Authors:
B.I. Basok
Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv, Ukraine;
B.V. Davydenko
Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv, Ukraine;
L.M. Kuzhel
Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv, Ukraine;
V.G. Novikov
Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv, Ukraine;
S.M. Goncharuk
Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv, Ukraine;
Reviewers:
A.O. Avramenko
Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv, Ukraine;
Researcher ID: J-2915-2014
G.G. Farenyuk
State Enterprise “State Research Institute of Building Structures”, Kyiv, Ukraine;
S.P. Denysiuk
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine;
ORCID ID 0000-0002 – 6299-3680
Researcher ID: C-2707-2019
Affiliation:
Project: Scientific book
Year: 2024
Publisher: PH "Naukova Dumka"
Pages: 208
DOI:
https://doi.org/10.15407/978-966-00-1887-7
ISBN: 978-966-00-1887-7
Language: Ukrainian
How to Cite:
Basok, B.I., Davydenko, B.V., Kuzhel, L.M., Novikov, V.G., Goncharuk, S.M. (2024) Heat transfer through window constructions. Kyiv, Naukova Dumka. 208p. [in Ukrainian].
Abstract:
Based on the results of theoretical, computational and experimental studies, the influence of the design features of glass unit (the number of chambers in a glass unit, the thickness of the glass, the ratio of the width of the glass unit to its height, etc.) on the intensity of convection and radiation heat transfer through translucent structures was determined. The dependence on the thickness of the gas layer of the structure of the free convection flow between the inner and outer glass of a single-chamber double-glazed window was determined. The dependence of the thermal insulation characteristics of windows on the physical properties of the gaseous medium (density, thermal conductivity, viscosity) located in the interlayer between the glasses was studied. The dependence of the intensity of radiation-convection heat transfer through translucent structures on the characteristics of the low-emission coating on the inner surfaces of the translucent part of the window was found. It has been shown that a glass unit without a low-emission coatings transfer most of the heat by radiation. Therefore, this low-e coating significantly increases the heat transfer resistance of windows.
A thermophysical calculation model was developed to determine the effect of solar radiation on the thermal regime of translucent structures. Using it, the volumes of heat entering the room with solar radiation through translucent structures in the winter season were determined. The influence of heat fluxes from the ends on the temperature state of the adjacent window structures and walls was determined. The dependence of the operational characteristics and energy efficiency of the enclosing structure on the location of the translucent structure in relation to the window opening was established. The effect of the window frame profile configuration on the resistance of a translucent structure has been studied. The value of the heat transfer resistance of various window structures in the real conditions of their operation was experimentally determined.
Experimental and numerical studies of heat transfer processes through energy-active windows, namely supply air’ ventilated and heated windows, have been carried out. Energy-active windows can be used as a backup heating system for the premises of the building, as well as to create a comfortable temperature and humidity regime in the room.
Based on the results of theoretical and experimental research, recommendations were formulated regarding the main methods of increasing the energy efficiency of translucent enclosing structures and the walls adjacent to them.
Keywords:
heat transfer, double-glazed windows, window profile, experimental studies, thermophysical modeling, computer simulation, heat loss, heat transfer resistance.
References:
For Part 1
1. Bogoslovskij V.N. Stroitel’naja teplofizika. Moscow. Vysshaja shkola. 1982. 416 S.
2. DBN V.2.6-31:2016. Teplova izoliatsiia budivel. [Na zaminu DBN V.2.6-31:2006 (SNIP II-3-79), chynnyi vid 08.07.2016]. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy, 2016. 30 S.
3. DSTU B V.2.6-23:2009. Konstruktsii budynkiv i sporud. Bloky vikonni ta dverni. [Na zaminu DSTU B V.2.6-23-2001 (GOST 23166-99); chynnyi vid 01.08.2009]. Vyd. ofits. Kyiv: Minrehionbud Ukrainy, 2009. 32 S.
4. DBN V.2.6-31:2021. Teplova izoliatsiia ta enerhoefektyvnist budivel. [Na zaminu DBN V.2.6-31:2016; chynnyi vid 01.09.2022]. Vyd. ofits.Kyiv: Minirehion Ukrainy, 2022. 23 S.
5. Isachenko V. P., Osipova V.A., Sukomel A.S. Teploperedacha.- M.: Jenergija, 1975. 488 S.
6. Miheev M. A. Osnovy teploperedachi. Gosudarstvennoe jenergeticheskoe izdatel’stvo. Moscow. Leningrad 1949.
7. Kahsay M. T., Bitsuamlak G. T., Tariku F. Effect of window configurations on its convective heat transfer rate, Building and Environment, 182 (2020), p. 107139, https://doi.org/10.1016/j.buildenv.2020.107139
8. Wright John L., Eng R. A Correlation to Quantify Transfer Between Vertical Convective Heat Window Glazings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions, © 1996. Vol. 102, Part
9. Kirankumar G., Saboor S., Vali S. S., Mahapatra D., Setty A., Kim K. Thermal and cost analysis of various air flled double glazed reflective windows for energy effcient buildings, Journal of Building Engineering, 28 (2020), p. 101055, https://doi.org/10.1016/j.jobe.2019.101055
10. Wright John L., Eng R. A Correlation to Quantify Transfer Between Vertical Convective Heat Window Glazings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions, © 1996. Vol. 102, Part
11. Arasteh D.K., Reilly M.S., Rubin M.D. A Versatile Procedure for Calculating Heat Transfer through Windows. ASHRAE transactions 1989. V.95. Pt. 2.
12. Carlos J. S., Corvacho H. Evaluation of the performance indices of a ventilated double window through experimental and analytical procedures: SHGC-values, Energy and Buildings, 86 (2015), P. 886-897, https://doi.org/10.1016/j.enbuild.2014.11.002
13. Carlos J. S., Corvacho H., Silva P. D., Castro-Gomes J.P. Modelling and simulation of a ventilated double window, Applied Thermal Engineering, 31 (1) (2011), p. 93-102, https://doi.org/10.1016/j.applthermaleng.2010.08.021
14. Ismail K. A. R., Henríquez J. R., Two-dimensional model for the double glass naturally ventilated window, International Journal of Heat and Mass Transfer, 48 (3–4), (2005), p. 461-475, https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.022
15. Patankar S. Chislennye metody reshenija zadach teploobmena i dinamiki zhidkosti. – M. : Jenergoatomizdat, 1984. 152 S.
16. WINDOW Technical Documentation. Lawrence Berkeley National Laboratory. Berkeley, California 94720. Date: April 2018.
17. Batchelor G. K. On steady laminar flow with closed streamlines at large Reynolds number. Journal of Fluid Mechanics. 1956. V.1, N 2. P. 177 – 190.
18. Batchelor G. K. An introduction to Fluid dynamics. Cambridge: Cambridge Univ. Press, 1970. 631 r. Rus. per. Bэtchelor Dzh. Vvedenye v dynamyku zhydkosty. M.: Myr, 1973. 792 S.
19. A. I. K minimizacii teplopoter’ cherez naruzhnoe ograzhdenie zdanija s okonnym proemom. Inzhenerno-fizicheskij zhurnal. 2015. T.88. № 3. S. 681 – 689.
20. Karslou G., Eger D. Teploprovodnost’ tverdyh tel. M.: Nauka, 1964. 488 S.
21. Miheev M. A., Miheeva I. M. Osnovy teploperedachi. M.: Jenergija, 1973. 320 S.
22. Bogoslovskij V. N. Otoplenie: uchebnik dlja vuzov. M.: Strojizdat, 1991. 735 S.
23. Fokin K. F. Stroitel’naja teplotehnika ograzhdajushhih chastej zdanij. M.: AVOK-PRESS, 2006. 200 S.
24. Basok B.I., Nakorchevskij A.I. Teplofizika vlijanija solnechnogo izluchenija na zdanija. Kyiv. Naukova dumka. 2016. 224 S.
25. Nikolay Smirnov, Vladimir Tyutikov, Vadim Zakharov. Mathematical and physical modeling of heat transfer through window with heat-reflecting screens to determine the potential of reducing thermal costs for microclimate parameters maintaining. January 2017MATEC Web of Conferences 110:01096. DOI: 10.1051/matecconf/201711001096
26. Pejre R., Tejlor T. D. Vychislitel’nye metody v zadachah mehaniki zhidkosti. – L. : Gidrometeoizdat, 1986. 352 S.
27.Davydenko B.V. Metod matrichnoj progonki dlja reshenija setochnyh uravnenij gidrodinamiki. Vostochno-Evropejskij zhurnal peredovyh tehnologij. 2008. № 5/5(35). S. 7 – 11.
28. Basok B., Davydenko B., Novikov V., Pavlenko A. M., Novitska M., Sadko K., Goncharuk S. Evaluation of Heat Transfer Rates through Transparent Dividing Structures. Energies 2022. 15(13). 4910; https://doi.org/10.3390/en15134910
29. Kuzhel L.M. Zakonomirnosti teploperedachi cherez vikonni konstruktsii: dysertatsiia kand.tekhn.nauk: 05.14.06. Inst. tekhnichnoi teplofizyky NAN Ukrainy. Kyiv. 2017. 190 S.
30. Basok B.I., Davydenko B.V., Kuzhel L.M., Novikov V.H. Eksperymentalni ta chyselni doslidzhennia radiatsiino-konvektyvnoho teploperenosu cherez vikonni konstruktsii. Mizhnarodna naukovo-praktychna ta navchalno-metodychna konferentsiia Enerhetychnyi menedzhment: stan ta perspektyvy rozvytku – Pems2017: zbirnyk materialiv konfer. (m. Kyiv 25 – 27 kvitnia 2017). m. Kyiv, NTUU «KPI» im. Ihoria Sikorskoho. 2017. S. 16.
31. Basok B., Davydenko B, Kuzhel L., Novikov V. Vplyv radiatsiinoho ta konvektyvnoho teploperenosu na teploizoliatsiinu spromozhnist dvokamernykh sklopaketiv. Intehrovani enerhoefektyvni tekhnolohii v arkhitekturi ta budivnytstvi: «ENERHOINTEHRATSIIA-2017»: materialy robochoi prohramy ta tezy dopovidei somoi mizhnarodnoi naukovo-praktychnoi konferentsii. (m. Kyiv 26 – 28 kvitnia 2017). Kyiv. 2017. S. 37 – 38.
32. Basok B.I., Davydenko B. V., Isaev S.A., S.M. Goncharuk S.M., Kuzhel L.N. Numerical modeling of heat transfer through a triple-pane window. Journal of Engineering Physics and Thermophysics. 2016. Vol. 89, No. 5. P. 1277 – 1283
33. Basok B., Davydenko B., Zhelykh V., Goncharuk S., Kugel L. Influence of low-emissivity coating on heat transfer through the double-glazing windows. Building Physics in Theory and Practice. 2016. Vol. VIII, No. 4. P. 5 – 8
34. Basok B.I., Davydenko B.V., Kuzhel L.M., Novikov V.H., Kalinina M.F. Chyselni doslidzhennia vplyvu radiatsiinoho ta konvektsiinoho teploperenosu na teploizoliatsiinu spromozhnist dvokamernykh sklopaketiv. Prom. teplotekhnika. 2017. T.39. №3. S.60 – 65.
35. Basok B., Davydenko, B., Kuzhel L., Voznyak O., NovikovV., Goncharuk S. Heat Transfer Through a Triple Glazed Window with Low Emission Coating in Unsteady Conditions. No Conference Proceedings of Scientific Papers, «CASSOTHERM 2018» Technical University of Kosice. 2018. S. 1 – 9.
For Part 2
1. Basok B.I., Davydenko B.V., Goncharuk S.M., Kuzhel L.M. Eksperymentalni doslidzhennia teploperenosu cherez suchasni vikonni konstruktsii v realnykh umovakh yikh ekspluatatsii. Okonnye tehnologii. 2015. №60(2), S. 24 – 26. URL: http://wt.com.ua/biblioteka/arkhiv-nomerov/488-60-2-2015.html
2. Basok B.I., Davidenko B.V., Novickaja M.P., Goncharuk S.M., Nedbajlo A.N. Vlijanie tolshhiny gazovoj proslojki na termicheskoe soprotivlenie odnokamernogo steklopaketa. Prom. Teplotekhnika. 2012. T.34, №1. S. 100 – 107.
3. Goncharuk S.M. Osoblyvosti teploperenosu v administratyvnii budivli z konvektornoiu systemoiu opalennia: dysertatsiia kand.tekhn. nauk: 05.14.06. / Inst. tekhnichnoi teplofizyky NAN Ukrainy. Kyiv. 2014. 197 S.
4. DSTU B EN ISO 13790:2011. Rozrakhunkovi parametry mikroklimatu prymishchen dlia proektuvannia ta otsinky enerhetychnykh kharakterystyk budivel po vidnoshenniu do yakosti povitria, teplovoho komfortu, osvitlennia ta akustyky (EN 15251, IDT). [Chynnyi vid 01.01.2013]. Vyd. ofits. Kyiv: Minrehion Ukrainy, 2012. 71 S.
5. DSTU B EN 13187:2011. Teplovi kharakterystyky budivel. Yakisne vyiavlennia teplovykh vidmov v ohorodzhuvalnykh konstruktsiiakh. Infrachervonyi metod (EN 13187:1998, IDT). [Chynnyi z 01.01.2013]. Vyd. ofits. Kyiv: Minrehion Ukrainy, 2012. 37 S.
6. Davydenko B.V., Goncharuk S.M., Novitska M.P., Kuzhel L.M., Krasota D.O. Eksperymentalni doslidzhennia teploperenosu cherez suchasni vikonni konstruktsii v realnykh umovakh ekspluatatsii. Enerhoefektyvnist u budivnytstvi ta arkhitekturi. 2015. №7, S. 65 – 71.
7. L. V. Dekusha, L. I. Vorob’ev, T. G. Grishhenko, T. V. Mendeleeva, S. I. Kovtun. Sovremennoe sostojanie metrologicheskogo obespechenija teplopotochnih izmerenij s pomoshh’ju pervichnyh preobrazovatelej teplovogo potoka. Metrolohiia ta vymiriuvalna tekhnika “Metrolohiia-2004”: nauk.pratsi IV mizhn.nauk.-tekhn. konf. (Kharkiv, 12 – 14 zhovtnia 2004 r.). Derzh. kom. Ukrainy z pytan tekhn. rehuliuvannia ta spozhyv. polityky. Kharkiv: Vyd-vo NNTS “Instytut metrolohii, 2004. T. 2. S. 26 – 31.
8. DSTU 3756-98 (GOST 30619-98). Enerhozberezhennia. Peretvoriuvachi teplovoho potoku termoelektrychni zahalnoho pryznachennia. Zahalni tekhnichni umovy. [Chynnyi z 01.07.2000]. Vyd. ofits. Kyiv: Derzhstandart Ukrainy. 2000. 21 S.
9. Basok B.I., Goncharuk S.M., Tkachenko M.V., Pryiemchenko V.P., Andriichuk S.V., Kovalenko M.P., Oliinyk L.V. Aparaturnyi kompleks dlia provedennia enerhomonitorynhu budivel ta system yikh enerhozabezpechennia. XI Mizhnarodna konferentsiia «Problemy teplofizyky ta teploenerhetyky». 2019. T. 41, №5. S.101 – 102
10. Goncharuk S.M., Basok B.I., Tymoshchenko A.V., Dekusha L.V., Vorobiov L.I., Krasota D.O., Pryiemchenko V.P. Vymiriuvalnyi kompleks dlia eksperymentalnoho doslidzhennia teplovoho ta volohisnoho stanu ohorodzhuvalnykh konstruktsii ta povitrianoho seredovyshcha. Zbirnyk tez dopovidei IX Mizhnarodnoi konferentsii «Problemy promyslovoi teplotekhniky». 2015. Elektronnyi resurs.
11. DBN V.2.6-31:2016. Teplova izoliatsiia budivel. [Na zaminu DBN V.2.6-31:2006 (SNIP II-3-79), chynnyi vid 08.07.2016]. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy, 2016. 30 S.
12. DSTU B V.2.6-23:2009. Konstruktsii budynkiv i sporud. Bloky vikonni ta dverni. [Na zaminu DSTU B V.2.6-23-2001 (GOST 23166-99); chynnyi vid 01.08.2009]. Vyd. ofits. Kyiv: Minrehionbud Ukrainy, 2009. 32 S.
13. MVV № 081/24-0778-11. Metrolohiia. Opir teploperedavanniu kriz ohorodzhuvalni konstruktsii budivel i sporud riznoho pryznachennia. Metodyka vykonannia vymiriuvan kombinovanym teploviziino-pirometrychnym metodom. ITTF NANU. 2011.
14. Kuzhel L.M. Zakonomirnosti teploperedachi cherez vikonni konstruktsii: dysertatsiia kand.tekhn.nauk: 05.14.06. Inst. tekhnichnoi teplofizyky NAN Ukrainy. Kyiv. 2017. 190 S.
15. Basok B. I., Davydenko B. V., Kuzhel L. M., Goncharuk S. M., Bieliaieva T. G. Eksperymentalni doslidzhennia teploperedachi cherez enerhoefektyvni sklopakety z nyzkoemisiinym miahkym pokryttiam. Prom. Teplotekhnika. 2017. T. 39. №1. S. 41 – 48.
16. Goncharuk S.M., Kalinina M.F., Bozhko I.K., Kuzhel L.M., Lysenko O.M. Stvorennia eksperymentalnoho enerhoefektyvnoho budynku pasyvnoho typu «nul enerhii». Prom. Teplotekhnika. 2014. T. 36. №3. S. 88 – 95.
17. O.M. Lysenko, L.M. Kuzhel, I.K. Bozhko. Upravlinnia teplopostachanniam budivli na osnovi vykorystannia indyvidualnoho teplovoho punktu oryhinalnoi konstruktsii. Skhidno-Yevropeiskyi zhurnal peredovykh tekhnolohii. 2015. T. 1, N 8(73). S. 61 – 67. – Rezhym dostupu: DOI : 10.15587/1729-4061.2015.37917.
18. A.N. Nedbajlo, M.F. Kalinina, I.K. Bozhko, M.P. Novickaja, S.M. Goncharuk, L.N. Kuzhel’, O.N. Lysenko. Matematicheskaja model’ nestacionarnogo processa teploperenosa v mnogoslojnoj ograzhdajushhej konstrukcii. Keramika: nauka i zhizn’. 2014. № 2 (23). S. 14 – 29.
19. Basok B.I., Davydenko B.V., Goncharuk S.M., Kuzhel L.M. Eksperymentalni doslidzhennia teploperenosu cherez suchasni vikonni konstruktsii v realnykh umovakh yikh ekspluatatsii. Okonnye tehnologii. 2015. №60(2), S. 24 – 26. URL: http://wt.com.ua/biblioteka/arkhiv-nomerov/488-60-2-2015.html
20. B.I. Basok, A.I. Nakorchevskyi, L.M. Kuzhel, S.M. Goncharuk, M.P. Novitska. Eksperymentalni doslidzhennia teploperedachi cherez sklopakety z vrakhuvanniam zovnishnikh klimatychnykh faktoriv. Metodyka opratsiuvannia danykh. Enerhoefektyvnist v budivnytstvi ta arkhitekturi. 2016. Vyp. 8. S. 15 – 20.
21. L.M. Kuzhel. Enerhoefektyvni svitloprozori konstruktsii. II Mizhnarodna naukovo-praktychna konferentsiia molodykh vchenykh. Vidnovliuvalna enerhetyka, novitni avtomatyzovani elektrotekhnolohii v biotekhnichnykh systemakh APK: tezy dopovidei.( m. Kyiv, 16 – 17 zhovtnia 2014). Kyiv. 2014. S. 38 – 40.
22. Basok B.I., Nakorchevskyi A.I., Goncharuk S.M., Kuzhel L.M., Nezhuta V.P. Eksperymentalni doslidzhennia teploperedachi cherez sklopakety z vrakhuvanniam zovnishnikh klimatychnykh faktoriv. IX Mizhnarodna konferentsiia “Problemy promyslovoi teplotekhniky”: tezy dopovidei. (m. Kyiv, 20 – 23 zhovtnia 2015). Kyiv. 2015. S. 105.
23. Basok B., Nakorchevskiy A., Kuzhel L., Goncharuk S., Novitska M. Experimental study heat transfer trough glass with including external climatic factors. Method of data processing. Intehrovani enerhoefektyvni tekhnolohii v arkhitekturi ta budivnytstvi: «ENERHOINTEHRATSIIA-2016»: materialy robochoi prohramy ta tezy dopovidei shostoi mizhnarodnoi naukovo-praktychnoi konferentsii. (m. Kyiv 13 – 15 kvitnia 2016). Kyiv. 2016. S. 20 – 21.
24. B.I. Basok, B.V. Davydenko, S.M. Goncharuk, O.N. Lysenko, L.N. Kuzhel’. Jeksperimental’nye i teoreticheskie issledovanija teploperenosa cherez dvuhkamernyj steklopaket okonnoj konstrukcii. XV Minskij mezhdunarodnyj forum po teplo- i massoobmenu: tezisy dokladov i soobshhenij. (g. Minsk 23 – 26 maja 2016). Minsk, ITM im. A.V. Lykova NAN Belarusi. 2016. Tom 3. S. 269 – 273.
25. B.I. Basok, A.I. Nakorchevskij, L.N. Kuzhel’, S.M. Goncharuk, O.N. Lysenko. Jeksperimental’nye issledovanija teploperedachi cherez steklopakety s uchetom klimaticheskih faktorov. XV Minskij mezhdunarodnyj forum po teplo- i massoobmenu: tezisy dokladov i soobshhenij (g. Minsk 23 – 26 maja 2016). Minsk, ITM im. A.V. Lykova NAN Belarusi, 2016. Tom 3. S. 280 – 283.
26. L.M. Kuzhel. Pidvyshchennia enerhoefektyvnosti budivel shliakhom zmenshennia teplovtrat cherez svitloprozori vikonni konstruktsii. Mizhnarodna naukovo-tekhnichna ta navchalno-metodychna konferentsiia. Enerhetychnyi menedzhment: stan ta perspektyvy rozvytku – Pems2016: zbirnyk materialiv konfer. (m. Kyiv 30 travnia – 01 chervnia 2016). Kyiv, NTUU «KPI». 2016. S. 40.
27. Basok B. I., Davydenko B. V., Kuzhel L. M. Enerhoefektyvni vikonni konstruktsii – zaporuka pidvyshchennia enerhoefektyvnosti budivel. XVII mizhnarodna naukovo-praktychnoi konferentsii “Vidnovliuvana enerhetyka ta enerhoefektyvnist u XXI stolitti”: materialy konf. (Kyiv 29 – 30 veresnia 2016). Kyiv. NTUU «KPI». 2016. S. 349 – 352.
28. Basok B.I., Goncharuk S.M., Kuzhel L.M. Pokrashchennia enerhetychnoi efektyvnosti budivel shliakhom zastosuvannia suchasnykh enerhoefektyvnykh vikonnykh konstruktsii. XVI Vseukrainska naukovo-tekhnichna konferentsiia “Aktualni problemy enerhetyky ta ekolohii”: materialy naukovo-praktychnoi konferentsii ONAKhT, (Odesa, 5 – 8 zhovtnia 2016). Odesa. 2016. S. 148 – 149.
29. Basok B.I., Davydenko B.V., Kuzhel L.M., Novikov V.H. Eksperymentalni ta chyselni doslidzhennia radiatsiino-konvektyvnoho teploperenosu cherez vikonni konstruktsii. Mizhnarodna naukovo-praktychna ta navchalno-metodychna konferentsiia Enerhetychnyi menedzhment: stan ta perspektyvy rozvytku – Pems2017: zbirnyk materialiv konfer. (m. Kyiv 25 – 27 kvitnia 2017). Kyiv, NTUU «KPI» im. Ihoria Sikorskoho. 2017. S. 16.
30. Basok B., Davydenko B, Kuzhel L., Novikov V. Vplyv radiatsiinoho ta konvektyvnoho teploperenosu na teploizoliatsiinu spromozhnist dvokamernykh sklopaketiv. Intehrovani enerhoefektyvni tekhnolohii v arkhitekturi ta budivnytstvi: «ENERHOINTEHRATSIIA-2017»: materialy robochoi prohramy ta tezy dopovidei somoi mizhnarodnoi naukovo-praktychnoi konferentsii. (m. Kyiv 26 – 28 kvitnia 2017). Kyiv. 2017. S. 37 – 38.
31. Bogoslovskij V. N. Otoplenie: uchebnik dlja vuzov. M.: Strojizdat. 1991. 735 S.
32. Fokin K. F. Stroitel’naja teplotehnika ograzhdajushhih chastej zdanij. M.: AVOK-PRES. 2006. 200 S.
33. Basok B.I., Nakorchevskij A.I. Teplofizika vlijanija solnechnogo izluchenija na zdanija. Kyiv. Naukova dumka. 2016. 224 S.
34. Kutateladze S. S. Osnovy teorii teploobmena. M.: Atomizda., 1979. 416 S.
35. Karpis E. E. Teplotehnicheskij jeffekt primenenija ventiliruemyh okon. Vodosnabzhenie i sanitarnaja tehnika. 1976. №1. 32 S.
36. Kondrat’ev K. Ja., Pivovarova Z. I., Fedorova M. P. Radiacionnyj rezhim naklonnyh poverhnostej: monografіja / pod. red. K.Ja. Kondrat’eva. Lenigrad: Gidrometeoizdat. 1978. 216 S.
37. Spravochnik po klimatu SSSR. Vyp. 10, ch. I. Solnechnaja radiacija, radiacionnyj balans i solnechnoe sijanie. L.: Gidrometeoizdat. 1966. 124 S.
38. Spravochnik po klimatu SSSR. Vyp. 10, ch. II. Temperatura vozduha i pochvy. L.: Gidrometeoizdat. 1967. 608 S.
39. Spravochnik po klimatu SSSR. Vyp. 10, ch. III. Veter. L.: Gidrometeoizdat. 1967. 682 S.
40. B.I. Basok, A.I. Nakorchevskyi, L.M. Kuzhel, S.M. Goncharuk, M.P. Novitska. Eksperymentalni doslidzhennia teploperedachi cherez sklopakety z vrakhuvanniam zovnishnikh klimatychnykh faktoriv. Metodyka opratsiuvannia danykh. Enerhoefektyvnist v budivnytstvi ta arkhitekturi. 2016. Vyp. 8. S. 15 – 20.
41. Basok B.I., Nakorchevskij A.I., Goncharuk S.M., Kuzhel’ L.N. Jeksperimental’nye issledovanija teploperedachi cherez okonnye steklopakety s uchetom dejstvija vneshnih faktorov. Inzhenerno-fizicheskij zhurnal. 2017. T.90. №1. S. 94- 101.
For Part 3
1. Duffie John A. Beckman William A. Solar Engineering of Thermal Processes. Fourth Edition. 2013, 910 P.
2. Clarke J A. Energy Simulation in Building Design. 2nd Edition. 2001, 362р.
3. ASHRAE Handbook Fundamental 2009.
4. Reda I. and Andreas A. National Solar Position Algorithm for Solar Radiation Applications. Technical Report. Revised January 2008.
5. ASHRAE Handbook – Fundamental 2001.
6. Kuo Wei-Liang, I.Chen Wu. Numerical simulation and visualization for building envelope thermal distribution analysis. International Conference on Construction Applications of Virtual Reality. 2011.
7. Gueymard Chris. Revising ASHRAE climatic data for design and standards – Part 2: Clear-sky solar radiation model. ASHRAE Transactions. 2013. No 1.
8. Duffie John A. Beckman William A. Solar Engineering of Thermal Processes. Fourth Edition. 2013. 910 P.
9. Myers Daryl R. Solar radiation Practical Modeling for Renewable Energy Applications. 2013. 199 P.
10. Szokolay S V. Solar geometry. Second revised edition 2007.
11. Wong L.T., Chow W.K.. Solar radiation model. Applied Energy. 2001. Vol. 69. P. 191 – 224
12. Shaltout M.A., Hassan A.H., Fathy A.M.. Total suspended particles and solar radiation over Cairo and Aswan. Renewable Energy . 2001. Vol.23. P. 605 – 619.
13. Stewart D.A., Dudel H.P., Levitt L.J. Solar radiation in Saudi Arabia. Weapons Sciences Directorate Research, Development, and Engineering Center, DTIC Тechnical report rd-ws-93-6, 1993. June.
14. Tyagi A.P. Solar radiant energy over India. India meteorological department ministry of earth sciences New Delhi. 2009. 4179 P.
15. Doost A.K., Akhlaghi M. Estimation and Comparison of Solar Radiation Intensity by Some Models in a Region of Iran. Journal of Power and Energy Engineering. 2014. No.2. P. 345 – 351.
16. Becker S. Calculation of direct solar and diffuse radiation in Israel. International journal of climatology. 2001. Vol.21. P.1561 – 1576.
17. Podkovyrina K.A. Optimizacija naruzhnyh ograzhdajushhih konstrukcij s uchetom jenergosberezhenija i jekonomicheskoj celesoobraznosti. Magisterskaja dissertacija. Sibirskij federal’nyj universitet. Inzhenerno-stroitel’nyj institut.
18. Kravchenko V.P., Kravchenko Є.V., Bondar І.V. Іnstrumental’ne viznachennja іnsoljacії v rajonі m. Odesi. Energetika: ekonomіka, tehnologії, ekologіja. 2016. № 1. S.20 – 27.
19. Clarke J.A. Energy Simulation in Building Design. Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 A division of Reed Educational and Professional Publishing Ltd 2001.
20. Harlamov D.A., Krivoshein A.D.. Vlijanie konvektivnogo teploobmena na temperaturnyj rezhim svetoprozrachnyh konstrukcij. 65-ja nauchno-tehnicheskaja konferencija FGBOU VPO «SibADI» Orientirovannye funda-mental’nye i prikladnye issledovanija – osnova modernizacii i innovacionnogo razvitija arhitekturno – stroitel’nogo i dorozhno – transportnogo kompleksov Rossii. 2011. S. 231 – 237.
21. Zaharov V.M., Avdjunin E.G., Smirnov N.N., Jablokov A.A., Lapateev D.A. Razrabotka, programmnaja realizacija i proverka adekvatnosti matema-ticheskoj modeli processa teploperedachi cherez okno s teplootrazhajushhimi jekranami. Vestnik IGJEU. 2016. № 3. S. 13 – 26. http://vestnik.ispu.ru/ru/node/48
For Part 4
1. DSTU B V.2.6-23:2009. Konstruktsii budynkiv i sporud. Bloky vikonni ta dverni. Vyd. ofits. Kyiv: Minrehionbud Ukrainy, 2009. 32 S.
2. Zahalna konstruktsiia metaloplastykovykh vikon. URL: https://okno-odessa.od.ua/ua/structure-metal-plastic-windows
3. DSTU B.V.2.6-15:2011. Bloky vikonni ta dverni polivinilkhlorydni. [Na zaminu DSTU B V.2.6-15-99; chynnyi vid 1.10.2012]. Vyd. ofits. Kyiv: Minrehion Ukrainy, 2012. 38 S.
4. Kamery v metaloplastykovykh viknakh – shcho tse, i yak yikh porakhuvaty. URL: https://niks-m.com/ua/news/kameri-v-metaloplastikovix-viknax/
5. Nedostatki derevjannyh okonnyh profilej. URL: https://niks-m.com/news/nedostatki-derevyannyix-okon
6. Vikna z derevianoho profiliu tse vyshukano ta suchasno. URL: https://viknadim.com.ua/derevyani-vikna
7. Kuzhel L.M. Zakonomirnosti teploperedachi cherez vikonni konstruktsii: dysertatsiia kand.tekhn.nauk: 05.14.06. Inst. tekhnichnoi teplofizyky NAN Ukrainy. Kyiv. 2017. 190 S.
8. DBN V.2.6-31:2016. Teplova izoliatsiia budivel. [Na zaminu DBN V.2.6-31:2006 (SNIP II-3-79), chynnyi vid 08.07.2016]. Vyd. ofits. Kyiv: Ministerstvo rehionalnoho rozvytku, budivnytstva ta zhytlovo-komunalnoho hospodarstva Ukrainy, 2016. 30 S.
9. DSTU B V.2.6-30:2006 Konstruktsii budynkiv i sporud. Profili z aliuminiievykh splaviv iz termomistkamy dlia ohorodzhuvalnykh budivelnykh konstruktsii. Zahalni tekhnichni umovy; chynnyi vid 1.02.2007. 16 S.
10. DSTU B V.2.6-23:2009. Konstruktsii budynkiv i sporud. Bloky vikonni ta dverni. [Na zaminu DSTU B V.2.6-23-2001 (GOST 23166-99); chynnyi vid 01.08.2009]. Vyd. ofits. Kyiv: Minrehionbud Ukrainy, 2009. 32 S.
11. MVV № 081/24-0778-11. Metrolohiia. Opir teploperedavanniu kriz ohorodzhuvalni konstruktsii budivel i sporud riznoho pryznachennia. Metodyka vykonannia vymiriuvan kombinovanym teploviziino-pirometrychnym metodom. ITTF NANU. 2011.
For Part 5
1. Basok B.I., Nakorchevskij A.I. Teplofizika vlijanija solnechnogo izluchenija na zdanija. Kyiv. Naukova dumka. 2016. 224 S.
2. Miheev M. A. Osnovy teploperedachi. Gosudarstvennoe jenergeticheskoe izdatel’stvo. Moscow. Leningrad. 1949.
3. Fokin K. F. Stroitel’naja teplotehnika ograzhdajushhih chastej zdanij. M.: AVOK-PRESS, 2006. 200 S.
4. Podkovyrina K.A. Optimizacija naruzhnyh ograzhdajushhih konstrukcij s uchetom jenergosberezhenija i jekonomicheskoj celesoobraznosti. Magisterskaja dissertacija. Sibirskij federal’nyj universitet. Inzhenerno-stroitel’nyj institut.
5. GOST R 54166 – 2010 Steklo i izdelija iz nego. Metody opredelenija teplovyh harakteristik. Metod rascheta soprotivlenija teploperedache.
6. Petrov E.V. i dr. Svetoprozrachnye konstrukcii s povyshennymi teplotehnicheskimi svojstvami i reguliruemymi teplozashhitnymi harakteristikami. Tomskij gos. universitet. Materialy 58-j nauchno-tehnicheskoj konferencii. 2014. S. 122 – 126.
7. Petrov E.V. i dr. Komp’juternoe modelirovanie processov teploperedachi cherez naruzhnye ograzhdajushhie konstrukcii. Tomskij gos. universitet. Materialy 59-j nauchno-tehnicheskoj konferencii. 2015. S. 240 – 244.
8. Basok B.I., Davydenko B.V., Kuzhel L.M., Novikov V.H. Eksperymentalni ta chyselni doslidzhennia radiatsiino-konvektyvnoho teploperenosu cherez vikonni konstruktsii. Mizhnarodna naukovo-praktychna ta navchalno-metodychna konferentsiia Enerhetychnyi menedzhment: stan ta perspektyvy rozvytku – Pems2017: zbirnyk materialiv konfer. (m. Kyiv 25 – 27 kvitnia 2017). m. Kyiv, NTUU «KPI» im. Ihoria Sikorskoho. 2017. S. 16.
9. Kuzhel L.M. Zakonomirnosti teploperedachi cherez vikonni konstruktsii: dysertatsiia kand.tekhn.nauk: 05.14.06. Inst. tekhnichnoi teplofizyky NAN Ukrainy. Kyiv. 2017. 190 S.
10. Petrov E.V. i dr. Teploperedacha cherez svetoprozrachnye ograzhdajushhie konstrukcii. XI mezhdunarodnaja konferencija studentov i molodyh uchenyh «perspektivy razvitija fundamental’nyh nauk», TOMSK, 22 – 25 aprelja 2014 g., S. 760 – 762.
11. Jan Zajas, Per Heiselberg. Analysis of energy saving potential and optimization of thermally broken fiberglass window frames. Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.
12. Arlid Gustavsen, Arvid Dalehaug, Dariush Arasteh. Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities. Norwegian University of Science and Technology (NTNU)
For Part 6
1. Kutateladze S.S. Osnovy teorii teploobmena. M.: Atomizdat, 1979. 416 S.
2. Karpis E.E. Teplofizicheskij jeffekt primenenija ventiliruemyh okon. E.E. Karpis. Vodosnabzhenie i sanitarnaja tehnika. 1976. №1. S. 32.
3. Rheault S. Heat transfer analysis in an automated venetian blind window system. S. Rheault, E. Bilgen. J. Sol. Energy Eng. 1989. Vol. 111. Р. 89 – 95.
4. Wright J. I. A correlation to quantify convective heat transfer between vertical window glazings. J. I. Wright. ASHRAE Trans. 1996. Vol. 102. Р. 940 – 946.
5. Diomidov M.V. Vlijanie rashoda vozduha na teplovye harakteristiki ventiliruemogo okna. M.V. Diomidov, M.I. Nizovcev, V.I. Terehov. Izv. VUZov. Stroitel’stvo. 2001. №1. S. 66 – 69.
6. Grishhenko V.V. Matematicheskoe modelirovanie teploobmena v mezhstekol’nom promezhutke. V.V. Grishhenko, M.I. Nizovcev, V.V. Terehov, V.I. Terehov. Izv. VUZov. Stroitel’stvo. 2002. №2. S. 120 – 127.
7. Terehov V.I. Svetoprozrachnye konstrukcii s reguliruemymi teplovymi harakteristikami. V.I. Terehov, M.I. Nizovcev. Problemele enrgeticii regionale. 2011. № 1 (15). S. 60 – 76.
8. Nizovcev M.I. Teplo- i massoperenos v jenergojeffektivnyh ograzhdajushhih konstrukcijah i klimaticheskom oborudovanii zdanij. Avtoreferat dis. na soiskanie uchenoj stepeni d-ra tehn. nauk. Novosibirsk, 2011. 39 S.
9. Basok B.I., Nakorchvskij A.I. Teplofizika vlijanija solnechnogo izluchenija na zdanija. K.: Naukova dumka, 2016. 223 S.
10. Miheev M.A., Miheeva I.M. Osnovy teploperedachi. M.: Jenergija, 1973. 320 s.
11. Spravochnik po klimatu SSSR. Vyp. 10, ch. І. Solnechnaja radiacija, radidacionnyj balans i solnechnoe sijanie. L.: Gidrometeoizdat, 1966. 124 S.
12. Spravochnik po klimatu SSSR. Vyp. 10, ch. ІІ. Temperatura vozduha i pochvy. L.: Gidrometeoizdat, 1967. 608 S.
13. Spravochnik po klimatu SSSR. Vyp. 10, ch. ІІІ. Veter. L.: Gidrometeoizdat, 1967. 682 S.
14. Kondrat’ev K.Ja., Pivovarova Z.I., Fedorova M.P. Radiacionnyj rezhim naklonnyh poverhnostej. L.: Gidrometeoizdat, 1978. 216 S.
15. Guowen Ding and César Clavero. Silver-based low-emissivity coating technology for energy-saving window applications. In book: Modern Technologies for Creating the Thin-film Systems and Coatings, Edited by Prof. N. Nikitenkov (Ed.), 2017. P. 409 – 431 (DOI: 10.5772/67085)
16. Basok B. Heat transfer through a triple glazed window with low emission coating in unsteady conditions. B. Basok, B. Davydenko, L. Kuzhel, O. Voznyak, V. Novikov, S. Goncharuk. No Conference Proceedings of Scientific Papers, «CASSOTHERM 2018» Technical University of Kosice. 2018. Р. 1 – 9
17. Basok B. Influence of low-emissivity coating on heat transfer through the double-glazing windows. B. Basok, B. Davydenko, V. Zhelykh, S. Goncharuk, L. Kuzhel. Building physics in theory and practice (Fizyka budowli w teorii i praktyce). Volume VIII, No. 4. 2016. Р. 5 – 8
18. Xiao-Hong Rong. Design of energy saving film used in residential buildings. Xiao-Hong Rong, Wen-Liang Wang. Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). 2018, the Authors. Published by Atlantis Press. Р. 1698-1701 (DOI: 10.2991/ifeesm-17.2018.309)
19. Basok B.I. Numerical modeling of heat transfer through a triple-pane window. B.I. Basok, B.V. Davydenko, S.A Isaev., S.M. Goncharuk, L.N. Kuzhel. Journal of Engineering Physics and Thermophysics. 89 (5). 2016. Р. 1277 – 1283 (DOI: 10.1007/s10891-016-1492-7)
20. B.I. Basok, B.V. Davydenko, M.P. Novickaja, S.M. Goncharuk, A.N. Nedbajlo. Vlijanie tolshhiny gazovoj proslojki na termicheskoe soprotivlenie odnokamernogo steklopaketa. Prom. Teplotehnika. 2012. T. 34, №1. S. 100 – 107.
21. Yafang Han. Advanced functional materials: Proceedings of Chinese materials conference 2017. 456 р. (DOI: 10.1007/978-981-13-0110-0)
22. Gloriant François. Using heat flux sensors for a contribution to experimental analysis of heat transfers on a tripleglazed supply-air window. François Gloriant, Anna
23. Moreau Alain. Modeling and study of the impacts of electrically heated windows on the energy needs of buildings. Alain Moreau, Simon Sansregret, Michael Fournier. 6th IASME/WSEAS International Conference on heat transfer, thermal engineering and environment (HTE’08). At: Rhodes, Greece, August 20 – 22, 2008. Р. 76 – 83.
24. Cakó Balázs. Measuring the effects of heated windows on thermal comfort. Balázs Cakó, Dalma Lovig, András Ózdi. Pollack Periodica, 16(3). 2021. Р. 114 – 119. (DOI: 1556/606.2021.00361)
25. Lee R. Heat flux and thermal characteristics of electrically heated windows: a case study. R. Lee, E. Kang, H. Lee, J. Yoon. Sustainability. 2022. 14, 481. (DOI: 10.3390/su14010481)
26. Jammulamadaka H.S. Evaluation of energy efficiency performance of heated windows. West Virginia University: Morgantown, WV, USA. 2017
27. P.H. Krukovskyi, D.A. Smolchenko, H.P. Krukovskyi, A.I. Deineko. Analiz opaliuvalnoi zdatnosti vikon z elektropidihri-vom. Teplofizyka ta Teploenerhetyka. 2021. 43(4). S. 62 – 67. (DOI: 10.31472/ttpe.4.2021.7)
28. Boris Basok, Boris Davydenko, Аnatoliy Pavlenko, Svitlana Goncharuk. Innovative method of improvement of transparent structure by using electric heated glass. Book of abstracts V International Scientific-Technical Conference «Actual problems of renewable energy, construction and environmental engineering». 2021. P. 15 – 17