Stress-corrosion cracking of the steels of main gas pipeline: assessment and prevention

Authors:

Nyrkova Lyudmila Ivanivna, Head of the department, doctor of technical sciences, senior researcher; E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

https://orcid.org/0000-0003-3917-9063

Scopus Author ID: 6506092726

 

Osadchuk Svetlana Oleksiivna, candidate of technical sciences, researcher; E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

https://orcid.org/0000-0001-9559-0151

 

Reviewers:

Nikyforchyn H. M., Leading researcher, Doctor of Technical Sciences, professor; H. V. Karpenko Pphysico-mechanical Institute of the National Academy of Sciences of Ukraine, department of diagnostics of corrosion-hydrogen degradation of materials, Lviv, Ukraine.

https://orcid.org/0000-0003-1012-2901

 

Skul’skii V. Yu. Head of the department, Doctor of Technical Sciences, senior researcher; E. O. Paton of Electric Welding Institute of the National Academy of Sciences of Ukraine, department of technological strength and technology of welding of high-strength steels», Kyiv, Ukraine.

https://orcid.org/0000-0002-4766-5355

 

Torop V.M. Head of the department, Doctor of Technical Sciences, senior researcher; E. O. Paton of Electric Welding Institute of the National Academy of Sciences of Ukraine, department of New structural forms of welded building and structures Kyiv, Ukraine.

https://orcid.org/0000-0002-8807-9811

 

Affiliation:

Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 216

DOI:

https://doi.org/10.15407/978-966-00-1845-7

ISBN: 978-966-00-1845-7

Language: Ukrainian

How to Cite:

Nyrkova, L., Osadchuk, S. (2023) Stress-corrosion cracking of the steels of main gas pipeline: assessment and prevention. Kyiv, Naukova Dumka. 216p. [in Ukrainian].

Abstract:

In the monography the methodology for assessing the susceptibility of steel X70 to stress-corrosion cracking under cathodic protection conditions has been scientifically substantiated, a coefficient of susceptibility to stress-corrosion cracking (SCC) KS in which the changing of plastic properties of metal in the corrosive environment in comparison with its properties in the air was taken into account been offered. An assessment criterion of susceptibility of pipe steel to SCC was introduced: if KS ³ 1,6 steel is susceptible to SCC, which was confirmed by the results of laboratory and field studies. A complex of factors that are causing the degradation of protective polymer coatings (in particular, polymer tape coating), namely the presence of a defect in the coating, its contact with a corrosive medium and cathodic polarization was revealed. By the method of infrared spectroscopy, the degradation of the primer layer of the polymer tape coating was confirmed and it was proved that the presence of degradation products of polymer tape coating in the solution increases the susceptibility of pipe steel to SCC: KS increases from ~1,7 in the solution in which polymer coating was not in contact to ~2,63 in the solution after contacting with the cover. Under conditions of long-term operation at constant deformation in the model soil electrolyte at a potential close to the maximum protective -1,0 V, X70 steel is more susceptible to subsurface corrosion, and for X80 – intergranular fracture caused by hydrogen.

For steels of different strength levels, a new method for assessment of their tendency to CC was proposed, based on the analysis of the length of the descending sections of the fracture curves, and the corresponding coefficient is introduced. It was established that at the temperature of 50 оC the properties of the steel substrate make an effect on the cathodic disbandment of polymer coatings: on steel X80, the disbandment process of the coating proceeds more intensively than on X70, which is due to a decrease in the hydrogen evolution potential on steel X80 and the structure of the near-surface layer.

It has been experimentally proven that three potential regions exist in which the CC of X70 steel proceeds according to different mechanisms: at potentials more positive than -0,75 V – by the mechanism of local anodic dissolution, in the potential range from -0,75 V to -1,05 V, a mixed mechanism of CC acts (local anodic dissolution and hydrogen embrittlement occur simultaneously), at potentials more negative than -1,05 V – by the mechanism of hydrogen embrittlement. The regularities of CC are confirmed by the changing in the corrosion-mechanical properties of steel, estimated by the coefficient, and by fractographic signs of destruction. Decreasing the cathodic potential to the minimum protective potential -0,75 V (c.s.e.) provides the preservation of the protective properties of polymer coatings: new and artificially aged tape coating – by ~9,4 and  ~26,9 times, respectively; new hybrid-epoxy coating – by ~3,3 times, artificially aged – by ~1,7 times;  new and artificially aged polyurethane coating – by ~20 times.

A methodology for identifying potentially corrosive dangerous areas of gas pipelines under cathodic protection was developed and implemented which is based on the calculation of the probability of corrosion cracking using the data of design, executive, operational documentation, and the results of ground technical diagnostics and laboratory studies. The probability of corrosion cracking on sections of three main gas pipelines in Ukraine is estimated. It is shown that in regions that are identified as potentially corrosive dangerous, failures due to corrosion cracking were detected. It is confirmed that the developed methodology allows us to determine the regions of gas pipelines of increased corrosion danger quite accurately.

Keywords:

main gas pipeline, pipe steel, protective coatings, stress corrosion cracking, comprehensive anti-corrosion protection, cathodic protection, slow strain rate test method, potentiometry, fractography

References:

  1. Pjatnichko A. I. Krushnevich T. K. Osnovnye napravlenija sovershenstvovanija gazotransportnoj sistemy Ukrainy. Tehnicheskie gazy. 2008. No 3. S. 9-14.
  2. Krasovskij A. Ja., Lohman I. V., Orynjak I. V. Stress-korrozionnye razrushenija magistral’nyh truboprovodov. Problemy prochnosti. 2012. No 2. S. 23-43.
  3. Leis B.N. Some aspects of stress-corrosion-cracking analysis for gas transmission pipelines. Materials Performance Maintenance. 1991. Р.107–121.
  4. Ossai C.I., Boswell B., Davies I.J. Pipeline failures in corrosive environments – A conceptual analysis of trends and effects. Engineering Failure Analysis. 2015.  53, 36–58.
  5. Zhao Y., Song, M. Failure analysis of a natural gas pipeline. Engineering Failure Analysis 2016. № 63. P. 61–71.
  6. Kentish P. J. Gas pipeline failures: Australian experience. British Corrosion Journal. 1985. Vol. 20. № 3. P 139–146.
  7. Beavers J., Bubenik T. A. Stress corrosion cracking. Trends in Oil and Gas Corrosion Research and Technologies. 2017. P. 295–314.
  8. Korrozionnoe rastreskivanie pod naprjazhenim gazoprovodov / D. S. Butusov , S. I. Egorov, A. P. Zav’jalov, D. M. Ljapichev. Uchebnoe posobie. M. : Izdatel’skij centr RGU nefti i gaza imeni I. M. Gubkina. 2015. 80 s.
  9. Sil’vestrova S. A., Gumerov A. K. Inkubacionnіj period razzvitija korrozionnogo rastreskivanija pod. naprjazhenim na magіstral’nih truboprovodah. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2018. No. 3. Vyp. 113. S. 95–113.
  10. Gareeva O. A., Hudjakov M. A., Klimov P. V., Hazhiev A. D. Modelirovanie korrozionnogo rastreskivanija magistral’nyh gazoprovodov. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2010. No 1. S. 87–92.
  11. Mehanika razvitija stress-korrozionnyh treshhin na magistral’nyh gazoprovodah / D. Ju. Valekzhanin i dr. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2011. No 4. S. 87–94.
  12. Koroljonok A. M. K ocenke ostatochnogo resursa magistral’nyh gazoprovodov, oslablennyh stress-korroziej. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2015. No 3. S. 78–82.
  13. Shulanbaeva L. T., Gumerov A. G., Klimov P. V., Sunagatov M. F Reshenie problemy zashhity magistral’nyh gazoprovodov ot stress-korrozii. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2009. No 4. S. 67–73.
  14. Varlamov D. P., Matvienko A. F. Monitoring stress-korrozionnoj defektnosti protjazhennoj mnogonitochnoj sistemy magistral’nyh gazoprovodov po rezul’tatam mnogokratnoj vnutritrubnoj defektoskopi. Defektoskopija. 2010. No 12. S.32–37.
  15. Polyakov S.H., Rybakov A.O. Osnovni zakonomirnosti stres-korozijnoho roztriskuvannya mahistral`nyx hazoprovodiv. Problemy prochnosti. 2009. No 45. 7–17.
  16. Elektronnyi resurs. URL : http://utg.ua/utg/gts/description/ Data zvernennia 03.11.2019 r.
  17. Ctorchak S. O., Masliuchenko V. H., Dmytryk V. V. Aktualni aspekty ekolohichnoi polityky v naftohazovomu kompleksi (na prykladi Natsionalnoi aktsionernoi kompanii «Naftohaz Ukrainy». Naftohazova haluz Ukrainy. 2015. № 2. S. 40–45.
  18. Zapukhliak I. B. Suchasnyi stan ta problemy rozvytku hazotransportnoi systemy ukrainy v konteksti yevrointehratsiinykh protsesiv. Skhidna Yevropa: ekonomika, biznes ta upravlinnia. 2017. Vypusk 3 (08). S. 47–52.
  19. Pidvyshchennia rivnia ekolohichnoi bezpeky truboprovidnykh merezh naftohazovoho kompleksu ukrainy / L. Ya. Poberezhnyi ta in. Naukovo-tekhnichnyi zhurnal «Tekhnohenno-ekolohichna bezpeka». 2017. № 1 24–31.
  20. M. Roche. The problematic of disbonding of coatings and corrosion with buried pipelines cathodically protected. EFC WP16, 10th meeting, EUROCORR’2004, Nice, Sept. 14, 2004.
  21. Melot D., Paugam G., Roche M. Disbondments of pipeline coatings and their effects on corrosion risks. Journal of Protective Coatings & Linings. 2009. Р. 18–31.
  22. Parkins R. N., Blanchard W. K., Delanty B. S. Transgranular Stress Corrosion Cracking of High-Pressure Pipelines in Contact with Solutions of Near Neutral pH. Corrosion. 1994. Vol. 50, № 5. Р. 394–408.
  23. Development of limit load solutions for corroded gas pipelines / Choi J. B. et al. International Journal of Pressure Vessels and Piping. 2003. Vol. 80. № 2. P. 121–128.
  24. Yeom K. J., Lee Y. K., Oh K. H., Kim W. S. Integrity assessment of a corroded API X70 pipe with a single defect by burst pressure analysis. Engineering Failure Analysis. 2015. Vol. 57. P. 553–561.
  25. Khrutba V. O., Vaihanh H. O., Stehnii O. M. Analiz ekolohichnykh nebezpek pid chas ekspluatatsii ta remontu mahistralnykh truboprovodiv. Ekolohichna bezpeka. Otsinka ta prohnozuvannia tekhnohennoho vplyvu na dovkillia. 2017. T. 24, № 2. S. 75–82.
  26. Bogdanov R.I., Rjahovskih I.V. Zakonomernosti korrozionnogo rastreskivanija pod naprjazheniem trubnyh stalej klassa prochnosti H70 v model’nyh ґruntovyh jelektrolitah s rN, blizkim k nejtral’nomu. Nauchno-prakticheskij molodjozhnyj seminar (p. Razvilka, Moskovskaja obl., 15 –16 aprelja 2015 g.)
  27. Vinokurcev G. G., Pervunin V. V., Krupin V. A., Vinokurcev A. G. Zashhita ot korrozii podzemnyh truboprovodov i sooruzhenij: Ucheb. posobie. Rostov n/D: Rost. gos. stroit. un-t, 2003. 124 s.
  28. DSTU 3830-98. Koroziia metaliv i splaviv. Terminy ta vyznachennia osnovnykh poniat. Kyiv. 1999. 36 s.
  29. DSTU 4612:2006. Mahistralni truboprovody. Terminy ta vyznachennia osnovnykh poniat. Kyiv. 2006. 46 s.
  30. Tlumachnyi rosiisko-ukrainsko-anhliiskyi slovnyk iz protykoroziinoho zakhystu hazoprovodiv. Osnovni terminy: Blyzko 2800 terminiv / za red. Rudnika A. A. Kharkiv. 2000. 616 s.
  31. Gu B., Luo J.; Mao X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pН solution. Corrosion. 1999. Vol. 55. № 1. Р. 96–106.
  32. Korrozionnoe rastreskivanie pod naprjazheniem trub magistral’nyh gazoprovodov : atlas / Antonov V. G. ta іn. M.: Nauka. 2006. 105 s.
  33. Сheng Y. F. Stress corrosion of pipeline / edited by R. Winston. New Jersey : John Wiley & Sons Inc. 2013. 288 P.
  34. Baker M. Stress Corrosion Cracking Study. FINAL REPORT. Integrity Management Program Delivery Order DTRS56-02-D-70036. 2005. 201 p.
  35. Parkins R.N., Belhimer E., Blanchard W.K. Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution. Corrosion. 1993. Vol. 49. № 12. P. 951–966.
  36. Parkins R.N., Singh P.M. Stress corrosion crack coalescence. Corrosion. 1990. Vol. 46. № 6. P. 485-499.
  37. Parkins R. N. Stress Corrosion Spectrum. British Corrosion Journal. 1972. Vol. 7. № 1. P. 15–28.
  38. Parkins R. N. Stress corrosion cracking. Uhlig’s Corrosion Handbook. USA: John Wiley and Sons Ltd. 2011. P. 171-181.
  39. Pourazizi, R., Mohtadi-Bonab, M. A., Szpunar, J. A. Investigation of different failure modes in oil and natural gas pipeline steels. Engineering Failure Analysis. 2020. Vol. 109. 104400.
  40. Fazzini P.G., Otegui J.L. Experimental determination of stress corrosion crack rates and service lives in a buried ERW pipeline. International Journal of Pressure Vessels and Piping. 2007. Vol. 84. № 12. P. 739–748.
  41. Mao S.X., Li M. Mechanics and thermodynamics on the stress and hydrogen interaction in crack tip stress corrosion: experiment and theory. Journal of the Mechanics and Physics of Solids. 1998. Vol. 46. № 6. Р.1125–1137.
  42. Song F.M. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH. Corrosion Science. 2009. Vol. 51. № 11. Р. 2657–2674.
  43. Parkins R.N. Plenary lecture: strain rate effects in stress corrosion cracking. Corrosion. 1990. Vol. 46. № 3. Р. 178–189.
  44. Leis B.N. Some aspects of stress-corrosion cracking analysis for gas transmission pipelines. Materials Performance Maintenance. 1991. Р. 107–121.
  45. Charles E.A., Parkins R.N. Generation of stress corrosion cracking environments at pipeline surfaces. Corrosion. 1995. Vol. 51. № 7. Р. 518-527.
  46. B.Y. Fang, A. Atrens J.Q. Wang, E.H. Han, Z.Y. Zhu, W. Ke. Review of stress corrosion cracking of pipeline steels in “low” and “high” pH solutions. Journal of materials science. 2003. Vol.38. P. 127 – 132.
  47. Manfredi C., Otegui J. Failures by SCC in buried pipelines. Engineering Failure Analysis. 2002. Vol. 9. № 5. Р. 495–509.
  48. Otegui J. L. Challenges to the integrity of old pipelines buried in stable ground. Engineering Failure Analysis. 2014. Vol. 42. P. 311–323.
  49. Niazi H., Eadie R., Chen W., Zhang H. High pH Stress Corrosion Cracking Initiation and Crack Evolution in Buried Steel Pipelines: A Review. Engineering Failure Analysis. 2020. 105013.
  50. Parkins R.N. Current topics in corrosion: factors influencing stress corrosion crack growth kinetics. Corrosion. 1987. Vol. 43. №. 3. Р. 130-139.
  51. Parkins R.N., Zhou S. The stress corrosion cracking of C-Mn steel in CO2-, HCO3, CO32− solutions. II: Electrochemical and other data. Corrosion Science. 1997. Vol. 39. № 1. Р. 175–191.
  52. Savenja A. A., Savenja S. N. Puti snizhenija stress-korrozionnoj povrezhdaemosti dejstvujushhih gazoprovodov. Internet-vestnik VolgGASU. Politematicheskaja ser. 2007. Vyp. 2. No 3. C. 1–3.
  53. Ibragimov A. A. Metody prognozirovanija dolgovechnosti truboprovodov s uchetom korrozii i peremennyh naprjazhenij / Pod nauch. red. A. B. Shabarova, S. Ju. Podorozhnikova. Tjumen’ : TjumGNGU. 2011. 76 s.
  54. Mohtadi-Bonab M. A. Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: A Review. Metals. 2019. Vol. 9. № 5. Р. 590.
  55. Afanasyev A. V., Mel’nikov A. A., Konovalov S. V., Vaskov M. I. The Analysis of the Influence of Various Factors on the Development of Stress Corrosion Defects in the Main Gas Pipeline Walls in the Conditions of the European Part of the Russian Federation. International Journal of Corrosion. 2018. Vol. 2018. Article ID 1258379. P. 1–10.
  56. Parkins R.N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels. Corrosion. 1996. Vol. 52. № 5. Р. 363–374.
  57. Lynch S. Mechanistic and fractographic aspects of stress corrosion cracking. Corrosion Reviews. 2012. Vol. 30. № 3-4. Р. 63-104.
  58. Liu Z.Y., Lu L., Huang Y.Z., Du C.W., Li X.G. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water. Corrosion. 2014. Vol. 70. № 7. Р. 678–685.
  59. Beavers J.A. Frank Newman Speller Award Lecture: Integrity management of natural gas and petroleum pipelines subject to stress corrosion cracking. Corrosion. 2014. Vol. 70. № 1. Р. 3-18.
  60. Fang B., Han E.-H., Wang J., Ke W. Mechanical and Environmental Influences on Stress Corrosion Cracking of an X-70 Pipeline Steel in Dilute Near-Neutral pH Solutions. Corrosion. 2007. Vol. 63. № 5. Р. 419–432.
  61. Lynch S. P. Mechanistic and fractographic aspects of stress-corrosion cracking. Theory and Practice Woodhead Publishing Series in Metals and Surface Engineering. 2011. P. 3–89.
  62. Parkins R. N. Mechanistic Aspects of Intergranular Stress Corrosion Cracking of Ferritic Steels. Corrosion. 1996. Vol. 52. № 5. P. 363–374.
  63. Meresht E.S., Farahani T.S., Neshati J. Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline. Engineering Failure Analysis. 2011. Vol. 18. № 3. P. 963–970.
  64. Eadie R. L., Szklarz K. E., Sutherby R. L. Сorrosion fatigue and near-neutral pН stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide. Corrosion. 2005.Vol. 61. № 2. P.167–173.
  65. Liu Z. Y., Li X. G., Du C. W., Cheng Y. F. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution. Corrosion Science. 2009. Vol. 51. № 12. P.2863–2871.
  66. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment / Z. Y. Liu et al. Corrosion Science. 2008. Vol. 50. № 8. P.2251–2257.
  67. Szklarska-Smialowska K. Z., Xia Z., Rebak R. B. Technical note: stress corrosion cracking of Х-52 carbon steel in dilute aqueous solutions. Corrosion. 1994. Vol. 50, № 5. Р.334–338.
  68. Fu A. Q., Tang X., Cheng Y. F. Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe. Corrosion Science. 2009. Vol. 51. № 1. P.186–190.
  69. Liu Z. Y., Li X. G., Cheng Y. F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization. Corrosion Science. 2012. Vol.55. № 2. P.54–60.
  70. Shipilov S. A., Le May I. Structural integrity of aging buried pipelines having cathodic protection. Engineering Failure Analysis. 2006. Vol. 13. Р. 1159 – 1176.
  71. Glazov N. P., Glazov N. N., Bashaev M. A. Vlijanie sostojanija izoljacii truboprovodov na skorost’ ih korrozionnogo razrushenija. Truboprovodnyj transport (teorija i praktika). 2009. No 1. S.47–49.
  72. Maocheng Y., Wang J., Han E., Ke W. Local environment under simulated disbonded coating on steel pipelines in soil solution. Corrosion Science. 2008. Vol. 50. № 5. P.1331–1339.
  73. Perdomo J. J., Chabica M. E., Song I. Chemical and electrochemical conditions on steel under disbonded coatings: the effect of previously corroded surfaces and wet and dry cycles. Corrosion Science. 2001. Vol.43. № 3.
    P. 515–532.
  74. Qiu Ch., Orazem M.E. A weighted nonlinear regression-based inverse model for interpretation of pipeline survey data. Electrochim. Acta. 2004. Vol. 49, 22-23. P. 3965–3975.
  75. Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment/ Eslami A. et al. Corrosion Science. 2010. Vol. 52ю № 11. P.3750–3756.
  76. Fu A. Q., Cheng Y. F. Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC. Corrosion Science. 2010. Vol. 52. № 7. P.2511–2518.
  77. Hizhnjakov V. I. Preduprezhdenie vydelenija vodoroda pri vybore potenciala katodnoj zashhity podzemnyh stal’nyh truboprovodov. Korrozija: materialy, zashhita. 2009. No 9. S.7–10.
  78. Hizhnjakov V. I. Novyj kriterij vybora rezhimov katodnoj zashhity podzemnyh stal’nyh truboprovodov. Praktika protvokorrozionnoj zashhity. 2009. Vypusk 4 (54). C. 20–22.
  79. Mazel’ A. G. Vodorod – faktor korrozionnogo rastreskivanija truboprovodov. Stroitel’stvo truboprovodov. 1992. No 9. S.23–26.
  80. Kim J. G., Kim Y. W. Cathodic protection criteria of thermally insulated pipeline buried in soil. Corrosion Science. 2001. Vol. 43. № 11. P.2011–2021.
  81. Garris H. A., Askarov G. R. Novyj podhod k resheniju problemy stress-korrozii na gazoprovodah bol’shogo diametra. Neftegazovoe delo. 2004. T.2. S.137–142.
  82. Garris N., Askarov G. Aktivizacija korrozionnyh processov na magistral’nyh gazoprovodah bol’shogo diametra pri impul’snom izmenenii temperatury. Neftegazovoe delo. Jelektronnyj nauchnyj zhurnal. 2006. Vypusk 1. S. 1–13.
  83. Garris N. A., Ismagilov I. G., Bahtegareeva A. N. Izmenenie teplofizicheskih harakteristik ґrunta vokrug gazoprovoda bol’shogo diametra kak prichina aktivizacii korrozionnyh processov. Neftegazovoe delo. Jelektronnyj nauchnyj zhurnal. 2010. Vypusk 1. S. 1–9.
  84. Vlijanie teplogidravlicheskih rezhimov gazoprovoda na aktivnost’ processov KRN / Ismagilov I. G. i dr. Neftegazovoe delo. Jelektronnyj nauchnyj zhurnal. 2002. No 2. S. 1–10.
  85. Parkins, R. N., Elices, M., Sanchez-Galvez, V., & Caballero, L. Environment sensitive cracking of pre-stressing steels. Corrosion Science. 1982. Vol. 22. № 5. P. 379–405.
  86. Pilkey A. K., Lambert S. B., Plumtree A. Stress Corrosion Cracking of X-60 Line Pipe Steel in a Carbonate-Bicarbonate Solution. Corrosion. 1995. Vol. 51. № 2. P. 91–96.
  87. Rebak R. B., Xia Z., Safruddin R., Szklarska-Smialowska Z. Effect of solution composition and electrochemical potential on stress corrosion cracking of X-52 Pipeline Steel. Corrosion. 1996. Vol. 52. № 5. P. 396–405.
  88. Asher S. L., Leis B., Colwell J., Singh P. M. Investigating a mechanism for transgranular stress corrosion cracking on buried pipelines in near-neutral pH environments. Corrosion. 2007. Vol. 63. № 10. P. 932–939.
  89. Liu Z. Y., Li Q., Cui Z. Y., Wu W., Li Z., Du C. W., Li X. G. Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments. Construction and Building Materials. 2017. Vol. 148. P. 131–139.
  90. Charles E. A., Parkins R. N. Generation of Stress Corrosion Cracking Environments at Pipeline Surfaces. Corrosion. 1995. Vol. 51. № 7. P. 518–527.
  91. Chen W., Sutherby R. L. Crack Growth Behavior of Pipeline Steel in Near-Neutral pH Soil Environments. Metallurgical and Materials Transactions A. 2007. Vol. 38. № 6. P. 1260–1268.
  92. Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments / Z. Y. Liu et al. Materials Science and Engineering: A. 2016. Vol. 658. P. 348–354.
  93. Chen W., Kania R., Worthingham R., Boven G. V. Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: The role of hydrogen. Acta Materialia. 2009. Vol. 57. № 20. P. 6200–6214.
  94. Egbewande A., Chen W., Eadie R., Kania R., Van Boven G., Worthingham R., Been J. Transgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions: Discontinuous crack growth mechanism. Corrosion Science. 2014. Vol. 83. P. 343–354.
  95. Parkins R. N., Elices, M., Sanchez-Galvez, V., Caballero, L. Environment sensitive cracking of pre-stressing steels. 1982. Corrosion Science. Vol. 22. № 5. P. 379–405.
  96. de Sena R. A., Bastos I. N., Platt, G. M. (2012). Theoretical and experimental aspects of the corrosivity of simulated soil solutions. International Scholarly Research Notices. 2012. Vol. 2012. p/ 1-6/
  97. Stress corrosion cracking of API X-60 pipeline in a soil containing water / B. W. Pan et al. Materials Science and Engineering: A. 2006. Vol. 434, № 1-2. P. 76–81.
  98. Role of microstructures on stress corrosion cracking of pipeline steels in carbonate-bicarbonate solution// Asahi H. et al. Corrosion. 1999. Vol. 55. № 7. P. 644–652.
  99. 99. Pawłowski B., Mazur A., Gorczyca S. The effect of the tempering processes on the susceptibility to stress corrosion cracking of high strength steel. Corrosion Science. Vol. 32. № 7. 1991. P. 685–691.
  100. 100. Torres-Islas A., Gonzalez-Rodriguez J.G., Uruchurtu J., Serna S. Stress corrosion cracking study of microalloyed pipeline steels in dilute NaHCO3 solutions. Corrosion Science. Vol. 50. № 10. P. 2831–2839.
  101. 101. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment / Liu Z.Y. et al. Corrosion Science. Vol. 51. № 4. P. 895–900.
  102. 102. Yunovich M., Xia Z., Szklarska-Smialowska Z. Factors influencing stress corrosion cracking of carbon steel in diluted bicarbonate environments. Corrosion. Vol. 54. № 2. P. 155–161.
  103. 103. Kentish P. Stress corrosion cracking of gas pipelines – Effect of surface roughness, orientations and flattening. Corrosion Science. 2007. Vol. 49. № 6. P. 2521–2533.
  104. 104. Microstructure dependence of stress corrosion cracking initiation in X-65 pipeline steel exposed to a near-neutral pH soil environment / Chu R. et al. // Corrosion. 2004. Vol. 60. № 3. 275–283.
  105. 105. Mustapha A., Charles E. A., Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corrosion Science. Vol. 54. № 1. 2012. P. 5–9.
  106. 106. Zhang G. A., ChengY. F. Micro-electrochemical characterization and Mott–Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution. Electrochimica Acta. Vol. 55. № 1. P. 316–324.
  107. 107. Flis , Ziomek-Moroz M. Effect of carbon on stress corrosion cracking and anodic oxidation of iron in NaOH solutions. Corrosion Science. 2008. Vol. 50. № 6. P. 1726–1733.
  108. Microstructure Dependence of Stress Corrosion Cracking Initiation in X-65 Pipeline Steel Exposed to a Near-Neutral pH Soil Environment / R. Chu et al. Corrosion. 2004. Vol. 60. № 3. P. 275–283.
  109. Saleem B., Ahmed F., Rafiq M.A., Ajmal M., Ali L. Stress corrosion failure of an X52 grade gas pipeline. Engineering Failure Analysis. 2014. Vol. 46. P. 157–165.
  110. Chen W., Wang S.-H., Chu R., King F., Jack T. R., Fessler R. R. Effect of precyclic loading on stress-corrosion-cracking initiation in an X-65 pipeline steel exposed to near-neutral pH soil environment. Metallurgical and Materials Transactions A. 2003. Vol. 34. № 11. P. 2601–2608.
  111. Bulger J. T., Lu B. T., Luo J. L. Microstructural effect on near-neutral pH stress corrosion cracking resistance of pipeline steels. Journal of Materials Science. 2006. Vol. 41. № 15. P. 5001–5005.
  112. Liu Z. Y., Li X. G., Du C. W., Lu L., Zhang Y. R., Cheng Y. F. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. Corrosion Science. 2009. Vol. 51. № 4. P. 895–900.
  113. Lu B. T., Luo J. L. Relationship between yield strength and near-neutral pH Stress Corrosion Cracking Resistance of Pipeline Steels—An effect of microstructure. Corrosion. 2006. Vol. 62. № 2. P. 129–140.
  114. Bordbar S., Alizadeh M., Hashemi S.H. Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel. Materials & Design. 2013. Vol. 45. P. 597–604.
  115. Spiridovich E. A. Povyshenie nadezhnosti magistral’nyh gazoprovodov v uslovijah korrozionnogo rastreskivanija pod naprjazhenim: diss. … dokt. dehn. nauk: 25.00.19. zahist 25.12.14. p. Razvilka, Moskovskoj oblasti: OOO « Gazprom VNIIGAZ». 2014. 422 s.
  116. Ovchinnikov I.I. Issledovanie povedenija obolochechnyh konstrukcij, jekspluatirujushhihsja v sredah, vyzyvajushhih korrozionnoe rastreskivanie. Internet-zhurnal naukovedenie. 2012. No 4. S. 1–30.
  117. Pipeline SCC in near-neutral pH environment: recent progress / W. Zheng et al. Proceedings of the 1996 1st International Pipeline Conference. Volume 1: Regulations, Codes, and Standards; Current Issues; Materials; Corrosion and Integrity. Calgary, Alberta, Canada. June 9–13, 1996.  P. 485–493.
  118. Zheng W. Y. Stress corrosion cracking of oil and gas pipelines in near neutral pH environment: review of recent research. Energy Materials. 2008. Vol. 3. № 4. P. 220–226.
  119. Parkins R. N., Beavers J. A. Some effects of strain rate on the transgranular stress corrosion cracking of ferritic steels in dilute near-neutral-pH solutions. Corrosion. 2003. Vol. 59. № 3. P. 258–273.
  120. Contreras A., Hernández S. L., Orozco-Cruz R., Galvan-Martínez R. Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution. Materials & Design. 2012. Vol. 35. P. 281–289.
  121. Song F. M. predicting the effect of soil seasonal change on stress corrosion cracking susceptibility of buried pipelines at high pH. Corrosion. 2010. Vol. 66. № 9. 095004–095004–14.
  122. Liu Z., Li X., Zhang Y., Du C., Zhai G. Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution. Acta Metallurgica Sinica (English Letters). 2009. Vol. 22. № 1. P. 58–64.
  123. Liu Z., Zhai G., Li X., Du C. Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment. Journal of University of Science and Technology Beijing. Mineral, Metallurgy, Material. 2008. Vol. 15. № 6. P. 707–713.
  124. Chen W., King F., Jack T.R., Wilmott M.J. Environmental aspects of near-neutral pH stress corrosion cracking of pipeline steel. Metallurgical and Materials Transactions A. 2002. Vol. 33. № 5. P. 1429–1436.
  125. Wasim M., Shoaib S., Mubarak N., Inamuddin M., Asiri A. M. Factors influencing corrosion of metal pipes in soils. Environmental Chemistry Letters. 2018. Vol. 16. № 3. P. 861–879.
  126. Liang P., Du C., Li X., Chen X., Liang Z. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku’erle soil simulated solution. International Journal of Minerals, Metallurgy and Materials. 2009. Vol. 16. № 4. P. 407–413.
  127. Contreras A., Quej-Aké L. M., Lizárraga C. R., Pérez T. The role of calcareous soils in SCC of X52 pipeline steel. MRS Proceedings, 2015. Vol. 1766. P. 95–106.
  128. Beavers J. A, Worthingham R. G. The Influence of soil chemistry on SCC of underground pipelines. Proceedings of the 2002 4th International Pipeline Conference. 4th International Pipeline Conference, Parts A and B. Calgary, Alberta, Canada. September 29–October 3. 2002. P. 1671–1678.
  129. Abramjan S.G., Savenja S.N., Savenja A.A. Issledovanie faktorov snizhenija tehnologicheskogo riska pri jekspluatacii magistral’nyh gazoprovodov, imejushhih stress-korrozionnye povrezhdenija. Volgogr. gos. arhit.-stroit. un-t. Volgograd: VolgGASU. 2008. 130 s.
  130. Abramjan S.G., Savenja S.N., Savenja A.A. Metody mikrobiologicheskoj diagnostiki stress-korrozii. Vestnik VolgGASU. Ser. : Tehnicheskie nauki. Vyp. 6. No 20. S. 118–124.
  131. Vlijanie pochvennyh mikroorganizmov na stress-korrozionnuju povrezhdaemost’ trubnyh stalej / V.P. Holodenko i dr. Prikladnaja biohimija i mikrobiologija. 2000. T. 36. No 6. S. 685–692.
  132. Kamaeva S. S. Korrozionnaja agressivnost’ grunta s uchetom mikrobiologicheskih faktorov. Sposoby opredelenija. Obz. inform. Ser. : Zashhita ot korrozii oborudovanija gazovoj promyshlennosti. M. : IRC Gazprom. 2000. 79 s.
  133. Wu T., Xu J., Sun C., Yan M., Yu C., Ke W. Microbiological corrosion of pipeline steel under yield stress in soil environment. Corrosion Science. 2014. Vol. 88. P. 291–305.
  134. Microbiologically influenced corrosion of a pipeline in a petrochemical plant / M. K. Khouzani et al. Metals 2019. Vol. 9. № 4. 459.
  135. Liu H., Cheng Y.F. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions. Corrosion Science. 2018. Vol. 133. P. 178–189.
  136. Abedi S.Sh., Abdolmaleki A., Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline. Engineering Failure Analysis. 2007. Vol. 14. № 1. P. 250–261.
  137. 137. Effect of residual and external stress on corrosion behaviour of X80 pipeline steel in sulphate-reducing bacteria environment / X. Li et al. Engineering Failure Analysis. 2018. Vol. 91. P. 275–
  138. He D. X., Chen W., Luo J. L. Effect of cathodic potential on hydrogen content in a pipeline steel exposed to NS4 near-neutral pH soil solution. Corrosion. 2004. Vol. 60. № 8. Р. 778–786.
  139. Li M. C., Cheng Y. F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochimica Acta. 2007. Vol. 52. № 28. P. 8111–8117.
  140. 140. Luo J., Luo S., Li L., Zhang L., Wu G., Zhu L. Stress corrosion cracking behavior of X90 pipeline steel and its weld joint at different applied potentials in near-neutral solutions. Natural Gas Industry B. 2019. Vol. 6. № 2. P. 138–
  141. Contreras A., Sosa E., Espinosa-Medina M.A. Cathodic protection effect on the assessment of SCC Susceptibility of X52 pipeline steel. MRS Proceedings. 2009. 1242.
  142. Albarran J. ., Martinez L., Lopez H. Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel. Corrosion Science. 1999. Vol. 41. № 6. P. 1037–1049.
  143. Zhang X., Yang W., Xu H., Zhang L. Effect of cooling rate on the formation of nonmetallic inclusions in X80 pipeline steel. Metals. 2019. Vol. 9. № 4. 392. Р.1–11.
  144. Gu B., Yu W.Z., Luo J.L., Mao X. Transgranular stress corrosion cracking of X-80 and X-52 pipeline steels in dilute aqueous solution with near-neutral pH. Corrosion. 1999. Vol. 55. № 3. P. 312–318.
  145. Tamehiro H., Takeda T., Matsuda S., Yamamoto K., Okumura N. Effect of accelerated cooling after controlled rolling on the hydrogen induced cracking resistance of line pipe steel. Transactions of the Iron and Steel Institute of Japan. 1985. Vol. 25. № 9. P. 982–988.
  146. Mohtadi-Bonab M.A., Szpunar J.A., Razavi-Tousi S.S. Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel. International Journal of Hydrogen Energy. 2013. Vol. 38. № 31. P. 13831–13841.
  147. Zhang S., Fan E., Wan J., Liu J., Huang Y., Li X. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corrosion Science. 2018. Vol. 139. P. 83–96.
  148. Hejazi D., Haq A.J., Yazdipour N., Dunne D.P., Calka A., Barbaro F., Pereloma E.V. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking. Materials Science and Engineering: A. 2012. Vol. 551. P. 40–49.
  149. Smirnov M. A., Pyshmintsev I. Y., Maltseva A. N., Mushina O. V. Effect of ferrite-bainite structure on the properties of high-strength pipe steel. Metallurgist. 2012. Vol. 56. № 1-2. P. 43–51.
  150. Wan H., Du C., Liu Z., Song D., Li X. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment. Ocean Engineering. 2016. Vol. 114. P. 216–223.
  151. Zhang C., Cheng Y.F. Synergistic effects of hydrogen and stress on corrosion of X100 pipeline steel in a near-neutral pH solution. Journal of materials engineering and performance. 2009. Vol. 19. № 9. P. 1284–1289.
  152. Torresislas A., Salinasbravo V., Albarran J., Gonzalezrodriguez J. Effect of hydrogen on the mechanical properties of X-70 pipeline steel in diluted solutions at different heat treatments. International Journal of Hydrogen Energy. 2005. Vol. 30. № 12. P. 1317–1322.
  153. Ohaeri, E., Eduok, U., & Szpunar, J. Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy. 2018. Vol. 43. № 31. P. 14584–4617.
  154. Cheng Y. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking. International Journal of Hydrogen Energy. 2007. Vol. 32. № 9. P. 1269–1276.
  155. Cheng Y.F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines. Electrochimica Acta. 2007. Vol. 52. № 7. P. 2661–2667.
  156. Marshakov A. I., Ignatenko V. E., Bogdanov R. I., Arabey A. B. Effect of electrolyte composition on crack growth rate in pipeline steel. Corrosion Science. 2014. Vol. 83. P. 209–216.
  157. Bogdanov R. I., Marshakov A. I., Ignatenko V. Je. Vlijanie sostava rastvora na skorost’ rosta treshhiny v trubnoj stali H70 pri staticheskoj i ciklicheskoj nagruzke. Korrozija: materialy, zashhita. 2011. No 11. C. 30–37.
  158. Vlijanie sostava korrozionnoj sredy na skorost’ rosta treshhiny v trubnoj stali H70 / A. B. Arabej i dr. Fizikohimija poverhnosti i zashhita materialov. 2011. T. 47. No 2. C. 208–217.
  159. Bogdanov R. I., Ignatenko V. Je., Marshakov A. I. Vlijanie peroksida vodoroda na skorost’ rosta treshhiny v trubnoj stali H70 pri staticheskoj nagruzke. Fizikohimija poverhnosti i zashhita materialov. 2013. T. 49, No 5. C. 526–532.
  160. Marshakov A. I., Maleeva M. A., Rybkina A. A., Elkin V. V. Vlijanie atomarnogo vodoroda na anodnoe rastvorenie zheleza v slabokislom sul’fatnom jelektrolite. Fizikohimija poverhnosti i zashhita materialov. 2010. T. 46. No 1. P. 36–45.
  161. Marshakov A. I., Nenasheva T. A. Kinetika aktivnogo rastvorenija navodorozhennoj uglerodistoj stali v sul’fidsoderzhashhej srede, imitirujushhej gruntovyj jelektrolit. Korrozija: materialy, zashhita. 2010. T. 46. No 7. S. 1–6.
  162. Kryzhanivskyi Ye. I., Nykyforchyn H. M. Koroziino-vodneva dehradatsiia naftovykh i hazovykh truboprovodiv ta yii zapobihannia. V 3 t. T.1 Osnovy otsiniuvannia dehradatsii truboprovodiv / pid red. V. V. Panasiuka. Ivano-Frankivsk: Vydavnytstvo Ivano-Frankivskoho nats. tekhn. un-tu nafty i haza. 2011. 457 S.
  163. Harisov R. A. Ocenka skorosti lokalizovannoj korrozii i ohrupchivanija metalla trub. Transport i hranenie nefteproduktov i uglevodorodnogo syr’ja. 2013. No 3. S. 24–27.
  164. Bueno A.H.S., Moreira E.D., Gomes J.A. C.P. Evaluation of stress corrosion cracking and hydrogen embrittlement in an API grade steel. Engineering Failure Analysis. 2014. № 36. Р. 423–431.
  165. Xue H. B., Cheng Y. F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corrosion Science. 2011.Vol. 53. № 4. P. 1201–1208.
  166. The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions / T. V. Shibaeva et al. Corrosion Science. Vol. 2014. № 80. P. 299–308.
  167. Huang F., Liu J., Deng Z.J., Cheng J.H., Lu Z.H., Li X. G. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel. Materials Science and Engineering: A. 2010. Vol. 527. № 26. P. 6997–7001.
  168. Cheng Y. F. Thermodynamically modeling the interactions of hydrogen, stress and anodic dissolution at crack-tip during near-neutral pH SCC in pipelines. Journal of Materials Science. 2007. Vol. 42. № 8. P. 2701–2705.
  169. Kim S. J., Kim, K. Y. A review of corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Journal of Welding and Joining. 2014. Vol. 32. № 5. P. 443–450.
  170. Effect of hydrogen charging on the mechanical properties of advanced high strength steels / Depover T. et al. International Journal of Hydrogen Energy. 2014. Vol. 39. № 9. P. 4647–4656.
  171. Briottet L., Batisse R., de Dinechin G., Langlois P., Thiers L. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. International Journal of Hydrogen Energy. 2012. Vol. 37. № 11. P. 9423–9430.
  172. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures / B. Meng et al. International Journal of Hydrogen Energy. 2017. Vol. 42. № 11. P. 7404–7412.
  173. Hydrogen embrittlement susceptibility of a high strength steel X80 / I. Moro I. et al. Materials Science and Engineering: A. 2010. Vol. 527. № 27-28. P. 7252–7260.
  174. Wang R. Effects of hydrogen on the fracture toughness of a X70 pipeline steel. Corrosion Science. 2009. Vol. 51. № 12. P. 2803–2810.
  175. Capelle J., Gilgert J., Dmytrakh I., Pluvinage G. The effect of hydrogen concentration on fracture of pipeline steels in presence of a notch. Engineering Fracture Mechanics. 2011. Vol. 78. № 2. P. 364–373.
  176. Hardie D., Charles E.A., Lopez A.H. Hydrogen embrittlement of high strength pipeline steels. Corrosion Science. 2006. Vol. 48. № 12. P. 4378–4385.
  177. Dong C. F., Liu Z. Y., Li X. G., Cheng Y. F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. International Journal of Hydrogen Energy. 2009. Vol. 34. № 24. P. 9879–9884.
  178. Cabrini M., Lorenz, S., Pellegrini S., Pastore T. Environmentally assisted cracking and hydrogen diffusion in traditional and high-strength pipeline steels. Corrosion Reviews. 2015. Vol. 33. № 6. P. 529–545.
  179. Hizhnjakov V. I. Soprotivlenie materialov. Korrozionnoe rastreskivanie : ucheb. posobie dlja prikladnogo bakalavriata. Moskva : Izdatel’stvo Jurajt. 2019.
  180. Hizhnjakov V. I., Negodin A. V. Korrozionnoe rastreskivanie katodno zashhishhaemyh gazonefteprovodov v processe dlitel’noj jekspluatacii. Vestnik TGASU. 2017. No 4. S. 82–92.
  181. Hizhnjakov V. I., Kudashkin Ju. A., Hizhnjakov M. V., Zhilin A. V. Korrozionnoe rastreskivanie naprjazhenno-deformirovannyh truboprovodov pri transporte nefti i gaza. Izvestija Tomskogo politehnicheskogo universiteta. 2011. T. 319, No 3. S. 84–89.
  182. Beavers J.A., Neil G. External Corrosion of Oil and Natural Gas Pipelines. ASM Handbook, Volume 13C, Corrosion: Environments and Industries (№ 05145) Corrosion in Specific Industries. Р. 1015–1025.
  183. Johnson D. Stress Corrosion Cracking Overview & Introduction. 2003.
  184. Stress corrosion cracking URL : https://www.slideshare.net/SHIVAJICHOUDHURY/damage-mechanism-in-boiler-thermal-power-plant (дата звернення 07.02.2020).
  185. Li J., Elboujdaini M., Fang B., Revie R.W., Phaneuf M.W. Microscopy study of intergranular stress corrosion cracking of X-52 line pipe steel. Corrosion. 2006. Vol. 62. № 4. P. 316–322.
  186. Arafin M. A., Szpunar J. A. A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corrosion Science. 2009. Vol. 51. № 1. P. 119–128.
  187. Ryakhovskikh I. V., Bogdanov R. I., Ignatenko V. E. Intergranular stress corrosion cracking of steel gas pipelines in weak alkaline soil electrolytes. Engineering Failure Analysis. 2018. Vol. 94. P. 87–95.
  188. Zhang X.-Y., Lambert, S. B., Sutherby, R., Plumtree, A. Transgranular stress corrosion cracking of X-60 pipeline steel in simulated ground water. Corrosion. 1999. Vol. 55. № 3. P. 297–305.
  189. Gu B., Yu W. Z., Luo J. L., Mao X. Transgranular stress corrosion cracking of X-80 and X-52 pipeline steels in dilute aqueous solution with near-neutral pH. Corrosion. 1999. Vol. 55. № 3. P. 312–318.
  190. 190. Chen W., Kania R., Worthingham R., Kariyawasam S. crack growth model of pipeline steels in near-neutral pH soil environments. 2008. In International Pipeline Conference. 48586, P. 713–722.
  191. 19 Kang Y., Chen W., Kania R., Boven G.V., Worthingham R. Simulation of crack growth during hydrostatic testing of pipeline steel in near-neutral pH environment. Corrosion Science. 2011. Vol. 53. № 3. P. 968–975.
  192. Osobennosti projavlenija korrozionnogo rastreskivanija pod naprjazheniem magistral’nyh gazoprovodov na territorii Rossijskoj Federacii / Bogdanov R. I. i dr. Nauchno-tehnicheskij sbornik «Vesti gazovoj nauki». 2016. T. 27. No 3. S. 12–22.
  193. 193. King F. Development of Guidelines for Identification of SCC Sites and Estimation of Re-inspection Intervals for SCC Direct Assessment. 2010.
  194. Zheng W., Elboujdaini M., Revie R.W. Stress corrosion cracking in pipelines. Stress Corrosion Cracking Theory and Practice. Woodhead Publishing Series in Metals and Surface Engineering. 2011. P. 749–771.
  195. Semenova I. V., Florianovich G. M., Horoshilov A. V. Korrozija i zashhita ot korrozii / pod red. I. V. Semenovoj. 3-e izd., pererab. i dop. M. : Fizmatlit. 2010. 416 s.
  196. Jenciklopedija polimerov. T. 3. Polioksadiazoly–Ja (pod red. Kabanova V.A. M. : Sovetskaja jenciklopedija, 1977. 1151 s.
  197. GOST 9.710-84. ESZKS. Starenie polimernyh materialov. Terminy i opredelenija. Moskva, 1988.12 s.
  198. McHattie J. S., Perez I. L., Kehr J. A. Factors affecting cathodic disbondment of epoxy coatings for steel reinforcing bars. Cement and Concrete Composites. 1996. Vol. 18. № 2. P. 93–103.
  199. Rahman N. A. I. A., Ismil M. C., Man Z. Modification of epoxy with polyaniline and its effects on cathodic disbondment factors. ARPN Journal of Engineering and Applied Sciences. 2016. Vol. 11. №. 22. P. 12973–12978.
  200. Steel Corrosion under a disbonded coating with a holiday — Part 2: Corrosion behavior / Song F. M., Kirk D. W., Graydon J. W., Cormack D. E. Corrosion. 2003. Vol. 59. № 1. P. 42–49.
  201. Cherry B. W. , Gould A. N. disbondment mechanisms for a heat shrink polyethylene coating on a cathodically protected hot pipeline. The Journal of Adhesion. 1991. Vol. 33. P. 223–237.
  202. Carpentiers Ph., Gregor R., Pourbaix A. Corrosion under disbоnded coatings of cathodically protected pipelines. Rapports Techniques CEBELCOR, RT.331. 2004.
  203. Turnbull A., May A. T. Cathodic protection of crevices in BS 4360 50D structural steel in 3.5% NaCl and in seawater. Materials Performance.1983.Vol. 22. № 10. P. 34–38.

204.Sridhar N., Dunn D. S., Seth M. Application of a general reactive transport model to predict environment under disbonded coatings. Corrosion. 2001. Vol. 57.  № 7. P. 598–613.

  1. Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment / M. Yan et al. Corrosion Science. 2015. Vol. 93. P. 27–38.
  2. Yan M., Wang J., Han E., Ke W. Local environment under simulated disbonded coating on steel pipelines in soil solution. Corrosion Science. 2008. Vol. 50. № 5. P. 1331–1339.
  3. Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment. Wu T. et al. Corrosion Science. 2019. Vol. 157. P. 518-530.
  4. Beavers J.A., Harle B.A. Mechanisms of high-pH and near-neutral-pH SCC of underground pipelines. In International Pipeline Conference. 1996. June. Vol. 40207. P. 555 – 564.
  5. Mélot D., Paugam G., Roche M. Disbondments of pipeline coatings and their effects on corrosion risks. Journal of Protective Coatings & Linings. 2009. P. 18–31.
  6. Fatehi A., Eslami A., Golozar M. A., Raeissi K., Ashari R. Cathodic protection under a simulated coating disbondment: Effect of sulfate-reducing bacteria. Corrosion. 2019. Vol. 75. № 4. P. 417–423.
  7. Mahdavi F., Forsyth M., Tan M. Y. J. Understanding the effects of applied cathodic protection potential and environmental conditions on the rate of cathodic disbondment of coatings by means of local electrochemical measurements on a multi-electrode array. Progress in Organic Coatings. 2017. Vol. 103. P. 83–92.
  8. Simionesku K., Oprea K. Mehanohimija vysokomolekuljarnyh soedinenij : per. z rum., 2 izd. M.: Mir. 1970. 360 s.
  9. Barambojm N. K. Mehanohimija vysokomolekuljarnyh soedinenij. Monografija/ Izd. 3-e, pererab. i dop. M.: Himija. 1978. 384 s.
  10. A study on crevice corrosion of pipeline steel under disbonded coating holiday in simulated solution of Ku‘erle soil west of China / Y. Song, D. Cuiwei, Z. Xin, L. Xiaogang. In 16 International Corrosion Congress «Corrosion and Protection in High Technology Era» (Beijing, Sept. 19-24, 2005). Beijing, 2005. Р. 4654–4664.
  11. Guermazi N., Elleuch K., Ayedi H.F. The effect of time and aging temperature on structural and mechanical properties of pipeline coating. Materials & Design. 2009. Vol. 30. № 6. P. 2006–2010.
  12. Aginej R. V., Aleksandrov Ju. V. Issledovanie kriteriev JeHZ v otslaivanii izoljacionnogo pokrytija. Territorija neftegaz. 2010. No 2. S. 34–37.

217 Shapoval G. S., Fateev Ju. F., Mikulina O. Je. Vlijanie razlichnyh faktorov na ustojchivost’ k katodnomu otslaivaniju zashhitnyh polimernyh pokritij. Bor’ba s korroziej v neftepererab. i neftehim. prom-sti : tez. dokl. vses. nauch.-tehn. konf. (m.Kirishi, 15 – 17 ijunja, 1988 r.) Moskva. 1988. S. 106–107.

  1. On electrochemical reductive destruction and cathodic disbondmeni of protective polymeric coatings / A. A. Pud, G. S. Shapoval. In 10th Int. Congr. Metal. Corros. (Madras,7 – 11 Nov., 1987.Vol. 2). New Delhi, 1987. Р. 1101–1105.
  2. Investigations on cathodic disbonding of chlorinated rubber coating on mild steel / А. А. Elbasir, J. D. Scantlebury. In 10th Int. Congr. Metal. Corros. (Madras,7 – 11 Nov., 1987.Vol. 2). New Delhi. 1987. Р. 1467–1474.
  3. Roche M., Mélot D., Paugam G. Recent experience with pipeline coating failures. Journal of Protective Coatings and Linings. 2006. Vol. 23. № 10. P. 18.
  4. Xu M., Lam C.N.C., Wong D., Asselin E. Evaluation of the cathodic disbondment resistance of pipeline coatings – A review. Progress in Organic Coatings. 2020. Vol. 146. 105728.
  5. Chen X., Li X. G., Du C. W., Cheng Y. F. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating. Corrosion Science. 2009. Vol. 51. № 9. P. 2242–2245.
  6. Gastaud S. Influence de l’état du revêtement hydrocarboné sur le risque de corrosion des canalisations enterrées de transport de gaz: thèse de doctorat en Génie des Matériaux: 15.12.2002. Lyon (France): Institut National des Sciences Appliquees. 2002. 178 p.
  7. Ashari R., Eslami A., Shamanian M. Corrosion and Electrochemical Conditions of Pipeline Steel under Tape Coating Disbondments: Effect of Disbondment Gap Size and Morphology. Journal of Pipeline Systems Engineering and Practice. 2020. Vol. 11. № 1. 04019051.
  8. Chen X., Du C., Li X., Huang Y. Effects of cathodic potential on the local electrochemical environment under a disbonded coating. Journal of Applied Electrochemistry. 2008. Vol. 39. № 5. P. 697–704.
  9. Yan M.C., Wang J.Q., Han E.H., Ke W. Electrochemical measurements using combination microelectrode in crevice simulating disbonded of pipeline coatings under cathodic protection. Corrosion Engineering, Science and Technology. 2007. Vol. 42. № 1. P. 42–49.
  10. Varela F., Tan M.Y.J., Forsyth M. Understanding the effectiveness of cathodic protection under disbonded coatings. Electrochimica Acta. 2015. Vol. 186. P. 377–390.
  11. Ashari R., Eslami A., Shamanian M., Asghari S. Effect of weld heat input on corrosion of dissimilar welded pipeline steels under simulated coating disbondment protected by cathodic protection. Journal of Materials Research and Technology. 2020. Vol. 9. № 2. P. 2136–2145.
  12. Mahdavi, F., Forsyth, M., Tan, M. Y. J. Understanding the effects of applied cathodic protection potential and environmental conditions on the rate of cathodic disbondment of coatings by means of local electrochemical measurements on a multi-electrode array. Progress in Organic Coatings. 2017. Vol. 103. P. 83–92.
  13. Wang K., Varela F.B., Tana M.Y. Probing dynamic and localised corrosion processes on buried steel under coating disbondments of various geometries. Corrosion Science. 2019. Vol. 150. P. 151–160.
  14. O mehanizme processov, soprovozhdajushhih katodnoe otslaivanie polimernyh pokritij / G. S. Shapoval. Fiz.-him. osnovy dejstvija ingibitorov korrozii met.: tez. dokl. vses. soveshh. (m. Moskva, 16–19 okt., 1989 r.). Moskva. 1989. Ch. 2. S. 26–27.
  15. Vlijanie sostava kompozicionnogo pokrytija na ustojchivost’ k katodnoj poljarizacii podlozhki / G. S. Shapoval, V. I. Myshko, O. Je. Mikulina. 6 Resp. konf. po vysokomolekul. soed. (Kiev, 30 nojab. – 2 dek., 1988 r.). Kiev. 1988. S. 130.
  16. Kuang D., Cheng Y.F. Study of cathodic protection shielding under coating disbondment on pipelines. Corrosion Science. 2015. 99, 249–257.
  17. Latino, M., Varela, F., Tan, Y., & Forsyth, M. The effect of ageing on cathodic protection shielding by fusion bonded epoxy coatings. Progress in Organic Coatings. 2019. Vol. 134. P.58–65.
  18. Roy D., Simon G.P., Forsyth M., Mardel J. Towards a better understanding of the cathodic disbondment performance of polyethylene coatings on steel. Advances in Polymer Technology. 2002. Vol. 21. № 1. Р. 44–58.
  19. Papavinasam S., Doiron A. Relevance of cathodic disbondment test for evaluating external pipeline coatings at higher temperatures / NASE International. Corrsion 2009. Confernce & EXPO. 2009. PAPER 09050. P. 1–15.
  20. Hinton B. R., Charlton P. The influence of substrate surface finish end contamination on the cathodic delamination of an epoxy-polyamide coating from steel. Corrosion Australasia. 1989. Vol.14. № 2. Р. 18–21.
  21. Turnbull A., May A. T. Cathodic protection of crevices in BS 4360 50D structural steel in 3.5% NaCl and in seawater. Materials Performance. 1983. Vol. 22. № 10. P. 34–38.
  22. Song F. M., Kirk D. W., Graydon J. W., Cormack D. E. Steel corrosion under a disbonded coating with a holiday – Part 1: The model and validation. Corrosion. 2002. Vol. 58. № 12. P.1015–1024.
  23. Markin V. S., Zaikov G. E. Diffuzija i himicheskaja reakcija nizkomolekuljarnyh veshhestv v polimerah / Diffuz. processy v protivokorroz. polimer. pokrytijah. : tez. dokl. vses. semin. (g.Moskva, maj, 1988 g.). Moskva, 1988. S.11–14.
  24. Smith H. M., Bird M. F., Penna R. Н. Examination of tests for buried pipe coatings. Materials performance. 1991. Vol. 30. № 12. Р.18–21.
  25. Hromihina V. F., Glazkov V. V., Kotusova F. V. Vlijanie tehnologicheskih parametrov na stojkost’ k katodnomu otslaivaniju izoljacionnyh pokrytij truboprovodov. Izoljacija truboprovodov. Sb. nauch. trudov M., VNIIST. 1982. S. 57–67.
  26. Kamimura T., Kishikawa H. Mechanism of cathodic disbonding of three-layer polyethylene-coated steel pipe. Corrosion. 1998. Vol. 54. № 12. P. 979–987.
  27. 244. Guidetti G. P., Rigosi G. L., Marzola R. The use of polypropylene in pipeline coatings. Progress in Organic Coatings. Vol. 27. № 1-4. Р. 79–85.
  28. Cherry B. W., Gould A. N. Cathodic disbondment mechanisms for a pipeline coating. Corrosion Australasia. 1989. Vol. 14. № 2. P. 8–12.
  29. Stratmann M. 2005 W. R Whitney award lecture: Corrosion stability of polymer-coated metals – New concepts based on fundamental understanding. Corrosion. 2005. Vol. 61. № 12. Р. 1115–1135.
  30. Determination of degradation mechanisms of organic coatings / Bos W. M., Ferrari G. M., De Wit J. H. W. / 16 International Corrosion Congress «Corrosion and Protection in High Technology Era» : (Beijing, Sept. 19-24, 2005). Beijing Chin. Soc. 2005. Р. 3544–3549.
  31. Jekilik G. N. Jelektrohimicheskie metody zashhity metallov : metodicheskoe posobie po speckursu. Rostov-na Donu. 2004. 50 s.
  32. Leidheiser H. Inhibition in the context of coating delamination. Corrosion. 1989. Paper No. 89/142.
  33. Roy D., Simon G. P., Forsyth M. Improved cathodic disbondment performance of polyethylene blends. Polymer Engineering & Science. 2002. Vol. 42. № 4. Р. 781–789.
  34. Kendig M., Addison R., Jeanjaquet S. The mechanism of cathod disbonding of hydroxy-terminated polybutadiene on steel from acoustic microscopy and surface energy analysis. J. Electrochem. Soc. 1990. Vol. 137. № 9. Р. 2690–2697.
  35. Torresi R. M., Souza S., Silva J. E. P., Torresi S. Galvanic coupling between metal substrate and polyaniline acrylic blends: corrosion protection mechanis. Electrochimica Acta. 2005. Vol. 50. №11. Р. 2213–2218.
  36. Oxide/polypyrrole composite films for corrosion protection of iron / Garcia В. et al. J. Electrochem. Soc. 2002. Vol.149. №12. Р. 105–110.
  37. Тuкеn Т., Yazici В., Erbil M. The corrosion behaviour of polypyrrole coating synthesized in phenyiphosphonic acid solution. Appl. Surface Sci. 2006. Vol. 252. №6. Р. 2311–2318.
  38. Osobennosti morfologii antikorrozionnyh pokrytij na osnove termoplastіv / Solov’eva A. B. i dr. Korrozija: materialy, zashhita. 2006. No 3. S. 45–47.
  39. Gumerov K. M., Jamaleev K. M., Agapchev V. I. Jeksperimental’nye issledovanija mehanicheskih svojstv stal’nyh obrazcov, podverzhennyh vozdejstviju izoljacionnyh materialov na osnove neftepolimera. Neftegazovoe delo. 2005. S. 1–10.
  40. Petrunin M. A., Lisovskij A. P., Nazarov A. P., Mihajlovskij Ju. N. Silanovye promotory adgezii. Vlijanie na sklonnost’ k katodnomu otslaivaniju polimernyh pokrytijju Nauch.-tehn. soveshh. Primenenie protivokorroz. pokrytij v gor. h-ve g. Moskvy : sb. tez, dokl. ( g. Moskva, 5 – 6 ijunja, 1989 g.). Moskva, 1989. S. 48–49.
  41. On the development of polypyrrolt coatings with self-healing properties for iron corrosion protection / Paliwoda-Porebska G. et al. Corrosion Science. 2005. Vol. 47. № 12. Р. 3216–3233.
  42. Kumar A., Stephenson L. D., Nurray J. N. Self-healing coatings for steel. Progress in Organic Coatings. 2006. Vol. 5. № 3. Р. 244–253.
  43. Gan F., Sun Z.-W., Sabde G., Chin D.-T. Cathodic protection to mitigate external corrosion of underground steel pipe beneath disbonded coating. Corrosion. 1994. Vol. 50. № 10. Р. 804–816.
  44. Universal’nyj jekspress-metod ispytanij zashhitnyh pokrytij na ustojchivost’ k katodnomu otslaivaniju / V. A. Bagrij, G. S. Shapoval, L. A. Janov i dr. Progres. metody i sredstva zashhity met. i izdelij ot korrozii :tez. dokl. vses. nauch.-tehn. konf., ch. 3, Moskva, 1988. S. 204–205.
  45. Francevich I. N., Pilipenko I. A, Ljashenko M. E. O vlijanii katodnoj poljarizacii stal’nyh gazoprovodov v uslovijah jelektrozashhity na sostojanie izoljacionnogo bitumnogo pokrytija. Voprosy poroshkovoj metallurgii i prochnosti materialov. 1956. Vyp. 3. S. 122–136.

263.Francevich I. N., Ljashenko M. E., Grimajlovskij V. A. Opyt zashhity gazoprovoda Dashava – Kiev ot pochvennoj korrozii i bluzhdajushhih tokov. Zashhita metallov. 1968. T. 4. No 5. S. 597–603.

  1. Shapoval G. S., Bagrij V. A. Effect of some factors on the polymeric coatings-to-cathodic disbanding stability. Key Engineering Materials. 1991. Vol. 20. Р. 1107–1112.
  2. Jorcin J.-B., Aragon E., Merlatti C, Pe´be`re N. Delaminated areas beneath organic coating: A local electrochemical impedance approach. Corrosion Science. 2006. Vol. 48. № 7. Р. 1779–1790.
  3. Souto R. M., Gonzdlez-Garciia Y., Gonzalez S. In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals. Corrosion Science. 2005. Vol. 47. № 12. Р. 3312–3323.
  4. Jing X., Wang Y., Qiang J. Anticorrosive property of emeraldine base form of polyaniline. Journal of Chinese Society For Corrosion and Protection. 2004. № 5. Р. 301–305.
  5. Higgins G. L. Aspects of cathodic disbondment testing at evaluated temperature. Pyrene Chemical Services Ltd., Ind. Corr. 1987. Vol. 5. № 1. Р. 12–16.
  6. Zhiming G., Song S., Yunhai X. Study on coating deterioration process with neural network / 16 International Corrosion Congress «Corrosion and Protection in High Technology Era» (Beijing, Sept. 19-24, 2005). Beijing. Chin. Soc. Corros. and Prot. 2005. Р. 2625–2630.
  7. Shesterikov A. G. Povyshenie nadezhnosti jekspluatacii gazovyh mestorozhdenij i PHG metodami korrozionnogo monitoringa : dis. … kand. tehn. nauk: 25.00.17 / nauchn. ruk. Tagirov K.M. Stavropol’: Severo-Kavkazskij gosudarstvennyj tehnicheskij unіversitet. 2005. 159 s.
  8. DSTU 4219-2003. Truboprovodi stalevі magіstral’nі. Zagal’nі vimogi do zahistu vіd korozії. Kiїv. 2003.68 s.
  9. Sergeeva T. K., Tarlinskij V. D., Bolotov A. S. Vlijanie sostojanija vodoroda na korroziju pod naprjazheniem. Stroitel’stvo truboprovodov. 1993. S. 11–13.
  10. Sergeeva T. K., Volgina N. I., Iljuhina M. V., Bolotov A. S. Korrozionnoe rastreskivanie gazoprovodnyh trub v slabokislom grunte. Gazovaja promyshlennost’. 1995. # 4. S. 34–38.
  11. Jushmanov V. N. Sovershenstvovanie metodov predotvrashhenija stress-korrozii metalla trub magistral’nyh gazoprovodov: avtoref. diss. … kand. tehn. nauk: 25.00.19: zashhita 23.03.12 / nauchn. ruk. Aleksandrov Ju.V. Uhta: Uhtinskij gosudarstvennyj tehnicheskij universitet. 2012. 24 s.
  12. Tkachenko V. N. Jelektrohimicheskaja zashhita truboprovodnyh setej : uchebnoe posobie. M.: Strojizdat. 2004. 320 s.
  13. Zashhita metallicheskih sooruzhenij ot korrozii : spravochnik / Strizhevskij I. V., Zinevich A. M., Nikol’skij K. K. i dr.. M. : Nedra, 1981. 293 s.
  14. Jones D.A. Analysis of cathodic protection criteria. Corrosion. 1972. Vol. 28. № 11. Р. 421–423.
  15. A.W. Peabody. Peabody’s control of pipeline corrosion / editor Bianchetti R.L. Houston, 2001. 347 p.
  16. Paul Guyer J. An introduction to cathodic protection. 2009. 42 p.
  17. Hizhnjakov V.I. O kontrolirujushhej roli plotnosti toka katodnoj zashhity pri obrazovanii korrozionnyh i stress-korrozionnyh defektov na vneshnej poverhnosti magistral’nyh gazonefteprovodov. Vestnik TGU. 2013. T.18. Vyp. 5. S.2248–2252.
  18. GOST R 51164-98. Truboprovody stal’nye magistral’nye. Obshhie trebovanija k zashhite ot korrozii. Moskva, 1999. 45 s.
  19. GOST 9.602-2016 Edinaja sistema zashhity ot korrozii i starenija. Sooruzhenija podzemnye. Obshhie trebovanija k zashhite ot korrozii. Moskva, 2016. 88 s.
  20. GOST 9.602-2005. Edinaja sistema zashhity ot korrozii i starenija. Sooruzhenija podzemnye. Obshhie trebovanija k zashhite ot korrozii. Moskva, 2010. 55 s.
  21. DSTU B V.2.5-29:2006. Zovnіshnі merezhі ta sporudi. Sistema gazopostachannja. Gazoprovodi pіdzemnі stalevі. Zagal’nі vimogi do zahistu vіd korozії. Kiїv, 2006, 129 s.
  22. EN 12954:2001. Cathodic protection of buried or immersed metallic structures – General principles and application for pipelines. London, 2001. 34 p.
  23. NACE Standard RP-01-69-2007. Control of External Corrosion on Underground or Submerged Metallic Piping Systems. Huston, 2007. 31 p.
  24. Zmina № 1 do DSTU 4219-2003. Truboprovody stalevi mahistralni. Zahalni vymohy do zakhystu vid korozii. Kyiv, 2018. 15 s.
  25. GOST 9.901.2-89. Edinaja sistema zashhity ot korrozii i starenija. Metally i splavy. Ispytanija na korrozionnoe rastreskivanie obrazcov v vide izognutogo brusa. Moskva, 1999. 6 s.
  26. GOST 9.901.1-89. Edinaja sistema zashhity ot korrozii i starenija. Metally i splavy. Obshhie trebovanija k metodam ispytanij na korrozionnoe rastreskivanie. Moskva, 1991. 10 s.
  27. Pisarenko G. S., Agaev V. A., Kvitka A. L., Popkov V. G. Umanskij Je. S. Soprotivlenie materialov. Uchebnik. 4-e izd., pererab. i dop. Kiev: Vishha shkola, 1979. 696 s.
  28. Nyrkova L. I., Melnychuk S. L., Osadchuk S. O., Rybakov A. O., Darahanova N. O. Rozroblennia metodychnoho pidkhodu do doslidzhennia koroziinoho roztriskuvannia vid napruzhennia z urakhuvanniam kompleksnoho vplyvu chynnykiv. Rozvidka i rozrobka naftovykh i hazovykh rodovyshch. 2017. T. 63. № 2. S.59–65.
  29. Lur’e Ju. Ju. Spravochnik po analiticheskoj himii. M. : Himija. 1979. 480 c.

293.Prystrii dlia doslidzhennia skhylnosti trubnykh stalei do koroziinoho roztriskuvannia vid napruzhennia: pat. na vynakhid 107229 Ukraina: MPK G01N 17/00, G01N 17/02 / Nyrkova L. I., Rybakov A. O., Osadchuk S. O., Melnychuk S. L., Hapula N. O., Yakovenko H. M.; vlasnyk IEZ im. Ye. O. Patona NAN Ukrainy.  № a20124719; zaiavl 21.12.2012, opubl. 10.12.2014, Biul. № 23.

  1. Sposib vyprobuvan skhylnosti trubnykh stalei do koroziinoho roztriskuvannia vid napruzhennia za vplyvu zminnoho zmochuvannia: pat. na vynakhid 107381 Ukraina: MPK G01N 17/00, G01N 3/00, G01N 3/08 (2006.01), G01N 3/20 (2006.01) / Nyrkova L. I., Rybakov A. O., Osadchuk S. O., Melnychuk S. L., Hapula N. O.; vlasnyk IEZ im. Ye. O. Patona NAN Ukrainy. № a201214721; zaiavl 25.12.2012; opubl. 10.12.2014, Biul. № 24.
  2. Nyrkova L. Stress-corrosion cracking of pipe steel under complex influence of factors. Engineering Failure Analysis. 2020. Vol. 116. 104757.
  3. Nyrkova L. I. Analiz vplyvu kombinatsii stres-koroziinykh chynnykiv na koroziine roztriskuvannia vid napruzhennia trubnoi stali pry rH, blyzkykh do neitralnykh. VisnykNTU «KhPI». 2017. T. 1238, № 16. S.12–16.
  4. Nyrkova L. I., Prokopchuk S. N., Lisovoj P. Je. Stress-korrozionnoe rastreskivanie magistral’nyh gazoprovodov: prichiny vozniknovenija i faktory. Perspektyvni materialy ta procesy v prykladnij elektroximiyi: Monohrafiya. Barsukov V. Z., Borysenko Yu. V., Xomenko V. H., Linyucheva O. V.; za zah. red. V. Z. Barsukova. Kyyiv: KNUTD, 2018. S. 156–162.
  5. Nyrkova L. I., Mel’nychuk S. L., Osadchuk S. O., Rybakov A. O. Corrosion cracking of Kh70 pipe steel for potentials close to the maximum protective potential. Materials Science. 2019. Vol. 54. № 4. P. 567–572
  6. GOST 5639-82. Stali i splavy. Metody vyjavlenija i opredelenija velichiny zerna. Moskva, 1983. 21 s.
  7. GOST 5640-68. Stal’. Metallograficheskij metod ocenki mikrostruktury listov i lent. Moskva, 1970. 17 s.
  8. GOST 1778-70. Stal’. Metallograficheskie metody opredelenija nemetallicheskih vkljuchenij. Moskva, 1970. 50 s.
  9. Nyrkova L., Rybakov A., Melnychuk S., Osadchuk S. Sensitivity of metal in pipes of steel of a controllable rolling before stress-corrosion cracking at near-neutral pH. Scientific Journal «ScienceRise». 2019. T. 2-63. № 9-10. Р.17–27.
  10. Nyrkova L. І., Osadchuk S. О., Rybakov А. О., Mel’nychuk S. L. Methodical approach and a criterion for the evaluation of the susceptibility of pipe steel to corrosion cracking. Materials Science. 2020. Vol. 55. No 5. P. 625-632
  11. Nyrkova L. I. The influence of external and internal factors on stress corrosion cracking of low-alloyed pipe steel. Journal of Hydrocarbon Power Engineering. 2020.Vol. 7. Issue 1. Р. 8–15.
  12. Doslidzhennia vplyvu produktiv destruktsii polimernoho pokryvu na koroziini vlastyvosti trubnoi stali u neitralnomu rozchyni / L. Nyrkova ta in. Fizyko-khimichna mekhanika materialiv. 2012. Spetsialnyi vypusk №9. S.662–667.
  13. Osadchuk S. O., Nyrkova L. I., Rybakov A. O., Melnychuk S. L. Vplyv rivnia katodnoi poliaryzatsii na zakhysni vlastyvosti novoho ta zistarenoho strichkovoho pokryttiv dlia mahistralnykh truboprovodiv. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu. 2017. T. 42, № 1. S. 62–66.
  14. Osadchuk S. O., Nyrkova L. I., Rybakov A. O., Melnychuk S. L. Influence of cathodic polarization on protective properties of thermoreactive coatings for main pipelines. Journal of Hydrocarbon Power Engineering. 2018. Vol. 5. № 2. P. 52–58.
  15. Vplyv produktiv elektrokhimichnoi destruktsii zakhysnoho pokryvu na vlastyvosti trubnoi stali u slabkoluzhnomu seredovyshchi / S.O. Osadchuk ta in. Fizyko-khimichna mekhanika materialiv. 2014. T. 50. № 3. S. 135–141.
  16. Influence of Electrochemical Destruction Products of Protective Coating On Properties of Pipe Steel in Neutral Medium / L. Nyrkova et al. Materials Today: Proceedings. 2019. V.6. № 2. P278–287.
  17. Vplyv katodnoi poliaryzatsii na zakhysni vlastyvosti polimernykh pokryviv / S. Osadchuk ta in. Fizyko-khimichna mekhanika materialiv. 2014. Spetsialnyi vypusk № 10. S.459–464.
  18. Osadchuk S. O., Nyrkova L. I, Rybakov A. O., Lukovych V. V. Doslidzhennia vplyvu katodnoi poliaryzatsii u 3%-nomu rozchyni NaCl na destruktsiiu polimernoho strichkovoho pokryvu u stendovykh umovakh. Matematycheskye modely y vychyslytelnyi eksperyment v metallovedenyy. Trude YPM im. Y.N. Frantsevycha NAN Ukrayny : seryia «Modelyrovanye v materyalovedenyy». 2014. Vyp. 16. S.13–19.
  19. Tarutina L. I., Pozdnjakova F. O. Spekral’nyj analiz polimerov. Leningrad : Himija, 1986. 246 s.
  20. Infrakrasnye spektry pogloshhenija polimerov i vspomogatel’nyh veshhestv / pod red.. V. M. Chulanovskogo. Leningrad : Himija, 1969. 356 s.
  21. Kupcov A. H., Zhizhin G. N. Fur’e-KR i Fur’e-IK-spektry polimerov.  M. : Fizmatlit, 2001. 581 s.
  22. Hardie D., Charles E., Lopez A. Hydrogen embrittlement of high strengthpipeline steels. Corrosion Science. 2006. Vol. 48. № 12. Р. 4378–4385.
  23. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel / Ramirez E. et al. Corrosion Science. 2008. Vol. 50. № 12. P. 3534–3541.
  24. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments / Nanninga N. E. et al. Corrosion Science. Vol. 59. 2012. P. 1–9.
  25. Van Leeuwen H.P. Plateau velocity of SCC in high strength steel—A quantitative treatment. Corrosion. 1975. Vol. 1. № 2. Р. 42–50.
  26. Capelle J., Dmytrakh I., Pluvinage G. Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength. Corrosion Science. 2010. V. 52. № 5. P. 1554-1559.
  27. Dong C.F., Liu Z.Y., Li X., Cheng Y.F. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. International Journal of Hydrogen Energy. 2009. Vol. 34. № 24. P. 9879–9884.
  28. Li H. L., Gao K. W., Qiao L. J., Wang Y. B., Chu W. Y. Strength effect in stress corrosion cracking of high-strength steel in aqueous solution. Corrosion. 2001. Vol. 57. № 4. P. 295–299.
  29. Cheng Y. F., Niu L. Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution. Electrochemistry Communications. 2007. Vol. 9. № 4. P. 558–562.
  30. Zhang G. A., Cheng Y. F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution. Corrosion Science. 2009. Vol. 51. № 8. P. 1714–1724.
  31. GOST 9.908-85. Edinaja sistema zashhity ot korrozii i starenija. Metally i splavy. Metody opredelenija pokazatelej korrozii i korrozionnoj stojkosti. Moskva, 1987. 18 s.
  32. Nyrkova L. I., Melnychuk S. L., Borysenko Yu. V. Influence of strength properties of pipe steel on its corrosion resistance and electrochemical characteristics in solutions of different corrosivity / Promising Materials and Processes in Technical Electrochemistry: Monograph. Barsukov V. Z., Borysenko Yu. V., Borysenko Yu.V., Linyucheva O. V, Senyk I. V., Khomenko V. G.; editor-in-chief Barsukov V. Z. Kyiv: KNUTD, 2017. P. 110–118.
  33. Nyrkova L. I., Havrylishyna O. V., Borysenko Yu. V. Elektrokhimichni ta koroziino-mekhanichni vlastyvosti trubnoi stali riznoi katehorii mitsnosti v modelnomu hruntovomu elektroliti. Visnyk Kyivskoho natsionalnoho universytetu tekhnolohii ta dyzainu : seriia «Tekhnichni nauky». 2018. T. 126. № 5. S. 99–105.
  34. Nyrkova L. Elektrokhimichni ta koroziino-mekhanichni vlastyvosti trubnoi stali riznoi katehorii mitsnosti. VIII Ukrainskyi zizd z elektrokhimii ta VI Naukovo-praktychnyi seminar studentiv, aspirantiv i molodykh uchenykh «Prykladni aspekty elektrokhimichnoho analizu», prysviacheni 100-richchiu Natsionalnoi akademii nauk Ukrainy: zbirnyk naukovykh prats v 2-kh chastynakh (m. Lviv, 4-7 chervnia 2018 r.), chastyna 1. A. O. Omelchuk, R. Ye. Hladyshevskyi, O. V. Reshetniak (red.). Lviv, 2018. S. 26–28.
  35. Havrylishyna O. V. Koroziine roztriskuvannia trubnoi stali za sumisnoho vplyvu koroziinoho seredovyshcha ta navedenoho zakhysnoho potentsialu / O. V. Havrylishyna; nauk. ker. L. I. Nyrkova, Yu. V. Borysenko. Naukovi rozrobky molodi na suchasnomu etapi : tezy dopovidei XVII Vseukrainskoi naukovoi konferentsii molodykh vchenykh ta studentiv (26-27 kvitnia 2018 r., Kyiv). Kyiv : KNUTD, 2018. T. 2 : Mekhatronni systemy i kompiuterni tekhnolohii. Resursozberezhennia ta okhorona navkolyshnoho seredovyshcha. S. 611–612.
  36. Nyrkova L., Rybakov A., Melnychuk S., Osadchuk S. Vplyv pidvyshchennia kharakterystyk mitsnosti trubnoi stali na koroziini vlastyvosti mahistralnykh truboprovodiv v umovakh kompleksnoho protykoroziinoho zakhystu. Fizyko-khimichna mekhanika materialiv. 2016. Spetsialnyi vypusk №11. S. 312–318.
  37. Sposib otsiniuvannia skhylnosti trubnoi stali do koroziinoho roztriskuvannia vid napruzhennia za chasovym kryteriiem: pat. na vynakhid 119578 Ukraina: MPK8: G01N 17/00, G01N 3/60 (2006.01), G01N 33/20 (2019.01), G01N 33/205 / Nyrkova L. I., Melnychuk S. L., Rybakov A. O., Darahanova N. O., Osadchuk S.O.; vlasnyk IEZ im. Ye. O. Patona NAN Ukrainy. № a201704686; zaiavl 15.05.2017; opubl. 10.07.2019, Biul. №13.
  38. Zhukovec I.I. Mehanicheskie ispytanija metal lov. Ucheb. dlja sred. PTU. – 2-e izd., pererab. i dop. M.: Vyssh.shk., 1986. 199 s
  39. GOST 15140-78. Materialy lakokrasochnye. Metody opredelenija adgezii. Moskva, 1979. 10 s.
  40. Nyrkova L. I., Osadchuk S. O., Lukovych V. V. Doslidzhennia protsesiv poliaryzatsii ta vidsharuvannia zakhysnykh polimernykh pokryttiv vid poverkhni zrazkiv trubnoi stali. Matematicheskie modeli i vychislitel’nyj jeksperiment v metallovedenii. Trudy IPM im. I. N. Francevicha NAN Ukrainy: serija «Modelirovanie v materialovedenii». 2016. Vyp. 18. S.8–16.
  41. Javidi M., Horeh S. B. Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel. Corrosion Science. 2014. Vol. 80. P. 213–220.
  42. Stress corrosion cracking behavior of X90 pipeline steel and its weld joint at different applied potentials in near-neutral solutions / Jinheng L. et al. Natural Gas Industry B. 2019. Vol. 6, № 2. P. 138144.
  43. GOST R 9.915-2010. Metally, splavy, pokrytija, izdelija. Metody ispytanij na vodorodnoe ohrupchivanie. Moskva, 2011. 32 s.
  44. Nyrkova L. І. Corrosion cracking of Kh70 pipe steel under the conditions of cathodic protection. Materials Science. 2020. Vol. 56, No. 2. P.273–277.
  45. Papavinasam S., Doiron A. Relevance of cathodic disbondment test for evaluating external pipeline coatings at higher temperatures. NASE corrosion control 2009. Confernce & EXPO. Paper 09050. P. 1–15.
  46. Polutrenko M. S. Ekologіchna bezpeka ekspluatacії magіstral’nih gazoprovodіv. Naftogazova galuz’ Ukraїni. 2014. No 5. S. 45–48.
  47. Klimov P. V. Issledovanie i razrabotka metodov tormozhenija stress-korrozii na magistral’nyh gazoprovodah : avtoref. diss. … dokt. tehn. nauk: 25.00.19: zashhita 16.03.12 / nauchn. kons. Gumerov K.M. Ufa: GUP «Institut problem transporta jenergoresursov», 2012. 46 s.
  48. Akbashev R. M., Tkachenko D. A., Kurdjumov N. I. Osobennosti razrushenija truboprovodov pod vlijaniem stress-korrozionnyh povrezhdenij i ih ocenka v processe tehnicheskogo diagnostirovanija pri provedenii jekspertizy promyshlennoj bezopasnosti. Nauchnyj zhurnal. 2016. T. 3. No 4. S. 23–27.
  49. Optimizacija planirovanija remonta gazoprovodov, podverzhennyh korrozionnomu rastreskivaniju pod naprjazheniem, s ispol’zovaniem avtomatizirovannyh sistem / Kuimov S. N. i dr. Nauchno-tehnicheskij sbornik «Vesti gazovoj nauki». 2015. T. 27. No 3. S. 131–138.
  50. Abramjan S. G., Savenja S. N., Ushakov A. P. Vychislitel’naja tehnologija «pipest» dlja ocenki resursa magistral’nyh gazoprovodov. Internet-vestnik VolgGASU. Ser.: Stroit. informatika. 2008. Vyp. 3. 6. S. 1–7.
  51. Mitrofanov A. V., Kichenko S. B. Principy prognozirovanija rabotosposobnosti podzemnyh truboprovodov po rezul’tatam jelektrometricheskih i vnutritrubnyh obsledovanij. Praktika protivokorrozionnoj zashhity. 2000. No 4. S. 18–32.
  52. Mirzoev A. M., Ivashhenko M. S., Marshakov A. I. Nejrosetevaja model’ stress-korrozionnoj povrezhdennosti uchastkov linejnoj chasti magistral’nyh gazoprovodov. Nauchno-tehnicheskij sbornik «Vesti gazovoj nauki». 2016. T. 27. No 3. S. 108–112.
  53. STO Gazprom 2-2.3-173-2007. Instrukcija po kompleksnomu obsledovaniju i diagnostike magistral’nyh gazoprovodov, podverzhennyh korrozionnomu rastreskivaniju pod naprjazheniem. 2008. 29 s.
  54. Poljakov S. G., Rybakov A. A., Nyrkova L. I. Jelektrohimicheskaja mikroprocessornaja sistema korrozionnogo monitoringa truboprovodov. Problemy koroziyi i protykorozijnoho zaxystu materialiv. 1998. S. 482–485.
  55. Poljakov S. G., Rybakov A. A., Nyrkova L. I. Jelektrohimicheskie metody kontrolja korrozionnogo sostojanija truboprovodov. Fizyko-ximichna mexanika materialiv. 2001. Special”nyj vypusk № 2. Elektroximichnyj zaxyst i korozijnyj kontrol”. S. 16–21.
  56. Poljakov S., Rybakov A., Nyrkova L. Primenenie metodov jelektrohimicheskogo monitoringa dlja zashhity i kontrolja korrozionnogo sostojanija magistral’nyh truboprovodov. Fizyko-ximichna mexanika materialiv. 2002. Special”nyj vypusk № 3. Problemy koroziyi i protykorozijnoho zaxystu materialiv. S. 745–749.
  57. Poljakov S. G., Nyrkova L. I., Klimenko A. V., Kovalenko S. Ju. Monitoring korrozionnogo sostojanija magistral’nyh truboprovodov s pomoshh’ju metoda jelektrohimicheskogo shuma. Fizyko-ximichna mexanika materialiv. 2006. Special”nyj vypusk № 5. S. 273–278.
  58. Poljakov S. G., Nyrkova L. I., Klimenko A. V., Mel’nichuk S. L. Korrozionnyj monitoring magistral’nyh gazoprovodov metodom jelektrohimicheskogo shuma. Fizyko-ximichna mexanika materialiv. 2007. Special”nyj vypusk № 6. S. 61–66.
  59. Poliakov S., Klymenko A., Nyrkova L., Malkova O. Elektrokhimichnyi monitorynh mahystralnykh truboprovodiv na koroziino-nebezpechnykh diliankakh. Fizyko-khimichna mekhanika materialiv. 2008. Spetsialnyi vypusk № 7. S. 761–866.
  60. Osoblyvosti vykorystannia metodu poliaryzatsiinoho oporu dlia vymiriuvannia shvydkosti hruntovoi korozii metalu truboprovodu / S. H. Poliakov ta in. Fizyko-khimichna mekhanika materialiv. 2010. Spetsialnyi vypusk №8. S. 593–598.
  61. Poliakov S. H., Nyrkova L. I., Klymenko A. V., Kovalenko S. Yu. Stvorennia elektrokhimichnykh system aktyvnoho monitorynhu koroziinoho stanu mahistralnykh truboprovodiv. Tsilova kompleksna prohrama NAN Ukrainy «Problemy resursu i bezpeky ekspluatatsii konstruktsii, sporud ta mashyn» : zbirnyk naukovykh statei za rezultatamy, otrymanymy v 2004-2006 rr. Hauk. kerivnyk B. Ye. Paton. Kyiv, 2006. S. 315–318.
  62. Poliakov S. H., Nyrkova L. I., Melnychuk S. L., Osadchuk S. O, Klymenko A. V. Metodychnyi pidkhid do vyvchennia stres-koroziinoho roztriskuvannia mahistralnykh truboprovodiv. Tsilova kompleksna prohrama NAN Ukrainy «Problemy resursu i bezpeky ekspluatatsii konstruktsii, sporud ta mashyn» : zbirnyk naukovykh statei za rezultatamy, otrymanymy v 2007–2009 rr. Hauk. kerivnyk B. Ye. Paton. Kyiv, 2009.   S. 388–392.
  63. Vidnoshennia strumu katodnoho zakhystu do hranychnoho dyfuziinoho yak dodatkovyi kryterii katodnoho zakhystu / L. I. Nyrkova ta in. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu. 2019. T. 47. № 2. S. 23–31.
  64. Vplyv korozyvnosti seredovyshcha na spivvidnoshennia strumu katodnoho zakhystu do hranychnoho dyfuziinoho na trubnii stali Kh70 / L.I. Nyrkova ta in. Fizyko-khimichna mekhanika materialiv. 2020. T.56. № 3. S. 119–125.
  65. Pervynnyi koroziino-vymiriuvalnyi peretvoriuvach: pat. na korysnu model 41966 Ukraina: MPK G01N 17/00. Poliakov S. ., Nyrkova L. I., Hapula N. O., Melnychuk S. L..; vlasnyk IEZ im. Ye. O. Patona. № u200807512; zaiavl. 02.06.2008; opubl. 25.06.2009, Biul. № 12.
  66. Pervynnyi peretvoriuvach dlia vymiriuvannia potentsialiv mahistralnykh truboprovodiv: pat. na korysnu model 53796 Ukraina: MPK G01N 23/00 / Poliakov S. H., Nyrkova L. I., Hapula N. O., Melnychuk S. L., Klymenko A. V.; vlasnyk IEZ im. Ye. O. Patona. № u200913918; zaiavl. 30.12.2009; opubl. 25.10.2010, Biul. № 20.
  67. Poljakov S. G., Rybakov A. A., Nyrkova L. I. Korrozionnyj monitoring magistral’nyh neftegazoprovodov. Fizyko-ximichna mexanika materialiv. 2000. Special”nyj vypusk № 1. Problemy koroziyi i protykorozijnoho zaxystu materialiv. S. 676–681.
  68. Nyrkova L. I., Osadchuk S. A., Shpil’skij I. M. Ocenka verojatnosti stress-korrozionnogo rastreskivanija uchastka magistral’nogo gazoprovod. Nadezhnost’ i bezopasnost’ magistral’nogo truboprovodnogo transporta: tez. dokl. IX mezhdunar. nauchno-tehnicheskoj konf., Novopolock (Belarus’). 2018. S. 100–101.
  69. Poljakov S. G., Ribakov A. O., Nyrkova L. I. Komp’juternye programmy rascheta jeffektivnosti zashhity truboprovodov metodom nelinejnoj poljarizacii. Avtomaticheskaja svarka. 2005. No 12. S. 7–11.
  70. Andreikiv O. E., Hembara O. V., Tsyrul’nyk O. T., Nyrkova L. I. Evaluation of the residual lifetime of a section of a main gas pipeline after long-term operation. 2012. Materials science. Vol. 48. No 2. P. 231–238.
  71. Andreikiv O. Ye., Hembara O. V., Tsyrulnyk O. T., Nyrkova L. I. Otsinka lokalnoho poshkodzhennnia trub mahistralnykh hazoprovodiv v umovakh hruntovoi korozii. Fizyko-khimichna mekhanika materialiv. 2012. Spetsialnyi vypusk №9. S.636-641.
  72. SNiP 2.05.06-85. Magistral’nye truboprovody. Moskva, 1986. 71 s.
  73. SNiP III-42-80* Magistral’nye truboprovody. Moskva, 1981. 75 s.
  74. Nirkova L. I. Ocenka verojatnosti vozniknovenija korrozionnogo rastreskivanija pod naprjazheniem uchastka magistral’nogo gazoprovoda na osnove analiza dannyh proektno-ispolnitel’noj i jekspluatacionnoj dokumentacii. Tehnicheskaja diagnostika i nerazrushajushhij kontrol’. 2011. No 3. S.18–22.
  75. Nyrkova L. I., Osadchuk S. O., Shpilskyi I. M. Rozroblennia metodyky rozrakhunku ymovirnosti koroziinoho roztriskuvannia vid napruzhennia dilianky mahistralnoho hazoprovodu. Tsilova kompleksna prohrama NAN Ukrainy «Problemy resursu i bezpeky ekspluatatsii konstruktsii, sporud ta mashyn» : zbirnyk naukovykh statei za rezultatamy, otrymanymy v 2010–2012 rr. / nauk. kerivnyk B. Ye. Paton. Kyiv, 2012. S. 328–332.
  76. Mahistralni hazoprovody. Metodyka vyznachennia potentsiino stres-koroziino nebezpechnykh dilianok mahistralnykh hazoprovodiv. Zatverdzhena nakazom DK «Ukrtranshaz» vid 4.08.2010 r. № 323.
  77. SOU 60.3-30019801-070:2009 Mahistralni hazoprovody. Metodyka vyznachennia tekhnichnoho stanu zakhysnoho pokryvu ta koroziinoho stanu zovnishnoi poverkhni truby. Kyiv, 2009. 66 s.
  78. Mahistralni hazoprovody. Rekomendatsii z remontu dilianky mahistralnoho hazoprovodu zi stres-koroziinymy defektamy. Zatverdzhena nakazom DK «Ukrtranshaz» vid 4.08.2010 r. № 323
  79. DSTU-N B A.3.1-29:2015. Mahistralni truboprovody. Nanesennia zakhysnykh pokryviv ta ulashtuvannia teplovoi izoliatsii. Kyiv, 2015. 112 s.

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх