Methods and means of state control of compression of stator core powerful turbogenerators


Levytskyi Anatoly Stanislavovych – Leading researcher, senior researcher, doctor of technical sciences; Institute of Electrodynamics National Academy of Science of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine.


Zaitsev Ieugen Oleksandrovych – Head of the department,  senior researcher, doctor of technical sciences; Institute of Electrodynamics National Academy of Science of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine.


Kobzar Kostyantyn Oleksandrovych – Chief Designer of Turbogenerators, candidate of technical sciences; JSC “Ukrainian Energy Machines” Heroiv Kharkiv avenue, 199, c. Kharkiv, 61037, Ukraine


Titko Vladyslav Oleksiyovych – Senior researcher, senior researcher, candidate of technical sciences; Institute of Electrodynamics National Academy of Science of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine.



Reztsov Viktor Fedorovych – Deputy director for scientific work of the Institute of Renewable Energy of the National Academy of Sciences of Ukraine, member-cor. NAS of Ukraine, doctor of technical sciences, professor; Institute of Renewable Energy of the National Academy of Sciences of Ukraine St. 20-a Hnata Hotkevicha Street, Kyiv, 02094, Ukraine.


Kensytskyi Oleg Georgiyovych – Leading researcher of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Doctor of Technical Sciences; Institute of Electrodynamics National Academy of Science of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine.Х


Yeremenko Volodymyr Stanislavovych – Head of the Department of Information and Measurement Technology of the National Technical University of Ukraine “Ihor Sikorskyi Kyiv Polytechnic Institute”, Doctor of Technical Sciences, Professor; National Technical University of Ukraine “Ihor Sikorskyi Kyiv Polytechnic Institute”. Peremogy, 37, Kyiv-57, 03056, Ukraine.



Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 140


ISBN: 978-966-00-1846-4

Language: Ukrainian

How to Cite:

Levytskyi, A., Zaitsev, I., Kobzar, K., Titko, V. (2023) Methods and means of state control of compression of stator core powerful turbogenerators. Kyiv, Naukova Dumka. 140p. [in Ukrainian].


The monograph is devoted to the development of new and improvement of existing methods and means of control of the stator core of powerful turbine generators (TG), which is one of the main components of machines and whose technical condition affects the technical characteristics and performance of machines.  The topicality of the work determined by the growing requirements for information and measurement systems for monitoring and diagnostics of powerful TG to ensure their reliable and trouble-free operation.

Shown that the main features of powerful TG, which determine the choice of technology to provide elastic compression of the stator core, are the method of collecting the core, the method of combining the core in the stator housing, the design of the end zone of the stator core and the cooling system.

The main factors of reducing the degree of compression of the core, which include technological, operational and structural analyzed.

The results of the analytical review of the existing methods of control and diagnosis of the state of compression of the stator core of powerful TG presented. The methods that are used or can be used for automatic control of the compression pressure of the TG stator core and the state of its compression are systematized.

It is noted that periodic diagnosis of the core of the stator TG reduces the likelihood of an accident, but does not guarantee the detection of defects that may occur in the repair period. The need to develop methods and means of detecting defects in the core that occur during operation of the machine, at the initial stage of their formation and development, which will provide a high rate of readiness, reduce downtime, reduce the cost of repairs TG.

The results of researches of methods of obtaining informative data on the state of compression in the end zones of the core during the operation of TG using sensors that measure the forces in the clamping prisms of the stator core and installed under the clamping nuts.

The results of research of methods of obtaining informative data on the state of compression in the end zones of the core during the operation of TG using sensors that measure the forces in the tightening prisms of the stator core and installed under the tightening nuts.

The principles of construction and design features of strain gauges, capacitive and fiber-optic sensors based on Bragg gratings installed under the tightening nuts described.

Shown that the capacitive method of measuring forces with the installation of sensors under the tightening nuts has some advantages over other methods due to the simplicity of the design of sensors, high metrological characteristics and noise immunity. The original force meters with differential and semi-differential capacitive sensors and elastic tubular force-receiving elements developed and researched at the Institute of electrodynamics of the National academy of sciences of Ukraine described. The results of researches of the force-receiving element are given and the errors of its transformation function “force in a prism – linear deformation – electric capacity” estimated.

A method for correcting the error of a semi-differential capacitive force sensor due to the skew of the electrodes of a variable capacitor because of bending the elastic element proposed. Correction to the use of variable design solutions of the electrode sensor and special algorithm for the operation of the secondary measuring transducer.

The method of measurement the compression pressure of the stator core using the meters of displacement of the cone disc springs in the power accumulators (PA) to stabilize the compression pressure of the core substantiated. Capacitive sensors of different types for measuring the displacement of cone disc springs in the PA have been developed and studied.

An improved electromagnetic method for identifying the compression of the stator core of the TG based on the use of contour turns, which installed in the extreme packages of the stator core proposed. A mathematical model has been created, with the help of which a qualitative analysis of the physical factors leading to the change of the component of the magnetic field induction normal to the surface of the steel sheets is performed.

Shown that during compression of the extreme packages of the TG stator core due to the decrease of the total eddy current in the steel sheets, the normal component of the magnetic field induction at the end of the stator core increases. A model of the electromagnetic field in the extreme packages of the stator core of powerful TGs in the presence of local depressing created. It is established that the proposed model based on the control of parameters and characteristics of the process of deformation of the electromagnetic field during local depressing allows determining the local deformed zones of the core. It is noted that the characteristics of the magnetic field depend on the degree of depressing and the location of the zone of such a defect.

A device for electromagnetic diagnostics of the shifted core of the TG stator is described and its efficiency is tested on a physical model.  It is determined that the following diagnostic parameters can be used for diagnosis by installing induction sensors on the end surface of the core on a certain radius in the number  of n ³ 2: the effective value of the EMF given in different branches, the constant of the Fourier series decomposition of the Bz function (axial component of magnetic induction) and the shift of the EMF phases given in the sensors. The results of researches of the offered device on large-scale physical model of TG with a power of 500 MW are given.

The principles of construction and features of functioning of computerized optoelectronic control systems and diagnostics of the degree of compression of the stator core of powerful TG with hybrid fiber-optic meters (HFOM) and with fiber-optic sensors are described. Structural schemes of GFOM of mechanical diagnostic parameters are developed.  Shown that these systems use of fiber-optic and microelectronic technologies provide a number of advantages when used on high-power TG.

A specialized optoelectronic converter of information signals, which is a part of computerized optoelectronic systems, has been created and researched.


powerful turbogenerator, stator core, pressing, monolithicity, control methods and means.


1. Gabor C. Generator diagnostics from failure modes to risk for force doutage. Retrieved from
2. Rubanenko O. O.,Yanovich V. P. & Gun’ko I. O. (2019). Doslidzhennia prychyn poshkodzhennia synkhonnykh generatoriv. Herald of Khmelntskyi National University. 5(277). 176-179. doi:
3. Kobzar K.O., Tretiak O. V., Shut O. Yu., Polienko V. P., Hakal P. H. & PiatnytskaIe. S. (2018). Rozrroblennia y vprovadzhennia perspekryvnykh metodiv rozrakhunku i modeliuvannia pry proekruvanni ta ekspluatatsii potuzhnykh turbogeneratoriv ta gidrogeneratorivdlia TES, GES, GAES. Bulletin of NTU “Kharkiv Polytechnic Institute” Series: Electrical Machines and Electromechanical Energy Conversion. 5 (1281). 38-45.
4. Tretiak O. V. (2020). Mitsnist vuzliv turbogeneratoriv i gidrogeneratoriv velykoii potuzhnosti. (Avtoreferat dysertatsii doktora tekhnichnykh nauk). Institute of Mechanical Engineering Problems named after A. N. Podhorny of the National Academy of Sciences of Ukraine, Kharkiv.
5. Bertenshaw D. R., Smith A. C., Ho C. W., Chan T. & Sasic M. (2012). Detection of stator core fault sinlarge electrical machines. Electric Power Applications. 6.6.295-301.doi: 10.1049/iet-epa.2011.0125.
6. Generator diagnostics from failure modesto risk for force doutage. Retrieved from
7. Sharov Yu. V., Binko G. F., Belyakov V. V., Vinntskii Yu. D., Golodnova O. S., Kupchikov T. V., …Shumov P. V. (2020). Tsifrovizatsiya kontrolya tekuschego sostoianiyia i prediktivnoi diagnostiki turbogeneratorov na elektrostantsiyakh. Energy of a single network. 6 (49). 18-30.
8. Čepon G., Pirnat M. & Boltežar M. (2012). An experimental and numerical identification of laminated structure dynamics. Noise and Vibration Engineering (ISMA2012) and on Uncertainty in Structural Dynamics (USD2012): Proceeding of International Conference, 17-19 September 2012, 3. 3153-3165
9. George Franklin Dailey (2012). U.S. Patent No 20120026482 A1.
10. Levitskii A. S., Zaitsev Ye. A. & Panchik M. V. (2020). Kontrol serdechnika statora turbogeneratora pri sborke. Sovremennie metodi rontrolya kachestva i diagnostiki sostoianiya obektov. Sbornik tezisov 7 mezhdunarodnoi nauchno-tekhnicheskoi koferentsii, 24-25 sentiabrya 2020, Mogiliev, 99-105.
11. Zaitsev Ie. O., Levytskyi A. S. & Kromplyas B. A. (2019). Capacitive distance sensor with coplanar electrodes for large turbogenerator core clamping system. Electronics and Nanotechnology (ELNANO): Proceedings of the 2019 IEEE International Conference, April 16 – 18, Kyiv, 644-647.
12. Levytskyi A. S, & Fedorenko G. M. (2009). Datchyky dlia vymiriuvannia zusyllia presuvannia oserdia statoriv gidro- i turbogeneratoriv. гідро- і турбогенераторів. Hydropower of Ukraine 4, 35-39.
13. Levitskii A. S., Zaitsev Ye. A. & Panchik M. V. (2021). Metod kontrolya serdechnika statora moschnogo turbogeneratora. Energetika. Proc. CIS Higher Educ. Inst. and Power Eng. Assoc. 64(4), 303-313. doi:
14. Levitskyi A. S., Zaitsev Ye. A. & Panchik M. V. (2021). Avtomatuzovanyi prystrii dlia kontroliu oserdia statora potuzhnogo turbogeneratora. Tekhnical electrodynamics,. 5, 83-87. doi:
15. Geller R. L., Sinatyuk S. L. & Tsvetkov V. A. (1987). Retrospektivnii analiz i peognozirovanie povrezhdaemosty activnoi stali statorov turbogeneratorov 200 и 300 MVt. Electrotechnika, 7, 29-33.
16. Schastlivyi G. G., Fedorenko G. M., Tereshonkov V. A. & Vygovskyi V. I. (1989). Electricheskie mashiny s zhidkostnym okhlazhdieniiem. Kiev: Naukova dumka.
17. Rostik G. V.(2008). Otsenka technicheskogo sostoianiya turbogeneratorov. Moscow:
Civil service training institute.
18. Patil A. & Biswas S. (2013). Modeling a virtual prototype of stator core lamination assembly device. International Journal of Electrical, Electronics and Data Communication, 1(10), 32-35.
19. Geddam P. & Barik B.K. (2015). Developing a virtual prototype for stacking laminations in stator core of turbo generator using robot simulation software. Journal of Material Science and Mechanical Engineering (JMSME), 2(5), 456-460.
20. Inozemtsev E. K. (2005). Remont konstruktivnych uzlov turbogeneratorov. Moscow:
Scientific and technical firm “Energoprogress”.
21. ButovF.V. (2001). Povrezhdaemost i control zubtsovykh zon zapechonnykh krainikh paketov stali serdechnikov statorov turbogeneratorov. Electrical stations, 5, 41-47.
22. Golodnova O. S. & Rostik G. V. (2004). Ayaliz i moropriiatiya po preduprezhdeniyu povrezhdenii serdechnikov statorov turbogeneratorov. Collection “Electrosila”, ,43, 56-64.
23. Zdanovskyi V. G. (2001). Dosvid ekspluatatsii turbgeneratorov typu TGV z vycherpanym resursom na ukrainskykh TES. Energy news, 9, 67-63.
24. Levytskyi A.S,, FedorenkoG. M.& Gruboy O. P. (2011). Kontrol stanu potuzhnykh gidro- ta turbogeneratoriv za dopomogoiu yemnisnykh vymiriuvachiv parametriv mekhanichnykh defective: monografiia. Kyiv: Instytut of electrodynamics of National academy of Science of Ukraine.
25.Kuchynskyi K. A., Titko V. A., Kramarskyi V. A. & Gutorova M. S. (2019). Tenzorezistyvnyi metod i ustroistvo kontrolia serdechnika statora turbogeneratora v protsese ekspluayatsii. Electrical engineering and power engineering, 1, 32-41.
26. Aleksandrov A. E., Guschin E. V., Kulacovskyi V. B., Mamikoniants L.G. & Elkind Iu. M. (1985). Obnaruzhenie defectov gidrogeneratorov. Energoatomizdat.
27. Zozulin Yu., Antonov O. V. & Bychik V. M. (2011). Stvorennia novykh typiv ta modernizatsia diiuchykh turbogeneratoriv dlia teplovykh elektrychnykh stantsii: navchalnyi posibnyk. Kharkiv: PF “Kolegium”.
28.Minko A. N. (2012). Optimalnaya geometriyi i massogabaritnye parametry konstruktsii korpusa statora turbogeneratorov s vozdushnoy sistemoy okhlazhdenia. Energy saving. Energy. Energy audit, ,1, 33–39.
29. Titko O. I., Kramarskyi V. A., Khvalin D. I. & Mystetskyi V. A. (2020). Doslidzhennia fizychnykh protsesiv u tortsevii zoni turbogeneratora pry mekhanichnykh ushkodzhenniakh kriplennia oserdia statora. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 57, 67-75.
30. Glebov I. A. & Danilevitch Ya. B. (1989). Diagnostika turbogeneratorov: uchebnoe posobie. Leningrad, Nauka.
31. Kuznetsov D. V. (2015). Investigation of Features of Localization of Defects of Stator Core Elastic Suspension Systems in High-Power Turbogenerators. Russian Electrical Engineering, 86, No.10, 612-619.
32. Pikulskii V. A. (1991). Vliyanie termomekhanicheskikh deformatsii v statore turbogeneratora na izmenenie plotnosti pressovki v zubtsovoi zone krainikh paketov. Электротехника, 5, 17-21.
33. Osternik E. S. (2011). O mekhanicheskich parametrakh dlia otsenki nadezhnosti turbogeneratorov raz’emnoy konstruktsii. Bulletin of NTU “Kharkiv Polytechnic Institute” Series: Dynamics and strength of machines, 52, 1-15.
34. Fedorenko G. M., Avrukh V. Yu. & Golodnova O. S. (1991). Stator of electrical machine. USSR Patent No 1669047.
35. Golodnova O. S.,Firsanov E. P. & Titovets V. V. (1991). Generator stator core pre-pressing method USSR Patent No 1669051.
36. Alekseev B. A, (2002). Opredelenie sostoianiia (diagnostika) krupnykh gidrogeneratorov: monografia. Moscow: Publ. House NTS ENAS.
37. AlekseevB. A, (2001). Opredelenie sostoianiia (diagnostika) krupnykh turbogeneratorov: monografia. Moscow: Publ. House NTS ENAS.
38. AndriuschenkoA. I. (1991). Nadezhno teploenegetycheskogo oborudovania TES I AES: monografia. Moscow: Vysshaia shkola.
39. Axherkan N. S. (1968). Detali mashin. Raschet i konstruirovanie. Spravochnik. Moscow: Mechanical engineering.
40. Beliaev S. A., Litvak V. V. & Solod S. S. (2008). Nadezhnost teploenergeticheskogo oborudovania TES: uchebnje posobie. Tomsk: Publishing house of scientific and technical literature.
41. Glebov I. A., Dombrovskyi V. V. & Dukshtau A. A. (1982). Gidrogeneratory: spravochnik. Leningrag. Energoizdat.
50. Fedorenko G. M., But A. A. & Kuzmin V. V. (1991). Metodika i izmeritelnye sredstva opredeleniia usulii pressovki v serdrchnike statora moschnogo turbogeneratora. Tekhnical electrodynamics. 4, 64-69.
51. Tytko O. I. & Mystetskyi V. A. (2014). Matematychna model, metodyka ta rezultaty rozrakhunku zusyl v staizhnykh pryzmakh oserdia styatora turbogeneratora za naiavnosti defektivy na osnovi metodu tr’okh momentiv. Proceedings of the Institute of Electrodynamics of the
52. Liu M., Zhou Z., Tao X., Tan Y. & Liu M. (2012). A dynamometer design and analysis for measurement the cutting forces on turning based on optical fiber Bragg Grating sensor. World Congress on Intelligent Control and Automation: Proceedings of the 10th conference, 2012, Beijing, 4287-4290. doi: 10.1109/WCICA.2012.6359200
53. Azuare C. & Millan A. Stator deformation of large hydrogenerators and its effects on the machines. Proceedings of the SIGRE Session, 29 August–3 September 2004, Paris, 1–7.
54. Dan M. S. (2011). Handbook of Force Transducers: Principle and Components: monografia. Springer-Verlag Berlin Heidelberg.
55. Guide to the Measurement of Force. Retrieved from /docs/ science_technology/ mass_force_pressure/ clubs_groups/instmc_weighing_panel/forceguide.pdf.
56. Hoffmann K. (2012). An Introduction to Stress Analysis and Transducer Design using Strain Gauges. HBM.
57. Puzakov S. E., Golodnova O, S. & Rostik G. V. (2006). Spravochnik po remontu turbogeneratorov. Moscow: All-Union Institute for Advanced Training of Power Engineers.
58. Shelomei V. N. (1981). Vibratsii v tekhnike: Spravochnik. Tom 5. Izmereniia i ispytania. Moscow: Mechanical engineering.
59. Grigor’ev A. V., Osotov V. N. & Yampolskyi D. A. (2004). Primenenie parametra popgloscheniia energii kolebanii dlia kontrolia pressovki serdechnikov statorov turbogeneratorov. Electrical engineering, 11, 16–19.
60. Grigor’ev A. V., Semenov D. Yu. & Osotov V. N. (2003). Issledovanie vibromekhanicheskich kharakteristok paketa electrotechnicheskoi stali i vozmozhnostei ikh ispolsovaniia dlia kontrolia pressovki serdechnika statora turbogeneratora. Electrical engineering, 8, 36-41.
61. Kuznetsov D. V., Maslov V. V. & Pikulskyi V. A. (2004). Defekty turbogeneratorov i metody ikh diagnostiky na nachalnoy stadii poiavleniia. Electrical stations, 4, 51–57.
62. Butov A. V.& Mamikoniants L. G. (2011). Povrtzhdaemst i kontrol zubtsovykh zon zapechennykh paketov stali serdechnikov statorov turbogeneratorov Electrical stations, 5, 41–48.
63. Pikulskyi V. A. & Butov A. V. (1993). Utrazvukovoi metod otsenky sostoiania plotnosti pressovky aktivnoy stali statora turbogeneratora. Electrical stations, 3, 40–45.
64. Pikulskyi V. A. & Poliakov V. A. (2006). Vozmozhnosti obespecheniia nadezhnoy ekcpluatatsii turbogeneratorov s dlitelnym srokom sluzhby. турбогенераторов с длительным сроком службы. Electrical stations, 4, 51-54.
65. Grensyl’ Ya. V.& Roman V. I. (2011). Doslidzhennia rozpovsiudzhennia ultrazvukovogo umpulsu v paketi lystiv elektrotekhnichnoi stali. Bulletin of the National Lviv Polytechnic University: Electric power and electromechanical systems, 707, 36–41
66. Sharonin V. S. & Poltoradnia A. V. (2000). Method for diagnosing the state of the stator core of an electric machine. RU Patent No 2223587.
67. Fedorenko G. M. & Ostapchuk L. B. (1987). Sharonin V. S. & Poltoradnia A. V. (2000). Method for diagnosing the state of pressing of a laminated stator core of an electric machine. USSR Patent No 1350764.
68. Lodge I. (1975). Flux testing of generator stator cores. CEGB, SSD/NE/R293.
69. Bertenshaw D.R. (2014). Stator core interlamination faults and their detection by electromagnetic means. School of Electrical and Electronic Engineering, (Thesys for the degree of Doctor of Philosophy) The University of Manchester, Manchester.
70. IEEE Std 62.2-2004. Guide for diagnostic field testing of electric power apparatus. IEEE, USA, 2005.
71. Normy vyprobuvannia elektroobladnannia, 243 СОУ-Н ЕЕ 20.302:2007 (2020).
72. IEEE Std 56-1977. Guide for insulation maintenance of large alternating-current rotating machinery (10 000 kVA and Larger), IEEE, USA, 1991.
73. Schastlivyi G. M., Fedorenko G. M. & Smorodin V. I. (1982). Method for diagnosing the pressing of a laminated core of a magnetic circuit. USSR Patent No 974509.
74. Dombrovskyi V. V., Kosachevskyi V. I. & Rshko B. A. (1986). Method for diagnosing the pressing of a laminated stator core of an electric machine. USSR Patent No 1363385.
75. Kazarian E. V., Kartashevskyi P. Ya. & Lifshyts A. A. (1985). Issledovaniia kachestva zapressovky aktivnoy atali statora turbogeneratora s vodianym okhlazhdeniem. Electrical stations, 3, 31-33.
76. Iossel Yu. Ya., Kachanov E. S. & Stunskyi M. G. (1981). Raschet elektricheskoy emkosty: uchebnoe posobie. Leningrad: Energoizdat.
77. Burakov A. M., Geller R. G. & Podolskyi V. V. (1981). Otsenka elektromagnitnykh sil, deistvuiuschykh na listy krainikh paketov ststora moschnogo turbogeneratora. Electricity, 8, 59-62.
78. Levytskyi A. S., Novik A. I. & Fedorenko G. M. (2013). Kotrol stupenia rozpushennia krainikh paketiv zubtsevoi zoiny turbogeneratora z zastosuvanniam iemnisnogo sensora. Tekhnicalelectrodynamics, 6, 88-93.
79. LevytskyiA. S., Medvedenko M. P. & Mikhal A. A. (2006). Raschet koeffitsienta preobrazjvaniia sistemy electrodov s grebenchatoy geometriei. Tekhnical electrodynamics, 5, 9-16.
80. Levytskyi A. S. (2007). Raschet iemkostnogo datchika, elektrody kotorogo obrazovany sistemoy parallelnykh polos, raspolozhennykh v odnoy ploskosti. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 1(16),2, 134-135.
81. Levytskyi A. S. & Baliaschuk L. I. (2008). Raschet elektricheskoy iemkosti kondensatorov s komplanarnymy elektrodamy. Technical electrodynamics, 1, 64-70.
82. Gorbova G. M. (2003). Analysis capacitance and linearity gauge characteristic of coplanar micro-displacement sensor. World Congress: Proceeding XVII IMECO 22–27 June 2003 Dubrovnic, Croatia, 1965–1968.
83. BergmanisK.A., MatissI.A. & SlavaKh. E. (1971). Issliedovanie selektivnosti nakladnykh iemkostnykh datchikov. Proceedings of the Academy of Sciences of the Latvian SSR Series of physical and technical sciences, 5, 75-82.
84. ShtorginA. V. (2015). Nauchno-tekhnicheskie meropriiatia po umensheniiu povrezhdaiemosti statorov moschnykh turbogeneratorov, vyzvannoy vibratsiiei v tortsevykh zonakh. (Dissertatsiia kandydata tekhnichnykh nauk). Odessa National Polytechnic University. Odessa.
85. Livshits A. L., Kobzar K. A., Shpatenko V. S. & Kuzmin V. V. (2020). Innovations in turbogenerator stator rehabilitation at site of installation. Retrieved from
86. Zaitsev Ie.O. (2016).Kompiuterizovana systema kontroliu mewchanichnykh parametriv elektroobladnannia.Kontrol i upravlinnia v skladnykh systemakh (KUSS-2016): Matetialy XIII mizhnarodnoi konferentsii, 3-6 zhovtnia 2016, Vinnytsia, 116-118.
87. Levytskyi A. S., Novik A. I. &Zaitsev Ie. A. (2018).Tsyfrovoy iemkostnoy izmeritiel usilii v stiazhnykh shpilkakh serdechnika statora generatora na osnove konvertora AD7745/46. . Hydropower of Ukraine, 1-2, 66-69.
88. Pikulskyi V. A., Chistikov A. A. & Lifshits A. L. (1990). Issliedovaniie raspredielieniia plotnosty pressovky aktivnoy stali statora turbogeneratora. Electrical engineering, 6, 9-13.
89. Levytskyi A. S., Novik A. I. & Nieboliubov Ie.Yu. (2009). Stvorenniia iemnisnogo vymiriuvacha povitrianogo zazoru mizh rotorom ta statporom v potuzhnykh gidrogeneratorakh. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 26, 54-62.
90. Levytskyi A. S., Zaitsev Ie. A. & Smirnova A. M. (2018). Pruzhnyi element peretvoriuvacha zusyl’ v stiazhnykh pryzmakh oserdia statora potuzhnogo turbogeneratora. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 49, 32-39.
91. Levytskyi A. S. & Fedorenko G. M. (2009). Datchiky dlia vymiriuvannia zusyllia prresuvannia oserdia statoriv giro- i turbogeneratoriv. Hydropower of Ukraine, 4, 35-39.
92. Levytskyi A. S., Zaitsev Ie. A. & Kobzar K. O. (2017). Volokonno-optychni vymiriuvachi zusyl’ v stiazhnykh pryzmakh turbogeneratoriv na osnovi peshitok Bregga, Hydropower of Ukraine, 3-4, 22-25.
93. Twerdochlib M. Bolt tightener device for tightening a through-bolt in a generator core. (2015). U.S. Patent No 9,016,991.
94. Dailey G. F. Use of fiber optic sensor techniques for monitoring and diagnostics of large AC generators. U.S. Patent No 20120026482.
95. Vasyliev S. A., Medvedkov S. A. & Koroliev I. G. (2005). Volokonnye reshetky pokazatielia prelomlienia i ikh primenenie. Quantum electronics, 35, 12, 1085– 1103.
96. Othonos A. (1997). Fiber Bragg grating. Review of Scientific Instruments, 68,12, 4309– 4341.
97. Grinievich F. B. & Novik A. I. (1987). Izmieritielnye kompensatsionno-mostovyie ustroistva s iemkostnymi datchikami: uchebnoie posobiie. Kyiv:Naukova dumka.
98. Grinievich F. B., Surdu M. N., Levytskyi A. S. Mogilevskyi V. M. & Prodan K. A. (1990). Iemkosiny. Kyiv:Naukova dumka.
99. Levytskyi A. S., Novik A. I. & Zaitsev Ie. A. (2017). Iemkosnyi daychik usilii v stiazhnykh prizmakh statora turbogeneratora s kompensatsiiei pogteshnosti ot perekosa electrodov. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 78, 126-132.
100. Zaitsev Ie.O., Levytskyi A.S., Kromplyas B.A. (2017). Hybrid capacitive sensor for hydro- and turbo generator monitoring system. Proceedings of the International conference on modern electrical and energy system (MEES-17), November 15 – 17, Kremenchuk, Ukraine, 288-291.
101. Potashnik S. I., Fedorenko G. M. & Vaskovskyi Yu. N. (2006). Probliemy povysheniia nadiezhnosti moschnykh gidrogeneratorov pry nestabilnosti vozdushnogo zazora. Hydropower of Ukraine, 3, 6-10.
102. Grinievich F. B. & Lezhoiev R. S. (1988). Kompensatsiia pogreshnosti, vyzyvaiemoy neparallelnost’yu elektrodov daychika. Technical electrodynamics, 5, 68-71.
103. Gubarevich O, V, & Kozynko A. S. (2017). Priroda vibratsii i sovremennye metody vibrodiagnostiky elektricheskikh mashin. Bulletin of the Eastern Ukrainian National University named after V. Dalya, 3(233), 53–58.
104. Polyanin A.D. & Manzhirov A.V. (2007). Handbook of mathematics for engineers and scientists: spravchnik. Boca Raton, FL: Taylor & Francis Group, LLC.
105. Levytskyi A. S., Novik A. I. & Zaitsev Ie. A. (2017). UA Patent No. 119101. Ukrainskyi instytut patentnoi vlasnosti (Ukrpatent).
106. Bauman E. (1978). Izmierieniie sil elektrucheskimi metodami. Pod redaktsiiei I. I. Smyslova. Moscow: Mir.
107. Felikson E. I, (1977). Uprugiie elementy priborov: monoggrafiia. Феликсон Е. И. Moscow: Engineering.
108. Ivanov V. V., Petrov V. N. & Rostik G. V. (2009). O sposobe stabilizatsii plotnosti pressovaniia aktivnoi stali turbogeneratorov. Power engineer, 8, 29–30.
109. Azbukin Yu. I. & Avrukh YU. I, (1980). Modernizatsiia turbogeneratorov. Moscow: Energy.
110. Paspalovski T. & Jovanovska V. (2015). Partial Replacement of the Active Steel on the Turbogenerator End Zone. Termotechnika. 2015. XLI, 1, 1–7.
111. Paspalovski T., Mojsoska N. D., Jovanovska V. & Sovreski Z. (2013). Replacement (reconstruction) of the active steel end zone of the turbogenerator. Prociding 1st clobal virtuale conference: Section 21. Energy, 8-12 april, 2013, 659–663.
112. Jovanovska V. & Arapcheska M. (2015). Increasing the power of the turbogenerator in the process of modernization in the mining and energy industry. International journal of innovative science, engineering & technology, 2 (2), 162–166.
113. Chevchenko V. V. & Minko A. N. (2014). Modernizatsiia konstruktsiy otechestviennykh tirbpgeneratorov s uichetom trebovaniy podderzhaniia ikh konkurentnosposobnosti. Bulletin of NTU “Kharkiv Polytechnic Institute”, 38(1081), 146–155.
114. Minko A. N., Penskoi V. A., Zhukov A. Yu. & Kobzar K.O. (2012). UA Patent No. 66717. Ukrainskyi instytut patentnoi vlasnosti (Ukrpatent).
115. Levytskyi A. S. & Fedorenko G. M. (2010). Sylovyi akumuliator dlia stabilizatsii zusyllia pressuvannia oserdiia statora generatora z iemnisnym datchikom kontroliu stupeniia stysku. Hydropower of Ukraine, 1, 21-39.
116. Boschev P.I., Krasilenko A. V. & lezoiev R. S. (1990). Capacitive Ground Distance Meter. USSR Patent No 1536188.
117. Levytskyi A. S., Zaitsev Ie. A. & Kobzar K. O. (2018). Izmierieniie khoda tarielchastykh pruzhyn v silovykh akkumuliatorakh serdechnika statora turbogeneratora s pomoschiu iemkostnogo sensora. Instruments and measurement methods, 9(2), 121-129.
118. Levytskyi A. S., Zaitsev Ie. A. & Kobzar K. O. (2020). UA Patent No. 120795. Ukrainskyi instytut patentnoi vlasnosti (Ukrpatent).
119. Levytskyi A. S. & Zaitsev Ie. A. (2016). Vyznachennia funktsii peretvorennia iemnisnogo sensora povitrianogo zazoru v gidrogeneratorakh SGK 538/160-70М. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 43, 134-136.
120. Zaitsev Ie.O., Levytskyi A.S. & Kromplyas B.A. (2017). Characteristic of capacitive sensor for the air gap control system in the hydrogenerator. First Ukraine Conference On Electrical And Computer Engineering (UKRCON): Proceedings of the 2017 IEEE, May 29 – June 2, Kiev, 390-394. Retrieved from doi:
121. Zaitsev Ie.O., Levytskyi A.S., Novik A.I., Bereznychenko V.O. & Smyrnova A.M. (2019). Research of a Capacitive Distance Sensor to Grounded Surface. Telecommunications and Radio Engineering, 78(2):1-8, 173-180. Retrieved from doi:
122. Zaitsev Ie.O., Sydorchuk V. E. & Shpilka A. N. (2016). Ispolzovaniia spekralnogo analiza metodom Berga pri postroienii programmno-matematicheskogo obespecheniia opticheskikh sistem vibrodiagnostiki. Использование спектрального анализа методом Берга при построении программно-математического обеспечения оптических систем вибродиагностики. Instruments and measurement methods, 7(2), 186-194.
123. Zaitsev Ie.O., Levytskyi A.S. (2017). Determination of response characteristic of capacitive coplanar air gap sensor. Microwaves, Radar and Remote Sensing Symposium (MRRS-2017): Proceedings of the 2017 IEEE, August 29 – June 30 2017, Kiev, 85-88. Retrieved from doi:
124. Levytskyi A.S., Zaitsev Ie.O., Titko V. O. & Prus V. V. (2018). Sylovyi akumukiator stabilizatsii tysku presuvannia oserdiia statora turbogeneratora z kontrolem khodu tarilchastykh pruzhyn. Ptoblemy energoresursozberezhennia v elektroenergenychnykh systemakh: ICPEES 2018 Nauka, osvita ta praktyka: Tezy dopovidi XVIII Mizhnarodnoy naukovo-tekhnichnoy konferentsii, 15-17 travnia 2018, Kremenchuk, Ukraine, 114–116.
125. Jackson R.J., Renew D.C. & Brown M. L. (1980). The use of shaft voltage measurements to monitor turbogenerator stator cores. CERL. RD/L/N 32/80.
126. Titko V. O. (2013). Modeliuvannia elektromagnitnykh sygnaliv ta eksperymentalne doslidzhennia diagnostyky shykhtovannogo magnitoprovodu statora turbo- i gidrogeneratoriv. Hydropower of Ukraine, 3-4, 24-27.
127. Titko A. I. (1994). Elektromagnitnoie ekranirovanie nezamknutymi strukturami v elektricheskich mashinakh. Kyiv: Naukova dumka.
128. Dombrovskyi V. V. (1974). K raschetu nasyschennogo znacheniia neaktivnogo rasseianiia zubtsovogo kornia. Turbo- and hydro generators. 26–32.
129. Voldek A. I., Danilievich Ya. B., Kosachevskyi V. I. & Yakovlev V. I. (1983). Elektomagnitnyie protsessy v tortsevykh zonakh elektricheskikh mashin. Leningrad: Energoartomizdat.
130. Titko A. I. & Tomachov G. V. (2001). Raschet elektromagnitnogo polia v shikhtovannom magnitoprovodie elektromschiny pri yfkichii lokalnoi raspressovky. Bulletin of NTU “Kharkiv Polytechnic Institute”, 16, 155–157.
131. Milykh V. I. & Dubinina O. N. (2003). Chisliennyi raschet magnitnogo polia v kontsevoi zone turbogeneratora v pezhymie nagruzky. Electrical engineering and electromechanics. 1, 64 – 69.
132. Brauly K. A. (1977). Stacheslaia teoriia i metodologiia v nauke i tekhnike. Moscow: Science.
133. Ango A. (1967). Matematika dlia elektro- i radioinzhenerov. Moscow: Science.
134. Postnikov I. M., Stanislavskyi L. Ya. & Schaslivyi G. G. (1971). Elektromagnitnyie i teplovyie protsessy v kotsevykh chastiakh moschnykh turbogeneratorov. Kyiv: Naukova dumka.
135. Elektromagnitna sumisnist. Chastyna 4-8. Metodyky vyprobuvannia ta vymiriuvannia. Vyprobuvannia na nespryiniatnist’ do magnitnogo polia chastoty merezhi (EN 61000.
136. State Inspection of Nuclear Regulation of Ukraine. (2008). Zagalni polozhennia bezpeky atomnykh stantsii. NP 306.2.141-2008.
137. Zaitsev Ie.O., Levytskyi A.S., Kromplyas B.A. & Panchik M. V. (2019). Doslidzhennia vplyvu magnitnogo polia promyslovoi chastoty na stabilnist dunktsionuvannia mikrokontrolera STM32F051K8T6. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 52, 80-86.
138. Zaitsev Ie.O. (2019). Realizatsiia gibrydnykh volokonno-optychnikh vymiriuvachiv. Vymiiuvalna ta obchyliuvalna trchnika v tekhnologschnykh peotsesakh: Materialy XIX mizhnarodnoi naukovo-rekhnichnoi konderentsii, 14-17 chervnia 2019, Odessa, 28-29.
139. Zaitsev Ie.O., Levytskyi A.S., Zhukynskyi I. M. & Kromplyas B.A. (2017). Peretvoriuvach informatsinykh sygnaliv dlia gibrydnykh optoelektronnykh vymiriuvfchiv peremischen. Measuring and computing equipment in technological processes, 4, 31-37.
140. Zaitsev Ie.O., Levytskyi A.S., Kromplyas B.A. & Sydorchuk V. Ie. (2017). Rozrobka aparatno-programnogo zabezpechennia systemy kontroliu povitrianogo zazoru gidrogeneratoriv. апаратно-програмного забезпечення системи контролю повітряного зазору гідрогенераторів. Electrical and computer systems, 24(100), 151–161
141. Zaitsev Ie., & Levytskyi A. (2020). Hybrid electro-optic capacitive sensors for the fault diagnostic system of power hydrogenerator. Advances in Modeling of Hydro and Wind Generators. Publichen in London, United Kingdom. 25-42. doi: 10.5772/intechopen.77988.
142. Zaitsev Ie.O. (2017). .Electric machines faults monitoring system with hybrid electro-optic capacitive mechanical sensors. Young Scientists Forum on Applied Physics and Engineering (YSF-2017) :Abstracts of the 2017 IEEE International, 17-20 October2017, Lviv, Ukraine,15-18.
143. Sumisnist technicnykh zasobiv elektromagnitna. Stiikist do magnitnykh poliv chastity merezhi. Tekhnichni vymogy i metody vyprobuvan 31 DSTU 2465-94 (1994), (IEC 61000-4-8:1993).
144. Sumisnist technicnykh zasobiv elektromagnitna. Stiikist do potuzhnykh elektromagnitnych zavad. 15 DSTU 2793-94 (1994).
145. Voschynskyi K. V., Levytskyi A. S. & Sorokina N. L. (2015). Vplyv elektromagnitnoi obstanovky GES na kontrolno-vymiriuvalnu aparaturu. Hydropower of Ukraine1-2, 33-36.
146. ZaitsevIe. A. & Panchik M. V.(2018). Systema kontroliu nerivnomirnosti presuvannia oserdia statora turbogeneratoriv z vykorystannim merezhi gibrydnykh iemnisnykh sensoriv. Matematychne ta programne zabezpechennia intelektualnykh system (MPZIS-2018) : Tezy dopovidei XVI mizhnarodnoi naukovo-praktychnoi konferentsii, 21-23 lystopada 2018, Dnipro, 74-75.
147. ZaitsevIe. A. (2018). Programno-matematychne zabezpechennia system identyfikatsii ekstsentrysytetu rotora gidrogeneratora za danymy sensoriv povitrianogo zazoru. Hydropower of Ukraine3-4,50-56.
148. Levytskyi A. S., & Zaitsev Ie. A. (2017). Sposoby zhyvlennia gibrydnykh volokonno-optychnykh vymiriuvachiv kontrolno-diagnostychnykh parametriv gidrogeneratoriv. Hydropower of Ukraine1-2,14-19.
149. Zaitsev Ie. A., Levytskyi A. S., & Baliaschuk L. I. (2017). Gibrydni volokonno-optychni vymiriuvachi fizychnykh parametriv litalnykh aparativ «AVIA-2017» : Zbirnyk tez dopovidei XIII Mizhnarodnoi naukovo-technichnoi konferentsii, 19-20 kvitnia 2017, Kyiv, 2.37-2.39.
150. Zaitsev Ie., Shpylka A.& Shpylka N (2020). Output signal processing method for fiber bragg grating sensing system. Telecommunications and Computer Engineering (TCSET-2020): Proceedings of the 15th International Conference on Advanced Trends in Radioelectronics. 25-29 February 2020: Lviv-Slavske, Ukraine, 152-155.
151. Levytskyi A. S., & Zaitsev Ie. A. (2016). Gibrydni volokonno-optychni vymiriuvachi kontrolno-diagnostychnykh parametriv gidrogeneratoriv. Hydropower of Ukraine3-4, 32-33.
152. Technical Data. ACFL-5211T-000E 1MBd Dual-channel, Bi-directional Optocoupler. Retrieved from
153. Technical Data. Optoisolators Logic Output. Retrieved from pdf/h11l1.pdf.
154. Technical Data. Little Logic Guide. Retrieved from lit/sg/scyt129f/scyt129f.pdf.
155. Technical Data. HFBR-1515BFZ/2515BFZ Full Metal Fiber Optic Transmitters and Receivers. Retrieved from docs/AV02-1413EN
156. Fiber-optic devices TOSLINK. Retrieved from
157. TS5A3159 1-Ω SPDT Analog Switch. Retrieved from–spdt-analog-switch-%CF%89

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top