Authors:
Kholodov R.I.
Institute of Applied Physics of the National Academy of Sciences of Ukraine.
Scopus Autor ID: 6507456019
Novak O.P.
Institute of Applied Physics of the National Academy of Sciences of Ukraine.
Scopus Autor ID: 36658793200
Diachenko M.M.
Institute of Applied Physics of the National Academy of Sciences of Ukraine
Scopus Autor ID: 56114449900
Reviewers:
Gusynin V.P.
Corresponding Member of NAS of Ukraine, Doctor of Physical and Mathematical Sciences, Professor Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine.
Korchin O.Yu.
Corresponding Member of NAS of Ukraine, Doctor of Physical and Mathematical Sciences, Professor National Science Center «Kharkiv Institute of Physics and Technology».
Lebed O.A.
Doctor of Physical and Mathematical Sciences, Senior Research Institute of Applied Physics of the National Academy of Sciences of Ukraine.
Affiliation:
Project: Ukrainian scientific book in a foreign language
Year: 2022
Publisher: PH “Akademperiodyka”
Pages: 222
DOI:
https://doi.org/10.15407/akademperiodyka.472.222
ISBN: 978-966-360-472-5
Language: English
How to Cite:
Kholodov, R., Novak, O., Diachenko, M. (2022) Resonant and polarization effects in the processes of quantum electrodynamics in a strong magnetic field. Kyiv, PH “Akademperiodyka”. 222p. [in Ukrainian].
Abstract:
The monograph considers resonance and polarization effects in quantum electrodynamics processes that take place in a strong external magnetic field. A method for analyzing spin-polarization effects has been developed. The factorization of process cross-sections in resonant conditions and the representation of these cross-sections in the form of Breit-Wigner are considered. The possibility of testing these effects in modern international projects to test quantum electrodynamics in strong fields is shown.
For researchers, teachers, graduate students, and students of physical and physical-technical specialties.
Keywords:
References:
- Blewett J.P. Radiation losses in the induction electron accelerator. Physical Review. 1946. Vol. 69, No. 3—4. pp. 87—95. https://doi.org/10.1103/physrev.69.87
- Elder F.R., Gurewitsch A.M., Langmuir R.V., Pollock H.C. Radiation from electrons in a synchrotron. Physical Review. 1947. Vol. 71, No. 11. P. 829—830. https://doi.org/10.1103/physrev.71.829.5
- Sokolov A.A. Synchrotron radiation. Oxford: Pergamon, 1968. 198 p.
- Sokolov A.A., Ternov I.M. Relativistic electron. Moscow: Nauka, 1974. 392 p. [in Russian].
- Ternov I.M. Synchrotron radiation and its applications. Chur, Switzerland: Harwood Academic, 1985. 378 p.
- Ternov I.M. Synchrotron radiation. Physics-Uspekhi. 1995. Vol. 38, No. 4. pp. 409—434. https://doi.org/10.1070/pu1995v038n04abeh000082
- Demeur M. Study of the interaction between the eigenfield of a particle and a homogeneous and constant electromagnetic field. Royal Academy of Belgium. Bulletin of the Sci. Class. 1953. Vol. 28. P. 1643. [in French].
- Klepikov N.P. Emission of photons and electron-positron pairs in a magnetic field. Soviet Physics JETP. 1954. Vol. 26, No. 1. pp. 19—34.
- Sokolov A.A. Quantum mechanics. New York: Holt, Rinehart and Winston, 1966. 537 p.
- Mitrofanov I.G., Pozanenko A.S. Generation of radiation in quantum transitions of electrons in a strong magnetic field. Soviet Physics JETP. 1987. Vol. 66, No. 6. pp.1112—1118.
- Ray R., Sakita B. The electromagnetic interactions of electrons in the lowest Landau level. Annals of Physics. 1994. Vol. 230, No. 1. pp. 131—144. https://doi.org/10.1006/aphy.1994.1020
- Latal H.G. Cyclotron radiation in strong magnetic fields. The Astrophysical J. 1986. Vol. 309. pp. 372—382. https://doi.org/10.1086/164609
- Erber T. High-Energy electromagnetic conversion processes in intense magnetic fields. Reviews of Modern Physics. 1966. Vol. 38, No. 4. pp. 626—659. https://doi.org/10.1103/revmodphys.38.626
- Herold H., Ruder H., Wunner H. Cyclotron emission in strongly magnetized plasmas. Astronomy and Astrophysics. 1982. No. 115. pp. 90—96.
- Pavlov G.G., Bezchastnov V.G., Meszaros P., Alexander S.G. Radiative widths and splitting of cyclotron lines in superstrong magnetic fields. The Astrophysical J. 1991. Vol. 380. pp. 541—549. https://doi.org/10.1086/170611
- Harding A.K., Preece R. Quantized synchrotron radiation in strong magnetic fields. The Astrophysical J. 1987. Vol. 319. pp. 939—950. https://doi.org/10.1086/165510
- Daugherty J.K., Ventura J. Absorption of radiation by electrons in intense magnetic fields. Physical Review D. 1978. Vol. 18, No. 4. pp. 1053—1067. https://doi.org/10.1103/physrevd.18.1053
- Tolhoek H.A. Electron polarization, theory and experiment. Reviews of Modern Physics. 1956. Vol. 28, No. 3. pp. 277—298. https://doi.org/10.1103/revmodphys.28.277
- Sokolov A.A., Ternov I.M. On polarization effects in the radiation of an accelerated electron. Soviet Physics JETP. 1957. Vol. 4, No. 3. pp. 396—400.
- Korolev F.A., Markov V.S., Akimov E.M., Kulikov O.F. Experimental study of the angular distribution and polarization of optical radiation of electrons in a synchrotron. Doklady Akademii nauk SSSR. 1956. Vol. 110, No. 4. pp. 542—544. [in Russian].
- Orlov Iu.F., Kheifets S.A. Depolarization of electrons due to radiation in a magnetic field. Soviet Physics JETP. 1959. Vol. 8, No. 2. P. 354.
- Ternov I.M., Bagrov V.G., Rzaev R.A. Radiation from fast electrons with oriented spin in a magnetic field. Soviet Physics JETP. 1964. Vol. 19, No. 1. pp. 255—259.
- Baring M.G., Gonthier P.L., Harding A.K. Spin-dependent cyclotron decay rates in strong magnetic fields. The Astrophysical J. 2005. No. 630. pp. 430—440. https://doi.org/10.1086/431895
- Bagrov V.G., Zhukovsky V.Ch., Ternov I.M., Khalilov V.R. Spin effects in processes involving high-energy particles in a magnetic field. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 1984. No. 7. pp. 12—16. [in Russian].
- Baier V.N., Katkov V.M. Radiative polarization of electrons in a magnetic field. Soviet Physics JETP. 1967. Vol. 25, No. 5. pp. 944—947.
- Schwinger J., Tsai W. Radiative polarization of electrons. Physical Review D. 1974. Vol. 9, No. 6. pp. 1843—1845. https://doi.org/10.1103/physrevd.9.1843
- Daugherty J.K., Lerche I. Theory of pair production in strong electric and magnetic fields and its applicability to pulsars. Physical Review D. 1976. Vol. 14, No. 2. pp. 340—355. https://doi.org/10.1103/physrevd.14.340
- Daugherty J.K., Harding A.K. Pair production in superstrong magnetic fields. The Astrophysical J. 1983. Vol. 273. pp. 761—773. https://doi.org/10.1086/161411
- Mikheev N.V., Chistyakov N.V. Photon damping caused by electron-positron pair production in a strong magnetic field. J. of Experimental and Theoretical Physics. 2001. Vol. 73, No. 12. pp. 642—646. https://doi.org/10.1134/1.1397746
- Semionova L., Leahy D. Remarks concerning pair creation in strong magnetic fields. Astronomy & Astrophysics. 2001. Vol. 373, No. 1. pp. 272—280. https://doi.org/10.1051/0004-6361:20010491
- Di Piazza A., Calucci G. Pair production in a strong time-depending magnetic field: The effect of a strong gravitational field. Astroparticle Physics. 2006. Vol. 24, No. 6. pp. 520—537. https://doi.org/10.1016/j.astropartphys.2005.10.004
- Luo Y., Ji P. Pair production induced by quantum electrodynamic vacuum polarization in pulsars. Monthly Notices of the Royal Astronomical Society. 2011. Vol. 420, No. 2. pp. 1673—1683. https://doi.org/10.1111/j.1365-2966.2011.20158
- Schwinger J. On gauge invariance and vacuum polarization. Physical Review. 1951. Vol. 82, No. 5. pp. 664—679. https://doi.org/10.1103/physrev.82.664
- Tsai W., Yildiz A. Motion of an electron in a homogeneous magnetic field–modified propagation function and synchrotron radiation. Physical Review D. 1973. Vol. 8, No. 10. pp. 3446—3460. https://doi.org/10.1103/physrevd.8.3446
- Tsai W. Magnetic bremsstrahlung and modified propagation function. Spin-0 charged particles in a homogeneous magnetic field. Physical Review D. 1973. Vol. 8, No. 10. pp. 3460—3469. https://doi.org/10.1103/physrevd.8.3460
- Tsai W. Vacuum polarization in homogeneous magnetic fields. Physical Review D. 1974. Vol. 10, No. 8. pp. 2699—2702. https://doi.org/10.1103/physrevd.10.2699
- Tsai W., Erber T. Photon pair creation in intense magnetic fields. Physical Review D. 1974. Vol. 10, No. 2. pp. 492—499. https://doi.org/10.1103/physrevd.10.492
- Tsai W. Modified electron propagation function in strong magnetic fields. Physical Review D. 1974. Vol. 10, No. 4. pp. 1342—1345. https://doi.org/10.1103/physrevd.10.1342
- Baier V N., Katkov V.M. Processes involved in the motion of high energy particles in a magnetic field. Soviet Physics JETP. 1968. Vol. 26, No. 4. pp. 854—860.
- Baier V.N., Katkov V.M. Quasiclassical theory of bremsstrahlung by relativistic particles. Soviet Physics JETP. 1969. Vol. 28, No. 4. pp. 807—813.
- Baier V.N., Katkov V.M., Strakhovenko V.M. Operator approach to quantum electrodynamics in an external field: The mass operator. Soviet Physics JETP. 1975. Vol. 40, No. 2. pp. 225—232.
- Baier V.N., Katkov V.M., Strakhovenko V.M. Operator approach to quantum electrodynamics in an external field. Electron loops. Soviet Physics JETP. 1975. Vol. 41, No. 2. pp. 198—204.
- Ritus V.I. Eigenfunction method and mass operator in the quantum electrodynamics of a constant field. Soviet Physics JETP. 1978. Vol. 48, No. 5. pp. 788—799.
- Ritus V.I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. Trudy FIAN. 1979. Vol. 111. pp. 5—151. [in Russian].
- Baier V.N., Katkov V.M., Strakhovenko V.M. Higher-order effects in an external field: pair creation by a particle. Physics of Atomic Nuclei. 1971. Vol. 14, No. 5. pp. 1020—1026. [in Russian].
- Baier V.N., Katkov V.M. Pair creation by a photon in a strong magnetic field. Physical Review D. 2007. Vol. 75, No. 7. P. 073009. https://doi.org/10.1103/physrevd.75.073009
- Baier V.N., Katkov V.M., Fadin V.S. Radiation of relativistic electrons. Moscow: Atomizdat. 1973. 376 p. [in Russian].
- Parle A. Quantum electrodynamics in strong magnetic fields. IV. Electron self-energy. Australian J. of Physics. 1987. Vol. 40, No. 1. pp. 1—21. https://doi.org/10.1071/ph870001
- Geprägs R., Riffert H., Herold H. et al. Electron self-energy in a homogeneous magnetic field. Physical Review D. 1994. Vol. 49, No. 10. pp. 5582—5589. https://doi.org/10.1103/physrevd.49.5582
- Ternov I.M., Khalilov V.R., Rodionov V.N. Interaction of charged particles with a strong electromagnetic field. Moscow: Moscow University Press. 1982. 304 p. [in Russian].
- Giacconi R., Gursky H., Kellogg E. et al. Discovery of periodic X-ray pulsations in centaurus X-3 from UHURU. The Astrophysical J. 1971. Vol. 167. pp. L67—L73. https://doi.org/10.1086/180762
- Hewish A., Bell J., Pilkington D. H. et al. Observation of a rapidly pulsating
radio source. Nature. 1968. Vol. 217, No. 5130. pp. 709—713. https://doi.org/
10.1038/217709a0 - Bird A. J., Bazzano A., Bassani L. et al. The fourth ibis/isgri soft gamma-ray survey catalog. The Astrophysical J. Supplement Series. 2009. Vol. 186, No. 1. pp. 1—9. https://doi.org/10.1088/0067-0049/186/1/1
- Abdo A.A., Ackermann M., Ajello M. et al. The first Fermi large area telescope catalog of gamma-ray pulsars. The Astrophysical J. Supplement Series. 2010. Vol. 187, No. 2. pp. 460—494. https://doi.org/10.1088/0067-0049/187/2/460
- Gnedin Yu.N., Syunyaev R.A. Scattering of radiation by thermal electrons in a magnetic field. Soviet Physics JETP. 1974. Vol. 38, No. 1. pp. 51—57.
- Trümper J., Pietsch W., Reppin C. et al. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. The Astrophysical J. 1978. Vol. 219. pp. L105—L110. https://doi.org/10.1086/182617
- Gnedin Yu.N., Pavlov G.G., Tsygan A.I. Photoeffect in strong magnetic fields and x-ray emission from neutron stars. Soviet Physics JETP. 1974. Vol. 39, No. 2. pp. 201—206.
- Gnedin Yu.N., Sunyaev R.A. The beaming of radiation from an accreting magnetic neutron star and the X-ray pulsars. Astronomy and Astrophysics. 1973. Vol. 25. pp. 233—239.
- Gnedin Yu.N., Sunyaev R.A. Polarization of optical and X-radiation from compact thermal sources with magnetic field. Astronomy and Astrophysics. 1974. Vol. 36. pp. 379—394.
- Sunyaev R.A., Totarchuk L.G. Comptonization of X-rays in plasma clouds. Typical radiation spectra. Astronomyand Astrophysics. 1979. Vol. 86. pp. 121—138.
- Bussard R.W. Implications of cyclotron features in the X-ray spectrum of Hercules X-1. The Astrophysical J. 1980. Vol. 237. pp. 970—987. https://doi.org/10.1086/157943
- Meszaros P., Nagel W. X-ray pulsar models. I — Angle-dependent cyclotron line formation and comptonization. The Astrophysical J. 1985. Vol. 298. pp. 147—160. https://doi.org/10.1086/163594
- Coburn W., Heindl W.A., Gruber D.E. et al. Discovery of a cyclotron resonant scattering feature in therossi x-ray timing explorerspectrum of 4U 0352+309 (X Persei). The Astrophysical J. 2001. Vol. 552, No. 2. pp. 738—747. https://doi.org/10.1086/320565
- Heindl W.A. RXTE studies of cyclotron lines in accreting pulsars. Fifth compton symp., Portsmouth, New Hampshire (USA). 2000. Vol. 510. pp. 178—182.
- Heindl W.A., Coburn W., Gruber D.E. et al. Discovery of a cyclotron resonance scattering feature in the x-ray spectrum of XTE J1946+274. The Astrophysical J. 2001. Vol. 563, No. 1. pp. L35—L39. https://doi.org/10.1086/339017
- Ibrahim A.I., Safi-Harb S., Swank J.H. et al. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806—20. The Astrophysical J. 2002. Vol. 574, No. 1. pp. L51—L55. https://doi.org/10.1086/342366
- Cusumano G., Di Salvo T., Burderi R. et al. Detection of a cyclotron line and its second harmonic in 4U1907+09. Astronomy and Astrophysics. 1998. Vol. 338. pp. L79—L82.
- Dal Fiume D., Orlandini M., Del Sordo S. et al. The broad band spectral properties of binary X-ray pulsars. Advances in Space Research. 2000. Vol. 25, No. 3—4. pp. 399—408. https://doi.org/10.1016/s0273-1177(99)00767-x
- Orlandini M., Dal Fiume M., Del Sordo S. The broad-band spectrum of OAO1657-415 with BeppoSAX: in search of cyclotron lines. Astronomy and Astrophysics. 1999. Vol. 349. pp. L9—L12.
- Santangelo A., Segreto A., Giarrusso S. et al. A BEPPOSAX study of the pulsating transient X0115+63: the first X-ray spectrum with four cyclotron harmonic features. The Astrophysical J. 1999. Vol. 523 (1). pp. L85—L88. https://doi.org/10.1086/312249
- Dal Fiume D., Frontera F., Masetti N. et al. Cyclotron lines in X-ray pulsars as a probe of relativistic plasmas in superstrong magnetic fields. Fifth compton symp., Portsmouth, New Hampshire (USA). 2000. Vol. 510. pp. 183—187. https://doi.org/10.1063/1.1303199
- Robba N.R., Burderi L., Di Salvo T. et al. The BeppoSAX 0.1-100 keV spectrum of the X-ray pulsar 4U 1538–52. The Astrophysical J. 2001. Vol. 562. pp. 950—956. https://doi.org/10.1086/323841
- La Barbera A., Burderi L., Di Salvo T. The 0.1-100 keV spectrum of LMC X-4 in the high state: evidence for a high-energy cyclotron absorption line. The Astrophysical J. 2001. Vol. 553, No. 1. pp. 375—381. https://doi.org/10.1086/320643
- Wunner G. Comparison of 1γ and 2γ pair annihilation in strong magnetic fields. Physical Review Letters. 1979. Vol. 170, No. 2. pp. 79—82. https://doi.org/10.1103/physrevlett.42.79
- Daugherty J.K., Bussard R.W. Pair annihilation in superstrong magnetic fields. The Astrophysical J. 1980. Vol. 238. pp. 296—310. https://doi.org/10.1086/157985
- Harding A.K. One-photon pair annihilation in magnetized relativistic plasmas. The Astrophysical J. 1986. Vol. 300. pp. 167—177. https://doi.org/10.1086/163791
- Wunner G., Paez G., Herold H., Ruder H. One-quantum annihilation of polarized electron-positron pairs in strong magnetic fields. Astronomy and Astrophysics. 1986. Vol. 170. pp. 179—186.
- Semionova L., Leahy D. Polarization for pair annihilation in strong magnetic fields. Astronomy and Astrophysics Supplement Series. 2000. Vol. 144. pp. 307—316. https://doi.org/10.1051/aas:2000102
- Kaminker A.D., Pavlov G.G., Mamradze P.G. Two-photon annihilation radiation in strong magnetic field: the case of small longitudinal velocities of electrons and positrons. Astrophysics and Space Sci. 1987. Vol. 138, No. 1. pp. 1—18. https://doi.org/10.1007/bf00642858
- Lewicka S., Dryzek J. Two-photon positron–electron annihilation in a strong magnetic field. Astroparticle Physics. 2013. Vol. 50—52. pp. 1—10. https://doi.org/10.1016/j.astropartphys.2013.09.001
- Lewicka S. Electron-positron annihilation in ultra-strong magnetic fields. comparison of one- and two-photon annihilation at middly relativistic regime. Acta Physica Polonica A. 2014. Vol. 125, No. 3. pp. 688—690. https://doi.org/10.12693/aphyspola.125.688
- Kaminker A.D., Gnedin O.Yu., Yakovlev D.G. et al. Neutrino emissivity from e–e+ annihilation in a strong magnetic field: hot, nondegenerate plasma. Physical Review D. 1992. Vol. 46, No. 10. pp. 4133—4139. https://doi.org/10.1103/physrevd.46.4133
- Al’ber Y.I., Krotova Z.N., Eidman V.Y. Cascade process in strong magnetic and electric fields under astrophysical conditions. Astrophysics. 1975. Vol. 11, No. 2. pp. 189—195. https://doi.org/10.1007/bf01002454
- Daugherty J.K., Harding A.K. Electromagnetic cascades in pulsars. The Astrophysical J. 1982. Vol. 252. pp. 337—347. https://doi.org/10.1086/159561
- Sturrock P.A., Harding A.K., Daugherty J.K. Cascade model of gamma-ray bursts. The Astrophysical J. 1989. Vol. 346. pp. 950—959. https://doi.org/10.1086/168075
- Baring M.G. Synchrotron pair cascades in strong magnetic fields. Astronomy and Astrophysics. 1989. Vol. 225. pp. 260—276.
- Daugherty J.K., Harding A.K. Gamma-ray pulsars: emission from extended polarcap cascades. The Astrophysical J. 1996. Vol. 458. pp. 278—292. https://doi.org/10.1086/176811
- Akhiezer A.I., Merenkov N.P., Rekalo A.P. On a kinetic theory of electromagnetic showers in strong magnetic fields. J. of Physics G: Nuclear and Particle Physics. 1994. Vol. 20, No. 9. pp. 1499—1514. https://doi.org/10.1088/0954-3899/20/9/018
- Anguelov V., Vankov H. Electromagnetic showers in a strong magnetic field. J. of Physics G: Nuclear and Particle Physics. 1999. Vol. 25, No. 8. pp. 1755—1764. https://doi.org/10.1088/0954-3899/25/8/317
- Fang J., Zhang L. Full electromagnetic cascades in spin-powered pulsars. The Astrophysical J. 2006. Vol. 653. pp.573—579. https://doi.org/10.1086/508563
- Timokhin A.N. Time-dependent pair cascades in magnetospheres of neutron stars — I. Dynamics of the polar cap cascade with no particle supply from the neutron star surface. Monthly Notices of the Royal Astronomical Society. 2010. Vol. 408, No. 4. pp. 2092—2114. https://doi.org/10.1111/j.1365-2966.2010.17286
- Medin Z., Lai D. Pair cascades in the magnetospheres of strongly magnetized neutron stars. Monthly Notices of the Royal Astronomical Society. 2010. Vol. 406. pp. 1379—1404. https://doi.org/10.1111/j.1365-2966.2010.16776
- Sturrock P.A. A model of pulsars. The Astrophysical J. 1971. Vol. 164. pp. 529—556. https://doi.org/10.1086/150865
- Usov V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Letters to Nature. 1992. Vol. 357. pp. 472—474. https://doi.org/10.1038/357472a0
- Arendt P.N., Eilek J.A. Pair creation in the pulsar magnetosphere. The Astrophysical J. 2002. Vol. 581, No. 1. pp. 451—469. https://doi.org/10.1086/344133
- Asseo E. Pair plasma in pulsar magnetospheres. Plasma Physics and Controlled Fusion. 2003. Vol. 45, No. 6. pp. 853—867. https://doi.org/10.1088/0741-3335/45/6/302
- Istomin Ya.N., Sobyanin D.N. Electron-positron plasma generation in a magnetar magnetosphere. Astronomy Letters. 2007. Vol. 33, No. 10. pp. 660—672. https://doi.org/10.1134/s1063773707100040
- Zhukovsky V.Ch., Vshivtsev A.S., Eminov P.A. Thermodynamic potential and oscillations of the magnetization of a relativistic electron-positron gas in a constant magnetic field. Physics of Atomic Nuclei. 1995. Vol. 58, No. 7. pp. 1274—1281. [in Russian].
- Persson D., Zeitlin V. Note on QED with a magnetic field and chemical potential. Physical Review D. 1995. Vol. 51, No. 4. pp. 2026—2029. https://doi.org/10.1103/physrevd.51.2026
- Harding A.K. Physics in strong magnetic fields near neutron stars. Science. 1991. Vol. 251, No. 4997. pp. 1033—1038. https://doi.org/10.1126/science.251.4997.1033
- Harding A.K. The physics of gamma-ray bursts. Physical Reports. 1991. Vol. 206, No. 6. pp. 327—391. https://doi.org/10.1016/0370-1573(91)90055-q
- Ternov I.M., Dorofeev O.F. Quantum effects in extremely strong magnetic field. Physics of elementary particles and atomic nucleus. 1994. Vol. 25, No. 1. pp. 5—93. [in Russian].
- Harding A.K., Lai D. Physics of strongly magnetized neutron stars. Reports on Progress in Physics. 2006. Vol. 69, No. 9. pp. 2631—2708. https://doi.org/10.1088/0034-4885/69/9/r03
- Dolginov A.Z., Gnedin Yu.N., Silantyev N.A. Propagation and polarization of radiation in the space environment. Moscow: Nauka, 1979. 425 p. [in Russian].
- Shklovsky I.S. Problems of modern astrophysics. Moscow: Nauka, 1982. 223 p. [in Russian].
- Oleinik V.P. Resonance effects in the field of an intense laser beam. I. Soviet Physics JETP. 1967. Vol. 25, No. 4. pp. 697—708.
- Oleinik V.P. Resonance effects in the field of an intense laser ray. II. Soviet Physics JETP. 1968. Vol. 26, No. 6. pp. 1132—1138.
- Fedorov M.V. Resonance interaction between electrons and photons. Soviet Physics JETP. 1975. Vol. 41, No. 4. pp. 601—605.
- Baier V.N., Mil’shtein A.I. Radiative effects near cyclotron resonance. Soviet Physics JETP. 1978. Vol. 48, No. 2. pp. 196—201.
- Borisov A.V., Zhukovskii V.Ch., Eminov P.A. Resonant electron-electron bremsstrahlung in the field of an electromagnetic wave. Soviet Physics JETP. 1980. Vol. 51, No. 2. pp. 267—270.
- Roshchupkin S.P. Resonant electron-electron scattering in the field of a light wave: general relativistic case. Laser Physics. 1994. Vol. 4. pp. 31—60.
- Denisenko O.I., Roshchupkin S.P. Resonant scattering of an electron by a positron in the field of a light wave. Laser Physics. 1999. Vol. 9. pp. 1108—1112.
- Landau L.D., Lifshitz E.M. Quantum mechanics: non-relativistic theory. Oxford: Butterworth-Heinemann, 1991. 677 p.
- Kachelriess M., Berg D., Wunner G. Is Compton scattering in magnetic fields really infrared divergent? Physical Review D. 1995. Vol. 51, No. 2. pp. 824—828. https://doi.org/10.1103/physrevd.51.824
- Graziani C., Harding A.K., Sina R. Elimination of resonant divergences from QED in superstrong magnetic fields. Physical Review D. 1995. Vol. 51, No. 12. pp. 7097—7110. https://doi.org/10.1103/physrevd.51.7097
- Kachelriess M. Unstable states in QED of strong magnetic fields. Physical Review D. 1996. Vol. 53, No. 2. pp. 974—979. https://doi.org/10.1103/physrevd.53.974
- Milton K.A., Tsai W., DeRaad L.L., Dass N.D. Compton scattering in external magnetic fields. II. Spin-1/2 charged particles. Physical Review D. 1974. Vol. 10, No. 4. pp.1299—1309. https://doi.org/10.1103/physrevd.10.1299
- Herold H. Compton and Thomson scattering in strong magnetic fields. Physical Review D. 1979. Vol. 19, No. 10. pp. 2868—2875. https://doi.org/10.1103/physrevd.19.2868
- Daugherty J.K., Harding A.K. Compton scattering in strong magnetic fields. The Astrophysical J. 1986. Vol. 309. P. 362. https://doi.org/10.1086/164608
- Bussard R.W., Alexander S.B., Meszaros P. One- and two-photon Compton scattering in strong magnetic fields. Physical Review D. 1986. Vol. 34, No. 2. pp. 440—451. https://doi.org/10.1103/physrevd.34.440
- Dermer C.D. Compton scattering in strong magnetic fields and the continuum spectra of gamma-ray bursts — Basic theory. The Astrophysical J. 1990. Vol. 360. P. 197. https://doi.org/10.1086/169108
- Harding A.K., Daugherty J.K. Cyclotron resonant scattering and absorption. The Astrophysical J. 1991. Vol. 374. P. 687. https://doi.org/10.1086/170153
- Meisler T.R. Low energy limit of Compton scattering in supersymmetric QED. Physical Review D. 1996. Vol. 54, No. 1. pp. 798—807. https://doi.org/10.1103/physrevd.54.798
- Gonthier P.L., Harding A.K., Baring M.G. et al. Compton scattering in ultrastrong magnetic fields: numerical and analytical behavior in the relativistic regime. The Astrophysical J. 2000. Vol. 540, No. 2. pp. 907—922. https://doi.org/10.1086/309357
- Fomin P.I., Kholodov R.I. Resonance Compton scattering in an external magnetic field. J. of Experimental and Theoretical Physics. 2000. Vol. 90. pp. 281—286. https://doi.org/10.1134/1.559101
- Fomin P.I., Kholodov R.I. Scattering of a photon by a ground-state electron in a strong magnetic field. Laser Physics. 2000. Vol. 10, No. 5. pp. 1150—1155.
- Gonthier P.L., Baring M.G., Eiles M.T. et al. Compton scattering in strong magnetic fields: spin-dependent influences at the cyclotron resonance. Physical Review D. 2014. Vol. 90, No. 4. P. 043014. https://doi.org/10.1103/physrevd.90.043014
- Ternov I.M., Bagrov V.G., Khalilov V.R., Rodionov V.N. Intensity effects in the scattering of electromagnetic waves by electrons moving in an external magnetic field. Physics of Atomic Nuclei. 1975. Vol. 22, No. 5. pp. 1040—1046. [in Russian].
- Ng Y.J., Tsai W. Pair creation by photon-photon scattering in a strong magnetic field. Physical Review D. 1977. Vol. 16, No. 2. pp. 286—294. https://doi.org/10.1103/physrevd.16.286
- Zhukovsky V.Ch., Nikitina N.S. Induced two-photon production of electron-positron pairs in a magnetic field. Physics of Atomic Nuclei. 1974. Vol. 19, No. 1. pp. 148—154. [in Russian].
- Rodionov V.N. Pair production in the scattering of a photon by an intense electromagnetic wave in a uniform magnetic field. Soviet Physics JETP. 1980. Vol. 51, No. 1. pp. 52—58.
- Lobanov A.E., Muratov A.R. Effect of magnetic field on the photoproduction of electron-positron pairs. Soviet Physics JETP. 1984. Vol. 60, No. 4. pp. 651—653.
- Kozlenkov A.A., Mitrofanov I.G. Two-photon production of e–e+ pairs in a strong magnetic field. Soviet Physics JETP. 1986. Vol. 64, No. 6. pp. 1173—1179.
- Burns M.L., Harding A.K. Pair production rates in mildly relativistic magnetized plasmas. The Astrophysical J. 1984. Vol. 285. pp. 747—757. https://doi.org/10.1086/162552
- Zhang B., Qiao G.J. Two-photon annihilation in the pair formation cascades in pulsar polar caps. Astronomy and Astrophysics. 1998. Vol. 338. pp. 62—68.
- Zhang B. On the radio quiescence of anomalous x-ray pulsars and soft gamma-ray repeaters. The Astrophysical J. 2001. Vol. 562, No. 1. pp. L59—L62. https://doi.org/10.1086/338051
- Harding A.K., Muslimov A.G., Zhang B. Regimes of pulsar pair formation and particle energetics. The Astrophysical J. 2002. Vol. 576, No. 1. pp. 366—375. https://doi.org/10.1086/341633
- Baring M.G., Harding A.K. Pair production absorption troughs in gamma-ray burst spectra: a potential distance discriminator. The Astrophysical J. 1997. Vol. 481, No. 2. pp. L85—L88. https://doi.org/10.1086/310665
- Dunaev M.A., Mikheev N.V. Production of electron-positron pairs by a photon propagating in a strongly magnetized thermal bath. J. of Experimental and Theoretical Physics. 2012. Vol. 114, No. 3. pp. 365—371. https://doi.org/10.1134/s1063776112020033
- Zhukovskii V.Ch., Nikitina N.S. Induced two-photon synchrotron radiation and Compton scattering in a magnetic field. Soviet Physics JETP. 1973. Vol. 37, No. 4. pp. 595—598.
- Sokolov A.A., Voloshchenko A.M., Zhukovsky V.Ch., Pavlenko Yu.G. Two Photon Synchrotron Radiation. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 1976. Vol. 9. pp. 46—52. [in Russian].
- Semionova L., Leahy D. Two-photon emission process in arbitrarily strong magnetic fields. Physical Review D. 1999. Vol. 60, No. 7. P. 073011. https://doi.org/10.1103/physrevd.60.073011
- Gutbrod H.H., Augustin I., Eickhoff H. et al. FAIR Baseline Technical Report. Volume1 — Executive Summary. Darmstadt: GSI, 2006. 92 p. https://fair-center.eu/for-users/publications
- Fortov V.E., Sharkov B.Y., Stöcker H. European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program. Uspekhi Fizicheskih Nauk. 2012. Vol. 182, No. 6. pp. 621—644. https://doi.org/10.3367/ufnr.0182.201206c.0621
- Dirac P.A.M. The quantum theory of the electron. Proceedings of the Royal Society A. 1928. Vol. 117. pp. 610—624.
- Sommerfeld A.Zur Quantentheorie der Spektrallinien. Annalen der Physik. 1916. Vol. 356, No. 17. pp. 1—94. https://doi.org/10.1002/andp.19163561702
- Pomeranchuk I.Ya., Smorodinsky Ya.A. On energy levels in system with Z > 137. J. of Physics USSR. 1945. Vol. 9. P. 97.
- Akhiezer A.I., Berestetskiy A.I. Quantum electrodynamics. Oak Ridge, Tennesee: U. S. Atomic Energy Commission, Technical Inf. Service Extension, 1957. 549 p.
- Zeldovich Y.B., Popov V.S. Electronic structure of superheavy atoms. Uspekhi Fizicheskih Nauk. 1972. Vol. 14, No. 6. pp. 673—694. https://doi.org/10.1070/pu1972v014n06abeh004735
- Pieper W., Greiner W. Interior electron shells in superheavy nuclei. Zeitschrift für Physik A Hadrons and nuclei. 1969. Vol. 218, No. 4. pp. 327—340. https://doi.org/10.1007/bf01670014
- Soff G., Müller B., Rafelski J. Precise values for critical fields in quantum electrodynamics. Zeitschrift für Naturforschung A. 1974. Vol. 29, No. 9. pp. 1267—1275. https://doi.org/10.1515/zna-1974-0905
- Popov V.S. Spontaneous positron production in collisions between heavy nuclei. Soviet Physics JETP. 1974. Vol. 38, No. 1. pp. 18—26.
- Müller B., Rafelski J., Greiner W. Auto-ionization of positrons in heavy ion collisions. Zeitschrift für Physik A Hadrons and nuclei. 1972. Vol. 257, No. 3. pp. 183—211. https://doi.org/10.1007/bf01401203
- Backe H., Handschug L., Hessberger F. et al. Observation of positron creation in superheavy ion-atom collision systems. Physical Review Letters. 1978. Vol. 40, No. 22. pp. 1443—1446. https://doi.org/10.1103/physrevlett.40.1443
- Backe H., Senger P., Boning W. et al. Estimates of the nuclear time delay in dissipative U + U and U + Cm collisions derived from the shape of positron and -ray spectra. Physical Review Letters. 1983. Vol. 50, No. 23. pp. 1838—1841. https://doi.org/10.1103/physrevlett.50.1838
- Schweppe J., Gruppe A., Bethge K. et al. Observation of a peak structure in positron spectra from U+Cm collisions. Physical Review Letters. 1983. Vol. 51, No. 25. pp. 2261—2264. https://doi.org/10.1103/physrevlett.51.2261
- Cowan T., Backe H., Begemann M. et al. Anomalous positron peaks from supercritical collision systems. Physical Review Letters. 1985. Vol. 54, No. 16. pp. 1761—1764. https://doi.org/10.1103/physrevlett.54.1761
- Kozhuharov C., Kienle P., Berdermann E. et al. Positrons from 1.4-GeV uranium-atomcollisions. Physical Review Letters. 1979. Vol. 42, No. 6. pp. 376—379. https://doi.org/10.1103/physrevlett.42.376
- Clemente M., Berdermann E., Kienle P. et al. Narrow positron lines from U-U and U-Th collisions. Physics Letters B. 1984. Vol. 137, No. 1—2. pp. 41—46. https://doi.org/10.1016/0370-2693(84)91102-x
- Tsertos H., Berdermann E., Bosch F. et al. On the scattering-angle dependence of the monochromatic positron emission from U-U and U-Th collisions. Physics Letters B. 1985. Vol. 162, No. 4. pp. 273—276. https://doi.org/10.1016/0370-2693(85)90921-9
- Koenig W., Bosch F., Kienle P. et al. Positron lines from subcritical heavy ion-atom collisions. Zeitschrift für Physik A Atomic Nuclei. 1987. Vol. 328. pp. 129—145. https://doi.org/10.1007/bf01290655
- Koenig W., Berdermann E., Bosch F. et al. On the momentum correlation of (e+e−) pairs observed in U+U and U+Pb collisions. Physics Letters B. 1989. Vol. 218, No. 1. pp. 12—16. https://doi.org/10.1016/0370-2693(89)90466-8
- Salabura P., Backe H., Bethge K. et al. Correlated e+e− peaks observed in heavy-ion collisions. Physics Letters B. 1990. Vol. 245, No. 2. pp. 153—160. https://doi.org/10.1016/0370-2693(90)90126-q
- Cowan T., Backe H., Bethge K. et al. Observation of correlated narrow-peak structures in positron and electron spectra from superheavy collision systems. Physical Review Letters. 1986. Vol. 56, No.5. pp. 444—447. https://doi.org/10.1103/physrevlett.56.444
- Kienle P. Positrons from heavyion collisions. Annual Review of Nuclear and Particle Science. 1986. Vol. 36, No. 1. pp. 605—648. https://doi.org/10.1146/annurev.ns.36.120186.003133
- Ahmad I., Austin S.M., Back B.B. et al. Search for narrow sum-energy lines in electron-positron pair emission from heavy-ion collisions near the Coulomb barrier. Physical Review Letters. 1995. Vol. 75, No. 14. pp. 2658—2661. https://doi.org/10.1103/physrevlett.75.2658
- Pokotilovsky Yu.N. «Darmstadt effect» and related issues. Physics of Elementary Particles and Atomic Nuclei. 1993. Vol. 24, No. 1. pp. 5—80. [in Russian].
- Fomin P.I., Kholodov R.I. The nature of the narrow peaks in the е+е– pair production in heavy-ion collisions. Reports of the National Academy of Sci. of Ukraine. 1998. Vol. 12. pp. 91—96. [in Russian].
- Rumrich K., Greiner W., Soff G. The influence of strong magnetic fields on position production in heavy-ion collisions. Physics Letters A. 1987. Vol. 125, No. 8. pp. 394—398. https://doi.org/10.1016/0375-9601(87)90168-x
- Shabad A.E. Photon dispersion in a strong magnetic field. Annals of Physics. 1975. Vol. 90, No. 1. pp. 166—195. https://doi.org/10.1016/0003-4916(75)90144-x
- Shabad A.E. Polarization of vacuum and quantum relativistic gas in an external field. Trudy FIAN. 1988. Vol. 192. pp. 5—152. [in Russian].
- Shabad A.E. Photon propagation in a supercritical magnetic field. J. of Experimental and Theoretical Physics. 2004. Vol. 98. pp. 186—196. https://doi.org/10.1134/1.1675886
- Shabad A.E., Usov V.V. Real and virtual photons in an external constant electromagnetic field of most general form. Physical Review D. 2010. Vol. 81, No. 12. P. 125008. https://doi.org/10.1103/physrevd.81.125008
- Khalilov V.R., Mamsurov I.V. Polarization operator in the 2+1 dimensional quantum electrodynamics with a nonzero fermion density in a constant uniform magnetic field. The European Physical J. C. 2015. Vol. 75, No. 4. P. 167. https://doi.org/10.1140/epjc/s10052-015-3389-6
- Perez-Rojas H. Polarization operator of electron-positron gas in a constant external magnetic field. Soviet Physics JETP. 1979. Vol. 49. pp. 1—8.
- Skobelev V.V. Propagation of photons in a magnetic field. Soviet Physics JETP. 1977. Vol. 46. pp. 684—686.
- Heisenberg W., Euler H. Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift für Physik. 1936. Vol. 98, No. 11—12. pp. 714—732. https://doi.org/10.1007/bf01343663
- Euler H., Kockel B. Über die Streuung von Licht an Licht nach der Diracschen Theorie. Die Naturwissenschaften. 1935. Vol. 23, No. 15. pp. 246—247. https://doi.org/10.1007/bf01493898
- Akhieser A., Landau L., Pomeranchook I. Scattering of light by light. Nature. 1936. Vol. 138. P. 206. https://doi.org/10.1038/138206a0
- Klein J.J., Nigam B.P. Birefringence of the vacuum. Physical Review. 1964. Vol. 135, 5B. pp. B1279—B1280. https://doi.org/10.1103/physrev.135.b1279
- Granovskii Ya.I., Dimashko Yu.A. The oscillator representation in Landau’s problem of the motion of a particle in a uniform field. Soviet Physics JETP. 1975. Vol. 41, No. 6. pp. 996—998.
- Kruglov S.I. Vacuum birefringence from the effective Lagrangian of the electromagnetic field. Physical Review D. 2007. Vol. 75, No. 11. P. 117301. https://doi.org/10.1103/physrevd.75.117301
- Villalba-Chavez S. The role of photon polarization modes in the magnetization and instability of the vacuum in a supercritical field. Physics Letters B. 2010. Vol. 692, No. 5. pp. 317—322. https://doi.org/10.1016/j.physletb.2010.08.002
- Hattori K., Itakura K. Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels. Annals of Physics. 2013. Vol. 330. pp. 23—54. https://doi.org/10.1016/j.aop.2012.11.010
- Hattori K., Itakura K. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level. Annals of Physics. 2013. Vol. 334. pp. 58—82. https://doi.org/10.1016/j.aop.2013.03.016
- Shakeri S., Kalantari S. Z., Xue S. Polarization of a probe laser beam due to nonlinear QED effects. Physical Review A. 2017. Vol. 95, No. 1. P. 012108. https://doi.org/10.1103/physreva.95.012108
- Mignani R.P., Testa V., Caniulef D.G. et al. Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5−3754. Monthly Notices of the Royal Astronomical Society. 2016. Vol. 465, No. 1. pp. 492—500. https://doi.org/10.1093/mnras/stw2798
- Grib A.A., Mamaev S.G., Mostepanenko V.M. Vacuum quantum effects in strong fields. Moscow: Energoatomizdat. 1973. 376 p. [in Russian].
- Gitman D.M., Fradkin E.S., Shvartsman Sh.M. Quantum electrodynamics with unstable vacuum. Moscow: Nauka, 1991. 296 p. [in Russian].
- Akhiezer A.I., Berestetskiy A.I. Quantum electrodynamics. Moscow: Nauka, 1981. 432 p. [in Russian].
- Berestetskiy A.I., Lifshits E.M., Pitaevsky L.P. Quantum electrodynamics. Moscow: Nauka, 1989. 728 p. [in Russian].
- Adler S.L. Photon splitting and photon dispersion in a strong magnetic field. Annals of Physics. 1971. Vol. 67, No. 2. pp. 599—647. https://doi.org/10.1016/0003-4916(71)90154-0
- Skobov V.G. Decay of a photon into two photons in a homogeneous magnetic field. Soviet Physics JETP. 1959. Vol. 8, No. 5. P. 919.
- Sannikov S.S. Fusion of photons in a uniform electromagnetic field. Soviet Physics JETP. 1967. Vol. 25, No. 5. P. 867.
- Mentzel M., Berg D., Wunner G. Photon splitting in strong magnetic fields. Physical Review D. 1994. Vol. 50, No. 2. pp. 1125—1139. https://doi.org/10.1103/
physrevd.50.1125 - Weise J.I., Baring M.G., Melrose D.B. Photon splitting in strong magnetic fields: S-matrix calculations. Physical Review D. 1998. Vol. 57, No. 9. pp. 5526—5538. https://doi.org/10.1103/physrevd.57.5526
- Baring M.G., Dubois D.M. Photon splitting and pair conversion in strong magnetic fields. Computing Anticipatory Systems: CASYS’07–Eighth Int. Conf., Liege (Belgium). 2008. Vol. 1051. pp. 53—61. https://doi.org/10.1063/1.3020681
- Wolkov D.M. Electron in the field of plane unpolarized electromagnetic waves from the point of view of the Dirac equation. Soviet Physics JETP. 1937. Vol. 7, No. 11. pp. 1286—1289. [in Russian].
- Yanovsky V., Chvykov V., Kalinchenko G. et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Optics Express. 2008. Vol. 16, No. 3. P. 2109. https://doi.org/10.1364/oe.16.002109
- Extreme light infrastructure (ELI). URL: http://www5.extreme-light-infrastructure.eu(date of access: 15.10.2018).
- Exawatt center for extreme light studies (XCELS). URL: https://xcels.ipfran.ru(date of access: 15.10.2018).
- Nikishov A.I., Ritus V.I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Soviet Physics JETP. 1964. Vol. 19, No. 2. pp. 529—541.
- Nikishov A.I., Ritus V.I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Soviet Physics JETP. 1964. Vol. 19, No. 5. pp. 1191—1199.
- Ternov I.M., Bagrov V.G., Khalilov V.R. Quantum theory of radiation of a charge moving in a magnetic field and a plane wave. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 1968. No. 11. pp. 102—107. [in Russian].
- Nikishov A.I. Intense external field problems in quantum electrodynamics. Trudy FIAN. 1979. Vol. 111. pp. 152—271. [in Russian].
- Mackenroth F., Di Piazza A. Nonlinear Compton scattering in ultrashort laser pulses. Physical Review A. 2011. Vol. 83, No. 3. P. 032106. https://doi.org/10.1103/physreva.83.032106
- Narozhny N.B., Fedotov A.M. Creation of electron-positron plasma with superstrong laser field. The European Physical J. Special Topics. 2014. Vol. 223, No. 6. pp. 1083—1092. https://doi.org/10.1140/epjst/e2014-02159-1
- Lebed’ A.A., Roshchupkin S.P. The influence of a pulsed light field on the electron scattering by a nucleus. Laser Physics Letters. 2008. Vol. 5, No. 6. pp. 437—445. https://doi.org/10.1002/lapl.200810013
- Kuchiev M.Y., Robinson D.J. Electron-positron pair creation by Coulomb and laser fields in the tunneling regime. Physical Review A. 2007. Vol. 76, No. 1. P. 112107. https://doi.org/10.1103/physreva.76.012107
- Di Piazza A., Loetstedt E., Milstein A.I., Keitel C.H. Barrier control in tunneling e+e− photoproduction. Physical Review Letters. 2009. Vol. 103, No. 17. P. 170403. https://doi.org/10.1103/physrevlett.103.170403
- Voroshilo A.I., Roshchupkin S.P. Resonant scattering of a photon by an electron in the field of a circularly polarized electromagnetic wave. Laser Physics Letters. 2005. Vol. 2, No. 4. pp. 184—189. https://doi.org/10.1002/lapl.200410165
- Voroshilo A.I., Roshchupkin S.P., Denisenko O.I. Resonance of exchange amplitude of Compton effect in the circularly polarized laser field. The European Physical J. D. 2006. Vol. 41, No. 2. pp. 433—440. https://doi.org/10.1140/epjd/e2006-00230-0
- Voroshilo A.I., Roshchupkin S.P., Nedoreshta V.N. Resonant scattering of photon by electron in the presence of the pulsed laser field. Laser Physics. 2011. Vol. 21, No. 9. pp. 1675—1687. https://doi.org/10.1134/s1054660x11180010
- Nedoreshta V.N., Roshchupkin S.P., Voroshilo A.I. Resonance of the exchange amplitude of a photon by an electron scattering in a pulsed laser field. Physical Review A. 2015. Vol. 91, No. 6. P. 062110. https://doi.org/10.1103/physreva.
91.062110 - Lebed’ A.A., Roshchupkin S.P. Nonresonant spontaneous bremsstrahlung by a relativistic electron scattered by a nucleus in the field of pulsed light wave. The European Physical J. D. 2009. Vol. 53, No. 1. pp. 113—122. https://doi.org/10.1140/epjd/e2009-00050-8
- Lebed’ A.A., Roshchupkin S.P. Nonresonant spontaneous bremsstrahlung by a nonrelativistic electron scattered by a nucleus in the field of pulsed light wave. Laser Physics Letters. 2009. Vol. 6, No. 6. pp. 472—481. https://doi.org/10.1002/lapl.200910012
- Lebed’ A.A., Roshchupkin S.P. Resonant spontaneous bremsstrahlung by an electron scattered by a nucleus in the field of a pulsed light wave. Physical Review A. 2010. Vol. 81, No. 3. P. 033413. https://doi.org/10.1103/physreva.81.033413
- Padusenko E.A., Roshchupkin S.P., Voroshilo A.I. Nonresonant scattering of relativistic electron by relativistic muon in the pulsed light field. Laser Physics Letters. 2009. Vol. 6, No. 3. pp. 242—251. https://doi.org/10.1002/lapl.200810121
- Padusenko E.A., Roshchupkin S.P., Voroshilo A.I. Nonresonant scattering of nonrelativistic electron by nonrelativistic muon in the pulsed light field. Laser Physics Letters. 2009. Vol. 6, No. 8. pp. 616—623. https://doi.org/10.1002/lapl.200910038
- Lötstedt E., Jentschura U.D. Nonperturbative treatment of double compton backscattering in intense laser fields. Physical Review Letters. 2009. Vol. 103, No. 11. P. 110404. https://doi.org/10.1103/physrevlett.103.110404
- Lötstedt E., Jentschura U.D. Correlated two-photon emission by transitions of Dirac-Volkov states in intense laser fields: QED predictions. Physical Review A. 2009. Vol. 80, No. 5. P. 053419. https://doi.org/10.1103/physreva.80.053419
- Di Piazza A., Milstein A.I. Quasiclassical approach to high-energy QED processes in strong laser and atomic fields. Physics Letters B. 2012. Vol. 717, No. 1. pp. 224—228. https://doi.org/10.1016/j.physletb.2012.09.043
- Di Piazza A., Mueller C., Hatsagortsyan K.Z., Keitel C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Reviews of Modern Physics. 2012. Vol. 84, No. 3. pp. 1177—1228. https://doi.org/10.1103/revmodphys.84.1177
- Roshchupkin S.P., Voroshilo A.I. Resonant and coherent effects of quantum electrodynamics in the light field. Kiev: Naukova Dumka, 2008. 400 p. [in Russian].
- Roshchupkin S.P., Lebed’ A.A. Effects of quantum electrodynamics in the strong pulsed laser fields. Kiev: Naukova Dumka, 2013. 192 p. [in Russian].
- Redmond P.J. Solution of the Klein-Gordon and Dirac equation for a particle with a plane electromagnetic wave and a parallel magnetic field. J. of Mathematical Physics. 1965. Vol. 6. pp. 1163—1169. https://doi.org/10.1063/1.1704385
- Oleinik V.P. Green’s function and quasi-energy spectrum of an electron in the field of an electromagnetic wave and a uniform magnetic field. Ukrainian J. of Physics. 1968. Vol. 13, No.7. pp. 1205—1214. [in Russian].
- Borgardt O.O., Karpenko D.Ya. An electron in a homogeneous electromagnetic field and in a field of a plane arbitrarily polarized wave. Ukrainian J. of Physics. 1974. Vol. 19, No. 2. pp. 228—236. [in Ukrainian].
- Bagrov V.G., Gitman D.M., Rodionov V.N. et al. Effect of a strong electromagnetic wave on the radiation emitted by weakly excited electrons moving in a magnetic field. Soviet Physics JETP. 1976. Vol. 44, No. 2. pp. 228—231.
- Rodionov V.N. Photon emission by an electron in the field of an intense plane electromagnetic wave, with effects of a constant magnetic field included. Soviet Physics JETP. 1981. Vol. 54, No. 6. pp. 1047—1053.
- Oleinik V. P. Electron-positron pair production by photons in the field of an electromagnetic wave and in a homogeneous magnetic field. Soviet Physics JETP. 1972. Vol. 34, No. 1. pp. 14—22.
- Zhukovskii V.Ch., Herrmann J. Compton scattering and induced Compton scattering in a constant electromagnetic field. Physics of Atomic Nuclei. 1971. Vol. 14, No. 1. pp. 150—159. [in Russian].
- Zhukovskii V.Ch. Bremsstrahlung from an electron passing by a nucleus situated in a constant external field. Soviet Physics JETP. 1974. Vol. 39, No. 1. pp. 4—6.
- Borisov A.V., Zhukovskii V.Ch. Photoproduction of electron-positron pairs on a nucleus in the presence of a constant external field. Physics of Atomic Nuclei. 1975. Vol. 21, No. 3. pp. 579—585. [in Russian].
- Bula C., McDonald K.T., Prebys E.J. et al. Observation of nonlinear effects in compton scattering. Physical Review Letters. 1996. Vol. 76, No. 17. pp. 3116—3119. https://doi.org/10.1103/physrevlett.76.3116
- Burke D.L., Berridge S.C., Bula C. et al. Positron production in multiphoton light-by-light scattering. Physical Review Letters. 1997. Vol. 79, No. 9. pp. 1626—1629. https://doi.org/10.1103/physrevlett.79.1626
- Bamber C., Boege J., Koffas T. et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Physical Review D. 1999. Vol. 60, No. 9. P. 092004. https://doi.org/10.1103/physrevd.60.092004
- Bula C., McDonald K.T. Williams approximation to trident production in electron-photon collisions. arXiv:hep-ph/0004117
- Hu H., Müller C., Keitel C.H. Complete QED theory of multiphoton trident pair production in strong laser fields. Physical Review Letters. 2010. Vol. 105, No. 8. P. 080401. https://doi.org/10.1103/physrevlett.105.080401
- Marklund M., Shukla P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Reviews of Modern Physics. 2006. Vol. 78, No. 2. pp. 591—640. https://doi.org/10.1103/revmodphys.78.591
- Langer S.H. Collisional excitation of electron Landau levels in strong magnetic fields. Physical Review D. 1981. Vol. 23, No. 2. pp. 328—346. https://doi.org/10.1103/physrevd.23.328
- Crooker S.A., Samarth N. Tuning alloy disorder in diluted magnetic semiconductors in high fields to 89T. Applied Physics Letters. 2007. Vol. 90, No. 10. P. 102109. https://doi.org/10.1063/1.2711370
- Sakharov A.D., Lyudaev R.Z., Sminov E.N. et al. Magnetic cumulation. Doklady Akademii nauk SSSR. 1965. Vol. 165, No. 1. pp. 65—68. [in Russian].
- Selected works of A.D. Sakharov. Soviet Physics Uspekhi. 1991. Vol. 161, No. 5. pp. 29—120.
- Sefcik J., Perry M.D., Lasinski B.F. et al. Gigagauss magnetic field generation from high intensity laser solid interactions. Proceedings of the int. conf. on megagauss magnetic field generation and related topics, Tallahassee, Florida, USA. 2004. https://doi.org/10.1142/9789812702517_0029
- Wagner U., Tatarakis M., Gopal A. et al. Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Physical Review E. 2004. Vol. 70, No. 2. P. 026401. https://doi.org/10.1103/physreve.70.026401
- Gopal A. Measurements of ultrastrong fields in laser produced plasmas: PhD Thesis. London University, 2004. 172 p. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.
ethos.415337 - Law K., Bailly-Grandvaux M., Morace A. et al. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Applied Physics Letters. 2016. Vol. 108, No. 9. P. 091104. https://doi.org/10.1063/1.4943078
- Ehret M., Kochetkov Yu, Abe Y. et al. Kilotesla plasmoid formation by a trapped relativistic laser beam. arXiv:1908.11430v1
- Zhang Zhe, Zhu Baojun, Li Yutong et al. Generation of strong magnetic fields with a laser-driven coil. High Power Laser Science and Engineering. 2018. Vol. 6, No. e38. https://doi.org/10.1017/hpl.2018.33
- Kaluza M., Schlenvoigt H., Mangles S. et al. Measurement of magnetic-field structures in a laser-wakefield accelerator. Physical Review Letters. 2010. Vol. 105, No. 11. P. 115002. https://doi.org/10.1103/physrevlett.105.115002
- Walton B., Dangor A., Mangles S. et al. Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments. New J. of Physics. 2013. Vol. 15, No. 2. P. 025034. https://doi.org/10.1088/1367-2630/15/2/025034
- Wang T., Toncian T., Wei M. et al. Structured targets for detection of Megatesla-level magnetic fields through Faraday rotation of XFEL beams. Physics of Plasmas. 2019. Vol. 26, No. 1. P. 013105. https://doi.org/10.1063/1.5066109
- Baring M.G., Harding A.K. Radio-quiet pulsars with ultrastrong magnetic fields. The Astrophysical J. 1998. Vol. 507, No. 1. pp. L55—L58. https://doi.org/10.1086/311679
- Price D.J., Rosswog S. Producing ultrastrong magnetic fields in neutron star mergers. Science. 2006. Vol. 312, No. 5774. pp. 719—722. https://doi.org/10.1126/
science.1125201 - Mereghetti S. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. The Astronomy and Astrophysics Review. 2008. Vol. 15, No. 4. pp. 225—287. https://doi.org/10.1007/s00159-008-0011-z
- Revnivtsev M., Mereghetti S. Magnetic fields of neutron stars in X-ray binaries. Space Science Reviews. 2014. Vol. 191, No. 1-4. pp. 293—314. https://doi.org/10.1007/s11214-014-0123-x
- Kaspi V.M., Beloborodov A.M. Magnetars. Annual Review of Astronomy and Astrophysics. 2017. Vol. 55, No. 1. pp. 261—301. https://doi.org/10.1146/annurev-astro-081915-023329
- Shabad A.E., Usov V.V. Positronium collapse and the maximum magnetic field in pure QED. Physical Review Letters. 2006. Vol. 96, No. 18. P. 180401. https://doi.org/10.1103/physrevlett.96.180401
- Leung C.N., Wang S.Y. Is there a maximum magnetic field in QED? Physics Letters B. 2009. Vol. 674, No. 4-5. pp. 344—347. https://doi.org/10.1016/j.physletb.
2009.03.039 - Newton R.G. Atoms in superstrong magnetic fields. Physical Review D. 1971. Vol. 3, No. 2. pp. 626—627. https://doi.org/10.1103/physrevd.3.626
- Skobelev V.V. Hydrogen-like atom in a superstrong magnetic field: photon emission and relativistic energy level shift. J. of Experimental and Theoretical Physics. 2017. Vol. 124, No. 6. pp. 877—885. https://doi.org/10.1134/s1063776117050077
- Shabad A.E., Usov V.V. γ-Quanta capture by magnetic field and pair creation suppression in pulsars. Nature. 1982. Vol. 295, No. 5846. pp. 215—217. https://doi.org/10.1038/295215a0
- Herold H., Ruder H., Wunner G. Can γ quanta really be captured by pulsar magnetic fields? Physical Review Letters. 1985. Vol. 54, No. 13. pp. 1452—1455. https://doi.org/10.1103/physrevlett.54.1452
- Leinson L.B., Perez A. Relativistic approach to positronium levels in a strong magnetic field. J. of High Energy Physics. 2000. Vol. 2000, No. 11. P. 039. https://doi.org/10.1088/1126-6708/2000/11/039
- Lai D. Matter and radiation in strong magnetic fields of neutron stars. J. of Physics: Conf. Series. 2006. Vol. 31. pp. 68—75. https://doi.org/10.1088/1742-6596/31/1/011
- Lai D. Physics in very strong magnetic fields. Space Science Reviews. 2015. Vol. 191, No. 1-4. pp. 13–25. https://doi.org/10.1007/s11214-015-0137-z
- Ruder H., Herold H., Geyer F., Wunner G. Atoms in strong magnetic fields: quantum mechanical treatment and applications in astrophysics and quantum chaos (astronomy and astrophysics library). Springer-Verlag Telos, 1994. 309 p.
- Gusynin V.P., Miransky V.A., Shovkovy I.A. Dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions. Physical Review D. 1995. Vol. 52, No. 8. pp. 4718—4735. https://doi.org/10.1103/physrevd.52.4718
- Gusynin V.P., Miransky V.A., Shovkovy I.A. Dynamical chiral symmetry breaking by a magnetic field in QED. Physical Review D. 1995. Vol. 52, No. 8. pp. 4747—4751. https://doi.org/10.1103/physrevd.52.4747
- Gusynin V.P., Miransky V.A., Shovkovy I.A. Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nuclear Physics B. 1996. Vol. 462, No. 2-3. pp. 249—290. https://doi.org/10.1016/0550-3213(96)00021-1
- Gusynin V.P., Miransky V.A., Shovkovy I.A. Dynamical chiral symmetry breaking in QED in a magnetic field: toward exact results. Physical Review Letters. 1999. Vol. 83, No. 7. pp. 1291—1294. https://doi.org/10.1103/physrevlett.83.1291
- Gusynin V.P., Smilga A.V. Electron self-energy in strong magnetic field: summation of double logarithmic terms. Physics Letters B. 1999. Vol. 450, No. 1-3. pp. 267—274. https://doi.org/10.1016/s0370-2693(99)00145-8
- Gusynin V.P., Miransky V.A., Shovkovy I.A. Large N dynamics in QED in a magnetic field. Physical Review D. 2003. Vol. 67, No. 10. pp. 107703. https://doi.org/10.1103/physrevd.67.107703
- Sadooghi N., Jalili A.S. New look at the modified Coulomb potential in a strong magnetic field. Physical Review D. 2007. Vol. 76, No. 6. P. 065013. https://doi.org/10.1103/physrevd.76.065013
- Demchik V., Skalozub V. Spontaneous magnetization of a vacuum in the hot Universe and intergalactic magnetic fields. Physics of Particles and Nuclei. 2015. Vol. 46, No. 1. pp. 1—23. https://doi.org/10.1134/s1063779615010037
- Kostenko A., Thompson C. QED phenomena in an ultrastrong magnetic field. I. electron–photon scattering, pair creation, and annihilation. The Astrophysical J. 2018. Vol. 869, No. 1. P. 44. https://doi.org/10.3847/1538-4357/aae0ef
- Kostenko A., Thompson C. QED phenomena in an ultrastrong magnetic field. II. electron–positron scattering, e ±–ion scattering, and relativistic bremsstrahlung. The Astrophysical J. 2019. Vol. 875, No. 1. P. 23. https://doi.org/10.3847/1538-4357/aae82e
- Thompson C., Kostenko A. Pair plasma in super-qed magnetic fields and the hard x-ray/optical emission of magnetars. The Astrophysical J. 2020. Vol. 904, No. 2. P. 184. https://doi.org/10.3847/1538-4357/abbe87
- Kholodov R.I., Baturin P.V. Polarization effect in synchrotron radiation in ultra-quantum approximation. Ukrainian J. of Physics. 2001. Vol. 46, No. 5. pp. 621—626. [in Ukrainian].
- Fomin P.I., Kholodov R.I. Polarization effects in synchrotron radiation in strong magnetic field. Problems of Atomic Science and Technology. 2001. Vol. 6, No. 1. pp. 154—156.
- Novak O.P., Kholodov R.I. Polarization effects in the photon-induced process of electron-positron pair creation in a magnetic field, studied in the ultra-quantum-mechanical approximation. Ukrainian J. of Physics. 2008. Vol. 53, No. 2. pp. 187—195. [in Ukrainian].
- Novak O.P., Kholodov R.I. Spin-polarization effects in the processes of synchrotron radiation and electron-positron pair production by a photon in a magnetic field. Physical Review D. 2009. Vol. 80, No. 2. P. 025025. https://doi.org/10.1103/physrevd.80.025025
- Fomin P.I., Kholodov R.I. To the theory of resonant quantum-electrodynamic processes in an external magnetic field. Ukrainian J. of Physics. 1999. Vol. 44, No. 12. pp. 1526—1529. [in Ukrainian].
- Voroshilo O.I., Kholodov R.I. The Green function of an electron in constant homogeneous magnetic field and arbitrary flat wave field. Ukrainian J. of Physics. 2002. Vol. 47, No. 4. pp. 317—321. [in Ukrainian].
- Fomin P.I., Kholodov R.I. Resonance double magnetic bremsstrahlung in a strong magnetic field. J. of Experimental and Theoretical Physics. 2003. Vol. 96, No. 2. pp. 315—320. https://doi.org/10.1134/1.1560403
- Diachenko M.M., Novak O.P., Kholodov R.I. Resonant threshold two-photon е–е+ pair production onto the lowest landau levels in a strong magnetic field. Ukrainian J. of Physics. 2014. Vol. 59, No. 9. pp. 849—855. https://doi.org/10.15407/ujpe59.09.0849
- Diachenko M.M., Novak O.P., Kholodov R.I. Resonant generation of an electron–positron pair by two photons to excited Landau levels. J. of Experimental and Theoretical Physics. 2015. Vol. 121, No. 5. pp. 813—818. https://doi.org/10.1134/s1063776115110126
- Diachenko M.M., Novak O.P., Kholodov R.I. Pair production in a magnetic and radiation field in a pulsar magnetosphere. Modern Physics Letters A. 2015. Vol. 30, No. 25. P. 1550111. https://doi.org/10.1142/s0217732315501114
- Fomin P.I., Kholodov R.I. Photoproduction of the e+e− pair with photon emission kinematics in strong magnetic field. Problems of Atomic Science and Technology. 2005. Vol. 6. pp. 43—45.
- Fomin P.I., Kholodov R.I. Resonant photoproduction of e+e− pair with photon emission in strong magnetic field. Problems of Atomic Science and Technology. 2007. Vol. 3. pp. 179—183.
- Fomin P.I., Kholodov R.I. Electron-positron pair photo-production with radiation of a photon in magnetic field at nonresonant regime. Problems of Atomic Sci. and Tech. 2012. Vol. 1. pp. 111—114.
- Bogolyubov N.N, Shirkov N.N. Introduction to the theory of quantized fields. Moscow: Nauka, 1984. 603 p. [in Russian].
- Beams J.W. Electric and magnetic double refraction. Reviews of Modern Physics. 1932. Vol. 4, No. 1. pp. 133—172. https://doi.org/10.1103/revmodphys.4.133
- Diachenko M.M., Novak O.P., Kholodov R.I. A cascade of e+e− pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field. Laser Physics. 2016. Vol. 26, No. 6. P. 066001. https://doi.org/10.1088/1054-660x/26/6/066001
- Diachenko M.M., Novak O.P., Kholodov R.I., Fomina A.P. Electron-positron pair photoproduction in a strong magnetic field through the polarization cascade. Ukrainian J. of Physics. 2020. Vol. 65, No. 3. P. 187. https://doi.org/10.15407/ujpe65.3.187
- Diachenko M.M., Novak O.P., Kholodov R.I. Vacuum birefringence in a supercritical magnetic field. Ukrainian J. of Physics. 2019. Vol. 64, No. 3. P. 181. https://doi.org/10.15407/ujpe64.3.181
- Novak O.P., Diachenko M.M., Padusenko E., Kholodov R. Vacuum birefringence in the fields of a current coil and a guided electromagnetic wave. Ukrainian J. of Physics. 2018. Vol. 63, No. 11. P. 979. https://doi.org/10.15407/ujpe63.11.979
- Novak O.P., Kholodov R.I., Fomin P.I. Electron-positron pair production by an electron in a magnetic field near the process threshold. J. of Experimental and Theoretical Physics. 2010. Vol. 110, No. 6. pp. 978—982. https://doi.org/10.1134/s1063776110060075
- Novak O.P., Kholodov R.I. Threshold electron-positron pair production by a polarized electron in a strong magnetic field. Problems of Atomic Sci and Tech. 2012. Vol. 1. pp. 102—104.
- Novak O.P., Kholodov R.I. Electron-positron pair production by an electron in a magnetic field in the resonant case. Physical Review D. 2012. Vol. 86, No. 10. P. 105013. https://doi.org/10.1103/physrevd.86.105013