorganisms in the Cinderella cave (Ukraine-Moldova)]. Speleologіya і karstologіya. 3.  3–25. [in Russian]
  58. Savenko V. S. (2004). Fiziko-khimicheskii analiz protsessov obrazovaniya zhelezo-margantsevikh konkretsii v okeane [Physical and chemical analysis of the processes of formation of iron-manganese nodules in the ocean].Moscow: GEOS. 156 c. [in Russian]
  59. Yudovich Ya. E. (2007). Pochemu fe-mn-konkretsii imeyut yadra? [Why do fe-mn concretions have nuclei?]. Vestnik Instituta geologii Komi NTs UrO RAN. No. 8. 7–10. [in Russian]
  60. Lisyuk G. N. (2003). Bakterialnie strukturi okeanicheskikh zhelezo- margantsevikh konkretsii [Bacterial structures of oceanic ferromanganese nodules]. Siktivkar: Geoprint. 17 c. [in Russian]
  61. Rozanov A. Yu. (2002). Bakterialnaya paleontologiya [Bacterial paleontology]. Moscow: PIN RAN.  [in Russian]
  62. Chin-Chang Huang (2007). Parkinsonism induced by chronic manganese intoxication-an experience in taiwan. Chang Gung Med Journal. Vol. 5, No. 30. 385–395.
  63. Zarubin G. P. Novikov Yu. V. (1976). Sovremennie metodi ochistki i obezzarazhivaniya pitevoi vodi [Modern methods of purification and disinfection of drinking water]. Moscow: Meditsina. 192 c. [in Russian]
  64. Polyakov V. Ye., Polyakova I. G., Tarasevich Yu. I. (1997). Ochistka artezianskoi vodi ot ionov margantsa i zheleza s ispolzovaniem modifitsirovannogo klinoptilolita [Purification of artesian water from manganese and iron ions using modified clinoptilolite]. Khimiya i tekhnologiya vodi. Vol. 5, No. 19. 493–505. [in Russian]
  65. Elder A., Gelein R., Silva V. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Health Perspect. Vol. 114, No. 8. 1172–1178.
  66. Lazareva N. V. (1976). Vrednie veshchestva v promishlennosti: sprav. khimikov, inzhenerov i vrachei: v 3 t [Harmful substances in industry: Ref. chemists, engineers and doctors: in]. Moscow: Goskhimizdat. 592. [in Russian]
  67. Pro zatverdzhennia Derzhavnykh sanitarnykh norm ta pravyl, “hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu” [About the approval of the Sovereign sanitary norms and the rules of “hygiene to water, recognized for the comfort of a person”]. (2010). DSanPiN 2.2.4-171-10:2010. Kyiv: Ministry of health of ukraine [in Ukrainian]
  68. Kornilov M. A. (1962). Psilomelan iz kori vivetrivaniya zhelezistikh kvartsitov mestorozhdeniya korsak-mogila. Dokl. AN Ukraini. No. 8. 61–65. [in Ukrainian]
  69. Shnyukov Ye. F. , Orlovskii G. M., Panchenko M. A. (1993). Margantsevie rudi ukraini [Manganese ores of Ukraine].  Kyiv: Naukova Dumka.  169 c. [in Ukrainian]
  70. Lazarenko E.K. (1946). Nadrovi bahatstva zakhidnykh oblastei Ukrainy.  lviv : vilna Ukrаina. 56. [in Ukrainian]
  71. Strakhov N.M., varennoe I.M., Kalinvnko V.V. (1967). K poznaniyu mekhanizma  margantsovo-rudnogo protsessa (na primere oligotsenovikh rud yuga sssr)[ To the knowledge of the mechanism of the manganese-ore process (on the example of the Oligocene ores of the south of the USSR)]. Margantsevie Mestorozhdeniya sssr. – Moscow: Nauka, 34-56. [in Russian]
  72. Begakhtin A.G. (1944). O geneticheskikh tipakh margantsevikh mestorozhdenii [About genetic types of manganese deposits]. An SSSR. Ser. Geol. N 4.  S. 3-46. [in Russian]
  73. Bikhovets G.F. (1955). Zalіznі rudi shchorskogo raionu [Zalіznі rudy shchorskiy district].  Geol, Z 15, vip. 3. 68-69. [in Russian]
  74. Gryaznov V.I., Khorosheva D.L. Tretichnie (1957). Oolitovie zhelezistie porodi pridneprovya [Oolitic ferruginous rocks of the Dnieper region]. N zap. Dnepropetrovsk. un-ta. t.58. 63-69 [in Russian]
  75. Nechet S.V. Osoblyvosti metalonosnosti pivdannoi okrainy donbasu [Peculiarities of metal-bearing potential of the pivdannoy outskirts of the Donbass]. H zhurn. 19, N 3. 51—58. [in Ukrainian]
  76. Lesniak  F. (1961). Pro typy zaliznoho ta zalizno-marhantsevoho orudnennia zakhidnykh oblastei ursr [About types of flood and manganese ore ordnance of the western regions of the Ursr]. Heol.zhurn. – 1961. 21, Vyp. 1, 25-34. [in Ukrainian]
  77. Staschuk M.F., Supricht V.A., Khitraya M.S. Mineralogy, geochemistry and conditions for the formation of Sivash bottom sediments,  Kyiv; Nauk, Dumka, 1984. 174. [in Russian]
  78. Shniukov E.F., Ynozemtsev Yu.Y.,  &Lialko V.Y.( 1983).  Heolohyia shelfe Ussr. tverdыe polezn. yskopaemыe. Kyev : Nauk, Dumka, 200. [in Russian]
  79. Ellis D., Bouchard C., Lantagne G. (2000). Removal of iron and manganese from groundwater by oxidation and microfiltration. No. 130. 255–264.
  80. Thanuttamavong M., Yamamoto , Oh J. I. (2001). Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment. Desalination. Vol. 145, No. 1–3. 257–264.
  81. Conner D. O. (1989). Removal of iron and manganese. Water Sewage Works. No. 28.
  82. Kulskii L. A. Strokach P. P. (1986). Tekhnologiya ochistki prirodnikh vod [Natural water treatment technology]. Kyiv: Vishcha shk. 352. [in Russian]
  83. Wilmarth W. A. (1988). Removal of iron, manganese and sulfides. Water Wastes Eng. 5, No. 54. 131–141.
  84. Kulakov V. V., Soshnikov Ye. V., Chaikovskii G. P. (1998). Obezzhelezivanie i demanganatsiya podzemnikh vod [Iron removal and demanganization of groundwater].  Khabarovsk: DVGUPS. [in Russian]
  85. Zhivotnev V. S. Sukasyan B. D. (1975). Obezzhelezivanie prirodnikh vod: (obzor) [Iron removal of natural waters: (review)].Ventr Nauchno-Tekhn. Inf. po Grazhdanskomu Stroit. i Arkhit. [in Russian]
  86. Nikoladze G. I. (1978). Obezzhelezivanie prirodnikh i oborotnikh vod [Deferrization of natural and circulating waters.]. Moscow: 120. [in Russian]
  87. Nikoladze G.I.( 1987) Uluchshenie kachestva podzemnikh vod[Groundwater quality improvement]. Moscow: Stroiizdat. [in Russian]
  88. Zolotova Ye. F. Ass Yu. (1975). Ochistka vodi ot zheleza, margantsa, ftora i serovodoroda [Water purification from iron, manganese, fluorine and hydrogen sulfide]. Moscow: Stroiizdat, 176. [in Russian]
  89. Kvartenko O. M. (2013). Tekhnolohiia kondytsiiuvannia ahresyvnykh pidzemnykh vod z nyzkym luzhnym rezervom, yaki mistiat amiak ta zalizoorhanichni kompleksy [Technology for conditioning aggressive groundwater with a low alkaline reserve that contains ammonia and iron-organic complexes]. Visnyk Donbaskoi natsionalnoi akademii budivnytstva i arkhitektury. Kyiv: No. 5. 52–59. [in Ukrainian]
  90. Machekhina K. I. , Shiyan L. N., Svarovskii A. Ya. (2013).  Tekhnologiya ochistki podzemnikh vod ot kolloidnikh soedinenii zheleza putem vremennogo ponizheniya pH [The technology of purifying groundwater from colloidal iron compounds by temporarily lowering the pH.]. Fundamentalnie issledovaniya. Moscow:  8–3. [in Russian]
  91. Serikov L. V. , Shiyan L. N., &Tropina Ye. (2010). Kolloidno khimicheskie svoistva soedinenii zheleza v prirodnikh vodakh [Colloidal chemical properties of iron compounds in natural waters]. Tomsk: Izvestiya TPU. 316.  No. 3. 28–33. [in Russian]
  92. Serikov L. V. Shiyan L. N., &Tropina Ye. (2006). Kolloidnie sistemi podzemnikh zod zapadno-sibirskogo regiona [Colloid systems of underground waters of West Siberia].Tomsk: Izvestiya Tomskogo politekhnicheskogo universiteta. Vol. 309, No. 6. [in Russian]
  93. Shiyan L. N., Machekhina K. I., Konchakova N. V.( 2014). Mekhanizm obrazovaniya kolloidnikh soedinenii zheleza v protsesse vodopodgotovki [The mechanism of formation of colloidal iron compounds in the process of water treatment]. [in Russian]
  94. Charnyi D. V. (2011). Obgruntuvannia dotsilnosti zastosuvannia biolohichnykh system ochyshchennia pidzemnykh vod [Justification of the expediency of using biological systems of groundwater purification]. Kyiv: Melioratsiia i vodne hospodarstvo. No. 99. 222–233. [in Ukrainian]
  95. Charnyi D. V. (2014). Osnovy byokhymycheskoho metoda ochystky mnohokomponentnykh podzemnykh vod s povyshennymy kontsentratsyiamy zhelezosoderzhashchykh lyhandov [Fundamentals of the biochemical method of purification of multicomponent groundwater with elevated concentrations of iron-containing ligands]. Kyiv: Vodopodhotovka. Vodosnabzhenye. No. 4(76).  48–56. [in Ukrainian]
  96. Machekhina K. I. (2013). Protsess ochistki podzemnikh vod ot kolloidnikh soedinenii zheleza i yego apparaturnoe oformlenie [The process of groundwater purification from colloidal iron compounds and its instrumentation]. Avtoref. dis. na soiskanie uchenoi stepeni kandidata tekh. Tomsk: TPU. [in Russian]
  97. Charnyi D. V. (2012). Doslidzhennia efektyvnosti zastosuvannia riznykh okysliuvachiv u protsesi znezaliznennia pidzemnykh vod z pidvyshchenym vmistom kremniievykh spoluk. Kyiv:  Visnyk NUVHP Tekhnichni nauky. No. 2 (58). 42–48. [in Ukrainian]
  98. Charnii D. V. (2014). Issledovanie nestandartnikh metodov ochistki mnogokomponentnikh podzemnikh vod, imeyushchikh povishennie kontsentratsii zhelezosoderzhashchikh ligandov [Investigation of non-standard methods of purification of multicomponent groundwater with elevated concentrations of iron-containing ligands]. Kyiv: Vodopodgotovka. Vodosnabzhenie. No. 3(75). 14–20. [in Ukrainian]
  99. Belinskii V. V., Bozhko I. V., Charnii D. V. (2010). Impulsnii koronnii razryad na poverkhnost elektroprovodyashchei zhidkosti i yego ispolzovanie dlya obrabotki void [Pulsed corona discharge on the surface of an electrically conductive liquid and its use in water treatment]. Kyiv: Tekhnіchna yelektrodinamіka. No. 3. 21–27. [in Ukrainian]
  100. Wardman p., (1989). reduction potentials of one-eectron couples involving free radicals an aqueous solutions// j.phys.chem.ref. data, v.18 , n4, p.1637-1756.
  101. Bozhko I. V. Charnii D. V. (2013). Issledovanie effektivnosti ochistki vodi ot organicheskikh primesei impulsnimi razryadami [Investigation of the efficiency of water purification from organic impurities by pulsed discharges].Kyiv: Tekhnіchna yelektrodinamіka. No. 3. 81–86. [in Russian]
  102. Listova L. P. (1961). Fiziko-khimicheskie issledovaniya uslovii obrazovaniya okisnikh i karbonatnikh rud margantsa [Physical and chemical studies of the conditions for the formation of manganese oxide and carbonate ores]. Moscow: AN SSSR,. — 119. [in Russian]
  103. Hem J. D. (1963). Chemical equilibria and rates of manganese oxidation. U.S. Geol. Surv. Water Supply. Pap. No. 1667А. 63.
  104. Hem J. D. (1977). Reactions of metal ions at surfaces of hydrous iron oxide. U.S. Geol. Surv. Water Supply. Pap. No. 1667А. 63.
  105. Garrels R. M., Kraist Ch. L. (1968). Rastvori, minerali, ravnovesiya [Solutions, minerals, equilibria]. Moscow: C. 367. [in Russian]
  106. Yudovich Ya. E., Ketris M. P. (2013). Osnovnie zakonomernosti geokhimii margantsa [The main regularities of the geochemistry of manganese]. Siktivkar: Komi NTs UrO RAN. C. 40. [in Russian]
  107. . Tebo B. M. Geszvain K., Lee S.-W. (2010).The molecular geomicrobiology of bacterial manganese (ii) oxidation. Geomicrobiology: Molecular and Environmental Perspective. New York: Springer. 285–308.
  108. Yudovich Ya. E., Ketris M. P. (2014). Geokhimiya margantsa [Geochemistry of manganese]. Siktivkar: IG Komi NTs UrO RAAN, [in Russian]
  109. Chisvel V. (1998). Formi sushchestvovaniya margantsa v vodakh vodokhranilishch [Forms of existence of manganese in the waters of reservoirs]. Litol. i polez, iskopaemie. 5.  549–554. [in Russian]
  110. Yudovich Ya. E. (2012). Paradoksi geokhimii margantsa [Paradoxes of manganese geochemistry]. Siktivkar: IG Komi NTs UrO RAAN. N 5. 1-6
  111. Pershina Ye. D., Aleksashkin I. V., Kazdobin K. A. (2010). Modelirovanie kinetiki izmeneniya vodorodnogo pokazatelya i okislitelno-vosstanovitelnogo potentsiala v aerirovannoi vode. Geopolitika i ekogeodinamika regionov. Moscow. N 1.  59-63. [in Russian]
  112. Solozhenko Ye. G., Soboleva N. M., Goncharuk V. V. (2004). Primenenie kataliticheskoi sistemi h2o2-fe2+ (fe3+) pri ochistke vodi ot organicheskikh soedinenii [Application of h2o2-fe2+ (fe3+) catalytic system in water purification from organic compounds]. Khimiya i tekhnologiya vodi. Moscow: 26, No. 3.  219–246. [in Russian]
  113. Klyachko V. A., Apeltsin I. E. (1971). Ochistka prirodnikh vod [Purification of natural waters]. Moscow: Literatura po stroitelmtvu. [in Russian]
  114. Nikoladze G. I., Somov M. A. (1995). Vodosnabzhenie [Water supply]. Moscow:    688. [in Russian]
  115. Frog B., Pervov A. (2013). Vodopodgotovka [Water treatment]. Moscow: Izdatelstvo ABC. C. 512. [in Russian]
  116. Kulik D. A., Wagner T., Dmytrieva S. V. GEM software (gems) home. URL: http://gems.web.psi.ch
  117. Kulik D. A., Wagner T., Dmytrieva S. V. (2012) GEM-selektor geochemical modeling package: revised algorithm and gems3k numerical kernel for coupled simulation codes. Villigen PSI, Switzerland: Computational Geosciences.
  118. Krainov S. R., Rizhenko B. N., Shvets V. M. (2004). Geokhimiya podzemnikh vod. teoreticheskie, prikladnie i ekologicheskie aspekti [Geochemistry of underground waters.theoretical, applied and environmental aspects]. Moscow: 677. [in Russian]
  119. Krainov S. R., Shvarov Yu. V., Grichuk D. V. (1988). Metodi geokhimicheskogo modelirovaniya i prognozirovaniya v gidrogeokhimii [Methods of geochemical modeling and forecasting in hydrogeochemistry]. Moscow: 254. [in Russian]
  120. Fylypchuk V. L. Fylypchuk L. V. (2010). Osoblyvosti vyluchennia ioniv zaliza zi stichnykh vod promyslovykh pidpryiemstv[Peculiarities of extraction of iron ions from waste water of industrial enterprises]. Visnyk Inzhenernoi akademii Ukrainy. Kyiv. 3–4. 263–266. [in Ukrainian]
  121. Trufanov A. I. (1982). Formirovanie zhelezistikh podzemnikh vod [Formation of ferruginous groundwater]. Moscow: 139. [in Russian]
  122. Mushe, P., Gerasimov G. N. (2006). Biologicheskaya deferrizatsiya vodi : obosnovanie i realizatsiya. No. 11 (2). 40–47. [in Russian]
  123. Vodopostachannia zovnishni merezhi ta sporudy osnovni polozhennia proektuvannia [Water supply of zivnіshnі merezі and arguably the main provisions of the design]. Osnovnі polozhennya proektuvannya. (2013). (DBN v.2.5-74:2013). [in Ukrainian]
  124. Post J. E., Heaney P. J., Hanson  (2003). Synchroton x-ray diffraction study of the structure and dehydratation behavior of todorokite, American Mineralogist. No. 88. 142–150.
  125. Yudovich Y. E. Ketris M. P. (2013). Manganese geochemistry in supergene processes. a review. Biosphere. 5, No. 1.
  126. Kalyuzhnogo S. V. (2010). Slovar nanotekhnologicheskikh i svyazannikh s nanotekhnologiyami terminov [Glossary of nanotechnology and nanotechnology-related terms]. Moscow: FIZMATLIT. 528. [in Russian]
  127. Romanovskii V. I., Andreeva N. A. (2012). Ochistka promivnikh vod stantsii obezzhelezivaniya [Cleaning of washing waters of deironing stations]. Tr. BGTU. Khim. i tekhnol. neorgan. veshchestv. No. 3. C. 66–69. [in Russian]
  128. Kagramanov G. G. (2015). Osobennosti mekhanizma i vliyanie osnovnikh tekhnologicheskikh parametrov na kharakteristiki nanofiltratsionnikh membran [Features of the mechanism and the influence of the main technological parameters on the characteristics of nanofiltration membranes]. Moscow: Rossiiskii Khimiko -Tekhnologicheskii Universitet im. D.I. Mendeleeva. 155. [in Russian]
  129. Greven A.-C. (2016). Polycarbonate and polystyrene nanoparticles act as stressors to the innate immune system of fathead minnows (pimephales promelas, rafinesque 1820).
  130. Lisyuk G. N. (2011). Kristallokhimiya nanorazmeri margantsevikh agregatov [Crystal chemistry of nanosized manganese aggregates]. Syktyvkar: IG Komi NTs UrO RAN. [in Russian]
  131. Mouchet P., Magnin J., Mazounie P., Puill A. (1985). Elimination du fer et du manganese contenus dans les eaux souterraines: problemes classiques, progres recents. Water Supply. 137.
  132. Vasilev V. P. (1989). Analiticheskaya khimiya [Analytical chemistry]. Moscow: Vissh. shk. 320. [in Russian]
  133. Antropov L. I. (1993). Teoretychna elektrokhimiia [Theoretical electrochemistry]. Kyiv: 544. [in Ukrainian]
  134. Charnyi D. V. Chernova N. M. (2015). Doslidzhennia katalitychnoi plivky na zernakh filtruiuchoho zavantazhennia ta protsesy, shcho vyklykaiut yii utvorennia. Kyiv: Problemy vodopostachannia, vodovidvedennia ta hidravliky. No. 25. 279–286. [in Ukrainian]
  135. Kulik D. A. Thien B. M. (2013). Report on adding uptake kinetics and surface entrapment to geochemical models. modelling code extensions and test results. Spain: Annual Workshop Proceedings.
  136. Crerar D. A., Cormick R. K., Barnes H. L. (1980). Geochemistry of manganese: an overview. Geol. Geochem. Manganese. Budapest: 293–334.
  137. Todes O. M. Tsitovich O. B. (1981) Apparati s kipyashchim zernistim sloem: gidravlicheskie i teplovie osnovi raboti [Apparatus with a boiling granular layer: hydraulic and thermal basics of work]. Leningrad 296 [in Russian]
  138. Vasylenko I. V., Davydenko O. I. (2007). Inzhenernyi rozrakhunok anaerobnoho bioreaktoru z psevdozridzhenym sharom zavantazhennia [Engineering calculation of an anaerobic fluidized bed bioreactor]. Kyiv: Problemy vodopostachannia, vodovidvedennia ta hidravliky. 103–108. [in Ukrainian]
  139. Vasilenko, M. G., Yampolskaya A. Yu. (2007). Retsirkulyatsiya v biosorbere s psevdoozhizhennoi zagruzkoi [Recirculation in a biosorber with fluidized loading]. Probl. vodopostachannya, vodovіdvedennya ta gіdravlіki. Kyiv. No. 6. 90–94. [in Russian]
  140. Vasilenko M. G. (2005). Modelirovanie ochistki vodi v biosorbere s psevdoozhizhennoi zagruzkoi. Kyiv: Probl. vodopostachannya, vodovіdvedennya ta gіdravlіki. No.5. 85–91. [in Russian]
  141. Charnyi D. V. (2010). Metodyka rozrakhunku biosorbtsiinykh sporud dlia ochyshchennia vody. Kyiv: Melioratsiia i vodne hospodarstvo. 98. C. 312–324. [in Ukrainian]
  142. Ailer R. (1982). Khimiya kremnezema ch.-1 [Silica chemistry part-1.]. Moscow: Mir. 416.
  143. Boldirev K. A. (2011). Geokhimicheskoe modelirovanie protsessov vnutriplastovoi ochistki podzemnikh vod ot zheleza i margantsa [Geochemical modeling of processes of in-situ purification of groundwater from iron and manganese]. Moscow: NII VODGEO. 23. [in Russian]
  144. Pushnikov M. Yu. (2000). Ochistka prirodnikh vod biosorbtsionnim metodom [Purification of natural waters by biosorption method]. Moscow: «FGU P NI I VODGEO». 111. [in Russian]
  145. Mushe, P. Gerasimov G. N. (2006). Biologicheskaya deferrizatsiya vodi : obosnovanie i realizatsiya [Biological deferrization of water: justification and implementation]. Vodosnabzhenie i sanitarnaya tekhnika. Sankt-Peterburg: 11 (2). 40–47. [in Russian]
  146. Mushe, P. Gerasimov G. N. (2006). Biologicheskaya deferrizatsiya vodi : obosnovanie i realizatsiya [Biological deferrization of water: justification and implementation]. Vodosnabzhenie i sanitarnaya tekhnika. Sankt-Peterburg: No. 12. 35–39. [in Russian]
  147. Orhanizatsiia bakteriolohichnoi laboratorii [Organization of bacteriological laboratory]. (2006). Lviv: Triada plius. [in Ukrainian]
  148. Vodyanitskii Yu. N. (2002). Khimiya i mineralogiya pochvennogo zheleza [Chemistry and mineralogy of soil iron]. Moscow: Pochvennii institut im. V.V. Dokuchaeva RASKhN. 236 c. [in Russian]
  149. Burns R. G., Burns V. M. (1976). Manganese oxide. Marine Minerals. Reviews in Mineralogy. 1–46.
  150. Charnyi D. V. (2010). Metodyka rozrakhunku biosorbtsiinykh sporud dlia ochyshchennia vody [Charge compensation for manganese substitutions in lanthanum manganite]. Kyiv: Melioratsiia i vodne hospodarstvo. No. 98. 312–324. [in Ukrainian]
  151. Khomutetska T. P. (2000). Rozrobka tekhnolohii znezaliznennia pidzemnykh vod na pinopolistyrolno- tseolitovykh filtrakh [Development of a technology for deironing underground water using expanded polystyrene-zeolite filters]. Kyiv: Kyivskyi natsionalnyi un-t budivnytstva i arkhitektury. 177. [in Ukrainian]
  152. Hirol A. M. (2008). Ochystka dekarbonizovanoi vody na pinopolistyrolnykh filtrakh z vodopovitrianoiu promyvkoiu [Purification of decarbonated water on polystyrene foam filters with water-air washing]. Rivne: Natsionalnyi Universytet Vodnoho Hospodarstva ta Pryrodokorystuvannia. 149. [in Ukrainian]

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх