Authors:
Rudenko Tamara
doctor of sciences in physics and mathematics, leading scientific researcher of the Department of the Surface Physics and Nanophotonics at the V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospect Nauki 41, 03028 Kyiv, Ukraine;
Nazarov Oleksiy (Alexei)
doctor of sciences in physics and mathematics, professor, the head of the Department of the Surface Physics and Nanophotonics at the V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospect Nauki 41, 03028 Kyiv Ukraine;
professor of the Department of General Physics and Modeling of Physical Processes, Faculty of Physics and Mathematics, National Technical University of Ukraine “Igor Sikorsky KPI”, Prospect Peremogy 37, 03056 Kyiv, Ukraine,
Lysenko Volodymyr
doctor of sciences in physics and mathematics, corresponding member of the National Academy of Sciences of Ukraine, principal researcher of the Department of the Surface Physics and Nanophotonics at the V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospect Nauki 41, 03028 Kyiv, Ukraine;
Reviewers:
Skryshevsky Valeriy
professor, doctor of sciences in physics and mathematics, head of Department of the Nanophysics of Condensed Matter at the Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
Evtukh Anatoliy
professor, doctor of sciences in physics and mathematics, leading researcher of V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine;
Affiliation:
Project: Scientific book
Year: 2024
Publisher: PH "Naukova Dumka"
Pages: 264
DOI:
https://doi.org/10.15407/978-966-00-1884-6
ISBN: 978-966-00-1884-6
Language: Ukrainian
How to Cite:
Rudenko, T., Nazarov, O., Lysenko, V. (2024) Physics and Electrical Diagnostics of Nanoelectronic Silicon-On-Insulator Structures and Devices. Kyiv, Naukova Dumka. 264p. [in Ukrainian].
Abstract:
This book is devoted to one of the most important field of modern nanoelectronics, namely, nanoelectronic devices based on Silicon-on-Insulator (SOI) structures, and more specifically, to the physics and electrical characterization of these devices. The principal advantages of SOI devices over bulk-Si counterparts are described, and the main areas of their application are outlined. Particular attention is given to the advanced SOI-based structures for nanoscale metal-oxide-semiconductor (MOS) field-effect transistors (FETs), namely: ultra-thin-body SOI MOSFETs, FinFETs, nanowire multi-gate MOSFETs, and junctionless nanowire MOSFETs. Special electrical properties of these nanotransistor structures, associated with their specific architecture and nanometer dimensions, and methods for the determination of their electrical parameters are considered.
The book includes research results of the world-famous scientists in the silicon-on-insulator field, but mostly it presents the results of scientific research by the authors of the monograph published in leading international journals.
It should be noted that so far no monographs on physics and diagnostics of silicon-on-insulator devices have been published in Ukraine, although silicon-on-insulator is currently recognized as the most advanced and most promising technology for fabricating high-speed, low voltage integrated circuits and key electronic components for modern portable electronic devices such as laptops, mobile phones, smartphones, etc.
The book is intended for scientific and engineering workers specializing in the semiconductor electronics. It can also be useful for university teachers, students, and graduate students who are interested in the current state of micro- and nanoelectronics.
Keywords:
Silicon-on-Insulator structures, SOI transistors, fully depleted SOI MOSFETs, FinFETs, Junctionless SOI nanowire MOSFETs, electrical characterization
References:
1. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Academic Publishers, 2004. 384 p.
2. Chang L., Choi Y.-K., Ha D., Ranade P., Xiong S., Bokor J., Hu S., King T.-J. Extremely scaled silicon nano-CMOS devices. Proceedings of the IEEE. 2003. Vol. 91, №11. P. 1860-1873.
3. Baba S.. Next-generation low-power consumption SOI devices. OKI Technical Review. 2002. Issue 190. Vol. 69, №2. P. 40-45.
4. Uchiyama A., Baba S., Nagatomo Y., Ida J. Fully depleted SOI technology for ultra low power digital and RF applications. Proceedings of the IEEE International SOI Conference. 2006. P. 15-16.
5. Pelloie J.L. Using SOI to achieve low-power consumption in digital. Proceedings of the IEEE International SOI Conference. 2005. P. 1-4.
6. G. K. Celler. SOI Technology Driving The 21st Century Ubiquitous Electronics. ECS Transactions. 2009. Vol. 19, №4. P. 3-14.
7. Silicon-on-Insulator (SOI) Market – Global Outlook and Forecast 2022-2028
8. Fleetwood D.M., Thome F.V., Tsao S.S., Dressendorfer P.V., Dandini V.J., Schwank J.R. High temperature Silicon-On-Insulator electronics for space nuclear power: requirements and feasibility. IEEE Transactions on Nuclear Science. 1988. Vol. 35, №5. P. 1099-1112.
9. Colinge J.-P. SOI for hostile environment applications. Proceedings of the IEEE International SOI Conference. 2004. P. 1-4.
10. Flandre D. Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits. Materials Science and Engineering. 1995. Vol. 29, №1-3. P. 7-12.
11. Choi Y. K., Asano K., Lindert N., Subramanian V., King T.-J., Bokor J., and Hu C. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Letters. 2000. Vol. 21, № 5. P. 254 – 255.
12. Hisamoto D., Lee W.-C., Kedzierski J., Takeuchi H., Asano K., Kuo C., Anderson E., King T.-J., Bokor J., and Hu C. FinFET – A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices. 2000. Vol. 47, №12. P.2320-2325.
13. Ferain I., Colinge C. A., Colinge J.-P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature. 2011. Vol. 479, №7373. P. 310–316.
14. FinFETs and Other Multi-Gate Transistors / Editor: Colinge J.-P. (Springer). 2007. 350 p.
15. Yu B., Chang L., Ahmed S., Wang H., Bell S., Yang C.-Y., Tabery C., Ho C., Xiang O., Qi Tsu-Jae King Oi T.-J., Bokor J., Hu C., Lin M.-R., Kyser D. FinFET scaling to 10 nm gate length. IEDM Technical Digest. 2002. P. 251-254.
16. Wu Y.-C., Jhan Y.-R. Extremely scaled Si and Ge to Lg = 3-nm FinFETs and Lg =1-nm ultra-thin body junctionless FET simulation. In: 3D TCAD Simulation for CMOS Nanoeletronic Devices, Chapter 8 / Springer Nature Singapore Pte Ltd. 2018. DOI: 10.1007/978-981-10-3066-6_8
17. Zhang S. Review of Modern Field Effect Transistor Technologies for Scaling, Journal of Physics: Conference Series. 1617 (2020) 012054
DOI:10.1088/1742-6596/1617/1/012054
18. Das U. K., Bhattacharyya T. K. Opportunities in device scaling for 3-nm node and beyond: FinFET Versus GAA-FET versus UFET. IEEE Transactions on Electron Devices. 2020. Vol. 67, №8. P.1-6. DOI:10.1109/TED.2020.2987139
19. Desai S.B., Madhvapathy S.R., Sachid A.B., Llinas J.P., Wang Q., Ahn G.H., Pinter G., Kim M.G., Bokor J., Wong H.-S. P.,. Javey A. MoS2 transistors with 1-nanometer gate lengths. Science. 2016. Vol. 354. P. 99-102. DOI: 10.1126/science.aah4698
20. Rudenko T.E., Rudenko A.N., Nazarov A.N., Lysenko V.S., Kilchitskaya V. I. Elektrofizicheskie svojstva ZMR KNI-struktur: metody issledovaniya i eksperimental’nye rezul’taty. Mikroelektronika. 1994. T. 23, vyp. 6. S. 18-31.
21. Rudenko T. E., Rudenko A. N., Lysenko V. S. Electrical properties of ZMR SOI structures: Characterization techniques and experimental results. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V. S. and Nazarov A. N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 169–180. DOI:10.1007/978-94-011-0109-7_16.
22. Rudenko T.E., Rudenko A.N., Lysenko V.S., Limanov A.B., Givargizov E.I. Harakteristiki elementov KMOP IS na osnove KNI i KNS struktur. Elektronnaya promyshlennost’. 1991. # 8. C. 36-41.
23. Lysenko V. S., Nazarov A. N., Rudenko T. E., Rudenko A. N., Kilchitskaya V. I., Givargizov E. I., Limanov A. B. Svojstva KNI-struktur, poluchennyh lazernoj zonnoj perekristallizaciej polikremniya na mnogoslojnyh diehlektrikah. Mikroelektronika. 1994. T. 23, vyp. 6. S. 32-38.
24. Barchuk I.P., Vovk Ya.N., Kilchitskaya V.I., Lysenko V.S., Nazarov A.N., Rudenko A.N., Rudenko T.E, Givargizov E.I., Limanov A.B. Issledovanie vozdejstviya ioniziruyuschego izlucheniya na elektrofizicheskie svojstva vnutrennih mnogoslojnyh dielektrikov KNI struktur, poluchennyh metodom lazernoj zonnoj perekristallizacii. Mikroelektronika. 1996. T. 25, vyp. 5. S. 346-353.
25. Barchuk I.P., Kilchitskaya V.I., Lysenko V.S., Nazarov A.N., Rudenko T.E., Djurenko S.V., Rudenko A.N., Yurchenko A.P., Ballutaud D., Colinge J.-P. Electrical properties and radiation hardness of SOI systems with multilayer buried dielectric. IEEE Transactions on Nuclear Science. 1997. Vol. 44, № 6. P. 2542-2552.
For Part 1
1. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Academic Publishers, 2004. 384 p.
2. Celler G. C., Cristoloveanu S. Frontiers of silicon-on-insulator. J. Appl. Phys. 2003. Vol. 93, №9. P. 4955-4978.
3. Hu C. Silicon-on-insulator for high speed ultra large scale integration. Jpn. J. Appl. Phys. 1994. Vol. 33, №1. P. 365–369.
4. Sakurai T., Matsuzawa A., Douseki T. Fully-Depleted SOI CMOS Circuits and technology for ultralow-power applications. New Jersey: Springer, 2006. 405 p.
5. Pelloie J.L. Using SOI to achieve low-power consumption in digital. Proceedings of the IEEE International SOI Conference. 2005. P. 1-4.
6. Uchiyama A., Baba S., Nagatomo Y., Ida J. Fully Depleted SOI Technology for Ultra Low Power Digital and RF Applications. Proceedings of the IEEE International SOI Conference. 2006. P. 15-16.
7. Francis P., Michel Ch., Colinge J.-P. Radiation-hard design for SOI CMOS inverters. IEEE Transactions on Nuclear Science. 1994. Vol. 41, №2. P. 402-407.
8. Colinge J.-P. SOI for hostile environment applications. Proceedings of the IEEE International SOI Conference. 2004. P. 1-4.
9. Fleetwood D. M., Thome F. V., Tsao S. S., Dressendorfer P. V., Dandini V. J., Schwank J.R. High temperature Silicon-On-Insulator electronics for space nuclear power: requirements and feasibility. IEEE Transactions on Nuclear Science. 1988. Vol. 35, №5. P. 1099-1112.
10. Francis P., Terao A., Gentinne B., Flandre D., Colinge J.-P. SOI technology for high-temperature applications. IEDM Technical Digest . 1992. P. 353-356.
11. Flandre D. Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits. Materials Science and Engineering. 1995. Vol. 29, №1-3. P. 7-12.
12. Diem B., Rey P., Renard S., Bosson S.V., Bono H., Michel F., Delaye T., Delapierre G. SOI SIMOX: from bulk to surface micromachining, a new age for silicon sensors and actuators. Sensors and Actuators A. 1995. Vol. 46-47. P. 8-16.
13. Mokwa W. Advanced sensors and microsystems on SOI. Int. Journal of High Speed Electronics and Systems. 2000. Vol. 10, №.1. P. 147–153.
14. Raskin J.-P., Francis L., Flandre D. Sensing and MEMS devices in thin-film SOI MOS technology. In: Semiconductor-On-Insulator Materials for Nanoelectronics Applications / Editors: Nazarov A.N., Colinge J.-P., Balestra F., Raskin J.-P., Gamiz F., V.S Lysenko: Springer, 2011. P. 355-392.
15. Kawamura S., Sasaki N., Iwai T., Mukai R., Nakano M., Takagi M. 3-Dimensional SOI/CMOS IC’s fabricated by beam recrystallization. Technical Digest of the International Electron Devices Meeting. 1983. P. 364-367.
16. Zhang R., Roy K., Janes D. B. Architecture and Performance of 3-Dimensional SOI Circuits. Proceedings of the 1999 IEEE International SOI Conference. 1999. P. 44-45.
17. Okhonin S., Nagoga M., Sallese J. M., Fazan P. A. Capacitor-Less 1T-DRAM Cell. IEEE Electron Device Letters. 2002. Vol.23. №2. P. 85-87.
18. Bawedin M., Cristoloveanu S., Flandre D. Innovating SOI memory devices based on floating-body effects. Solid-State Electronics. 2007. Vol. 51. №7. P. 1252-1262.
19. Colinge J.-P., Baie X., Bayot V., Grivei E. A silicon-on-insulator quantum wire. Solid-State Electronics. 1996. Vol. 39, №1. P. 49-51.
20. Zhang L., Guo L., Chou S. Y. Silicon single-electron quantum-dot transistor switch operating at room temperature. Applied Physics Letters. 1998. Vol.72. P. 1205–1207.
21. Ono Y., Yamazaki K., Nagase M., Horiguchi S., Shiraishi K., Takahashi Y. Single-electron and quantum SOI devices. Microelectronic Engineering. 2001. Vol. 59, Issues 1–4. P. 435-444.
22. Manasevit H. M., Simpson W. I. Single-crystal silicon on a sapphire substrate. J. Appl. Phys. 1964. Vol. 35, №4. P. 1349-1351.
23. Nakamura T., Matsuhashi H., Nagatomo Y. Silicon on sapphire (SOS) device technology. Oki Technical Rev. 2004. Vol. 71, №4. P.66-69.
24. Taur Y., Buchanan D. A., Chen W., Frank D. J., Ismail K. E., Lo S.-H., Sai-Halasz G.A., Viswanathan R.G., Wann H.-J. C., Wind S. J., Wong H.-S. CMOS scaling into the nanometer regime. Proceedings of the IEEE. 1997. Vol. 85, №4. P. 486-504.
25. Choi Y.K., Asano K., Lindert N., Subramanian V., King T.-Y., Bokor J., Hu C. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Letters. 2000. Vol. 21, № 5. P. 254 – 255.
26. Ferain I., Colinge C. A., Colinge J.-P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature. 2011. Vol. 479, № 7373. P. 310–316.
27. International Technology Roadmap for Semiconductors (ITRS), 2001 Edition. Emerging Research Devices. 2001. P. 29-40.
28. Frank D., Dennard R., Nowak E., Wong H-S.P. Device Scaling Limits of Si MOSFETs and Their Application Dependencies. Proceedings of the IEEE. 2001. Vol. 89, №3. P. 259 -288.
29. Wong H.-S. P. Beyond the conventional transistor. IBM J. Res.& Develop. 2002. Vol. 46, №2/3. P. 133–168.
30. Chang L., Choi Y.-K., Ha D., Ranade P., Xiong S., Bokor J., Hu S., King T.-J.. Extremely scaled silicon nano-CMOS devices. Proceedings of the IEEE. 2003. Vol. 91, №11. P. 1860-1873.
31. Park J.-T., Colinge J.-P. Multi-gate SOI MOSFETs: Device design guidelines. IEEE Transactions on Electron Devices. 2002. Vol. 49, №12. P. 2222-2229.
32. Yu B., Chang L., Ahmed S., Wang H., Bell S., Yang C.-Y., Tabery C., Ho C., Xiang O., Qi Tsu-Jae King Oi T.-J., Bokor J., Hu C., Lin M.-R., Kyser D. FinFET scaling to 10 nm gate length. IEDM Technical Digest. 2002. P. 251-254.
33. FinFETs and Other Multi-Gate Transistors / Editor: J.-P. Colinge: Springer. 2007. 350 p.
34. Troutman R.R. Latchup in CMOS Technology: The Problem and Its Cure / Kluwer Academic Publishers. 1986. 242 p.
35. Musseau O. Single-event effects in SOI technologies and devices. IEEE Transactions on Nuclear Science. 1996. Vol. 43, №2. P. 603-613.
36. Schwank J. R., Ferlet-Cavroiz V., Shaneyfelt M.R. Radiation effects in SOI technologies. IEEE Transactions on Nuclear Science. 2003. Vol. 50, №3. P. 522-538.
37. Davis G. E., Hughes H. L., Kamins T. I. Total dose radiation-bias effects in laser-recrystallized SOI MOSFET’s. IEEE Transactions on Nuclear Science. 1983. Vol. 29, №6. P. 1685-1689.
38. Tsaur B.-Y., Fan J. C. C., Turner G. W., Silversmith D.J. Effects of ionizing radiation on n-channel MOSFETs fabricated in zone-melting recrystallized Si films on SiO2. IEEE Electron Device Letters. 1982. Vol. 3, №7. P. 195-197.
39. Tsaur B.-Y., Mountain R.W., Chen C. K., Turner G.W., Fan C.C. Effects of ionizing radiation on SOI/CMOS devices fabricated in zone-melting-recrystallized Si films on SiO2. IEEE Electron Device Letters. 1984. Vol. 5, №7. P. 238-240.
40. Barchuk I.P., Vovk Ya.N., Kilchitskaya V.I., Lysenko V.S., Nazarov A.N., Rudenko A.N., Rudenko T.E, Givargizov E.I., Limanov A.B. Issledovanie vozdejstviya ioniziruyuschego izlucheniya na elektrofizicheskie svojstva vnutrennih mnogoslojnyh dielektrikov KNI struktur, poluchennyh metodom lazernoj zonnoj perekristallizacii. Mikroelektronika. 1996. T. 25, vyp. 5. S. 346-353.
41. Barchuk I.P., Kilchitskaya V.I., Lysenko V.S., Nazarov A.N., Rudenko T.E., Djurenko S.V., Rudenko A.N., Yurchenko A.P., Ballutaud D., Colinge J.-P. Electrical properties and radiation hardness of SOI systems with multilayer buried dielectric. IEEE Transactions on Nuclear Science. 1997. Vol. 44, № 6. P. 2542-2552.
42. Rudenko A.N., Lysenko V.S., Nazarov A.N., Barchuk I.P., Kilchitskaya V.I., Rudenko T.E., Djurenko S.V., Vovk Ya.N. Total-dose radiation response of multilayer buried insulators. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices / ed. by Peter L.F. Hemment, V.S. Lysenko and A.N. Nazarov: NATO Science Series 3. High Technology. Springer. 2000. Vol. 73. P. 205–212.
43. Caviglia A. L., Potter R. C., West L. J. Microwave performance of SOI n-MOSFETs and coplanar waveguides. IEEE Electron Device Letters. 1991. Vol. 12, №1. P. 26-27.
44. Flandre D., Raskin J.-P., Vanhoenacker D. SOI CMOS transistors for RF and microwave applications. Int. J. High Speed Electron. Syst. 2001. Vol. 11. P. 1159-1248.
45. Colinge J.-P. Subthreshold slope of thin-film SOI MOSFETs. IEEE Electron Device Letters. 1986. Vol. 7, №4. P. 244-246.
46. Flandre D., Terao A., Francis P., B. Gentinne, Colinge J.-P. Demonstration of the potential of accumulation-mode MOS transistors on SOI substrates for high-temperature operation (150-300°C). IEEE Electron Device Letters. 1993. Vol. 14, №1. P.
47. Groeseneken G., Colinge J.-P., Maes H.E., Alderman J.C., Holt S. Temperature dependence of threshold voltage in thin-film SOI MOSFET’s. IEEE Electron Device Letters. 1990. Vol. 11, № 8. P. 329-331.
48. Zi S. Fizika poluprovodnikovyh priborov. T.2. Moskva: «Mir», 1984. 455 s.
49. Maler R., Kejmins T. Elementy integral’nyh shem. Moskva: «Mir», 1989. 630 s.
50. Brews J. R., Fichtner W., Nicollian E. H., Sze S. M. Generalized guide for MOSFET miniaturization. IEEE Electron Device Letters. 1980. Vol. 1, № 1. P. 2-4.
51. Troutman R. R. VLSI limitations from drain-induced barrier lowering. IEEE Transactions on Electron. Devices. 1979. Vol. 26, №4. P. 461-469.
52. Dennard R. H., Gaensslen F. H., Yu H.-N., Rideout V. L., Bassous E., and LeBlanc A.R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits. 1974. Vol. SC-9, №5. P. 256–268.
53. Baccarani G., Wordeman M. R., Dennard R. H. Generalized scaling theory and its application to a 0.25 m MOSFET design. IEEE Transactions on Electron Devices. 1984. Vol. 31, №4. P.452-462.
54. Wilk G.D., Wallace R.M., Anthony J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001. Vol. 89, №10. P. 5243–5275.
55. Gusev E., Buchanan D., Cartier E., Kumar A., DiMaria D., Guha S., Callegari A., Zafar S., Jamison P.C., Neumayer D.A., Copel M.,. Gribelyuk M.A, Okorn-Schmidt H., D’Emic C., Kozlowski P., Chan K., Bojarczuk N., Ragnarsson L-A., Ronsheim P., Rim K., Fleming R. J., Mocuta A., Ajmera A. Ultrathin high-k gate stacks for advanced CMOS devices. IEDM Technical Digest. 2001. P. 451–454.
56. Lee B. H., Kang L., Qi W.-J., Lee B. H., Kang L., Qi W.-J., Nieh R., Jeon Y., Onishi K., Lee J.C. Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application. IEDM Technical Digest. 1999. P. 133-136.
57. Lee J. C., Lee J. C., Cho H. J., Kang C. S., Rhee S. J., Kim Y. H., Choi R., Kang C.Y., Choi C.H., Akbar M. High-K dielectrics and MOSFET characteristics. IEDM Technical Digest. 2003. P. 95-98.
58. Chau R., Datta S., Doczy M., Doyle B., Kavalieros J., Metz M. High-k/metal-gate stack and its MOSFET characteristics. IEEE Electron Device Letters. 2004. Vol. 25, №6. P. 408-410.
59. Cheng B., Maiti B., Samavedam S. Metal gates for advanced sub-90 nm SOI CMOS technology. Proceedings of the IEEE International SOI Conference. 2001. P. 91-92.
60. Suzuki S., Ishii K., Kanemaru S., Maeda T. Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Transactions on Electron Devices. 2000. Vol. 47, №2. P. 354-359.
61. Park J. T., Colinge J.-P., Diaz C. H. Pi-gate SOI MOSFET. IEEE Electron Device Letters. 2001. Vol. 22, №8. P. 405-407.
62. Colinge J.-P. The new generation of SOI MOSFETs. Romanian journal of information science and technology. 2008. Vol. 11, №1. P. 3-15.
63. Colinge J.-P. Multiple-gate SOI MOSFETs. Solid-State Electronics. 2004. Vol.48, №6. P. 897-905.
64. Park D.-G., Cha T.-H., Lim K.-Y., Cho H.-J., Kim T.-K., Se-Aug Jang, You-Suh Y.-S., Misra V., Yeo I.-S., Roh J.-S., Park J. W., Yoon H.-K. Robust ternary metal gate electrodes for dual gate CMOS devices. IEDM Technical Digest. 2001. P. 671-674.
65. Kim Y. H., Lee C. H., Jeon T. S., Bai W. P., Choi C. H., Lee S. J., Xinjian L., Clarks R., Roberts D., Kwong D. L. High quality CVD TaN gate electrode for sub-100 nm MOS devices. IEDM Technical Digest. 2001. P. 667-670.
66. Lee J. H., Zhong H., Suh Y.-S., Heuss G., Gurganus J., Chen B., Misra V. Tunable work function dual metal gate technology for bulk and nonbulk CMOS. IEDM Technical Digest. 2002. P. 359–362.
67. Yeo Y.-C., King T.-J., and Hu C. Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology. J. Appl. Phys. 2002. Vol. 92, №12. P. 7266-7271.
68. Sekigawa T. and Hayashi Y. Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate. Solid-State Electronics. 1984. Vol. 27, №8. P. 827-828.
69. Hisamoto D., Kaga T., Kawamoto Y., Takeda E. A fully depleted lean-channel transistor (DELTA) – A novel vertical ultra thin SOI MOSFET. IEDM Technical Digest. 1989. P. 833-836.
70. Hisamoto D., Lee W.-C., Kedzierski J., Takeuchi H., Asano K., Kuo C., Anderson E., King T.-J., Bokor J., and Hu C. FinFET – A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices. 2000. Vol. 47, №12. P. 2320-2325.
71. Colinge J.-P., Gao M.H., Romano-Rodriguez A., Maes A.H., Claeys C. Silicon-on-insulator “gate-all-around device”. IEDM Technical Digest. 1990. P.595-598.
72. Jurczak M., Skotnicki T., Paoli M., Tormen B., Martins J., Regolini J. L., Dutartre D., Ribot P., Lenoble D., Pantel R., Monfray S. Silicon-on-Nothing (SON) – an innovative process for advanced CMOS. IEEE Transactions on Electron Devices. 2000. Vol. 47, №11. P. 2179-2187.
73. Pretet J. Silicon-on-nothing MOSFETs: performance, short-channel effects, and backgate coupling / J. Pretet, S. Monfray, S. Cristoloveanu, Skotnicki T. IEEE Transactions on Electron Devices. 2004. Vol. 51, №2. P. 240-245.
74. Doyle B. S., Datta S., Doczy M., Hareland S., Jin B., Kavalieros T., Linton J., Murthy A., Rios R., Chau R. High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Letters. 2003. Vol. 24, №4. P. 263-265.
75. Yang F. L., Chen H. Y., Cheng F. C., Huang C.C, Chang C. Y., Chiu H. K, Lee C.C., Chen C.C., Huang H.T., Chen C. J., Tao H. J., Yeo Y. C., Liang M.S., Hu C. 25 nm CMOS Omega FETs. IEDM Technical Digest. 2002. P. 255-258.
76. Miyano S., Hirose M., Masuoka F. Numerical analysis of a cylindrical thinpillar transistor (CYNTHIA). IEEE Transactions on Electron Devices. 1992. Vol. 39, №8. P. 1876-1881.
77. Nitayama A., Takato H., Okabe N., Sunouchi K., Hieda K., Horiguchi F., and Masuoka F. Multi-pillar surrounding gate transistor (M-SGT) for compact and high-speed circuits. IEEE Transactions on Electron Devices. 1991. Vol. 38, №3. P. 579-583.
78. Passi V., Olbrechts B., Raskin J.-P. Fabrication of a Quadruple Gate MOSFET in Silicon-on-Insulator technology. Abstracts of NATO Advanced Research Workshop “Nanoscaled Semiconductor-on-Insulator Structures and Devices”, 15-19 October, Sudak, Ukraine, 2006. P. 11-12.
79. Yan R. H., Ourmazd A, Lee K. F. Scaling the Si MOSFET: from Bulk to SOI to Bulk. IEEE Transactions on Electron Devices. 1992. Vol. 39, №7. P. 1704 – 1710.
80. Suzuki K., Tanaka T., Tosaka Y., Horie H., Arimoto Y. Scaling theory for double-gate SOI MOSFET’s. IEEE Transactions on Electron Devices. 1993. Vol. 40, №12. P. 2326-2329.
81. Auth С. P., Plummer J. D. Scaling theory for cylindrical, fully depleted, surrounding-gate MOSFETs. IEEE Electron Device Letters. 1997. Vol. 18, №2. P. 74-76.
82. Cristoloveanu S., Li. S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
83. Plöbl A., Kräuter G. Silicon-on-insulator: materials aspects and applications. Solid-State Electronics. 2000. Vol. 44, № 5. P. 775–782. DOI:10.1016/S0038-1101(99)00273-7.
84. Ipri A.C. Electrical properties of silicon films on sapphire using the MOS Hall technique. J. Appl. Phys. 1972. Vol. 43, № 6. P. 2770–2775. DOI:10.1063/1.1661592.
85. Colinge J.-P., Demoulin E., Bensahel D., Auvert G. Use of selective annealing for growing very large grain silicon on insulator. Applied Physics Letters. 1982. Vol. 41, №4. P. 346-347.
86. Celler G. K., Trimple L. E. Seeded oscillatory growth of Si over SiO2 by CW laser irradiation. Applied Physics Letters. 1984. Vol. 45, №10. P. 1098-1100.
87. Tsaur B.-Y. Zone-melting-recrystallization silicon-on-insulator technology. IEEE Circuits and Devices Magazine. 1987. Vol. 3, №4. P. 12–16. DOI:10.1109/MCD.1987.6323127.
88. Geis M.W., Smith H.I., Tsaur B.-Y., Fan J.C.C. Zone-melting recrystallization of encapsulated silicon films on SiO2 – morphology and crystallography. Applied Physics Letters. 1982. Vol. 40, №2. P.158–160.
89. Limanov A. B., Givargizov E. I. Lazernaya zonnaya perekristallizaciya tonkih plenok kremniya: metod, struktura, mexanizmy kristallizacii. Mikroelektronika. 1991. T. 20, vyp. 4. S. 36-49.
90. Givargizov E. I., Loukin V. A., Limanov A. B. Defect engineering in SOI films prepared by zone-melting recrystallization. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V.S. and Nazarov A.N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 27–38. DOI:10.1007/978-94-011-0109-7_3.
91. Rudenko T. E., Rudenko A. N., Lysenko V. S. Electrical properties of ZMR SOI structures: Characterization techniques and experimental results. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V. S. and Nazarov A. N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 169–180. DOI:10.1007/978-94-011-0109-7_16.
92. Rudenko T.E., Rudenko A.N., Lysenko V.S., Limanov A.B., Givargizov E.I. Issledovanie profilej primesi i podvizhnosti v strukturah KNI, poluchennyh lazernoj zonnoj perekristallizaciej. Mikroelektronika. 1993. T. 22, vyp. 1. S.3-13.
93. Rudenko T.E., Rudenko A.N., Nazarov A.N., Lysenko V.S., Kilchitskaya V.I. Elektrofizicheskie svojstva ZMR KNI-struktur: metody issledovaniya i ehksperimental’nye rezul’taty. Mikroelektronika. 1994. T. 23, vyp. 6. S. 18-3.
94. Rudenko T.E., Rudenko A.N., Lysenko V.S., Limanov A.B., Givargizov E.I. Harakteristiki elementov KMOP IS na osnove KNI i KNS struktur. Ehlektronnaya promyshlennost’. 1991. # 8. S. 36-41.
95. Izumi K., Doken M., Ariyoshi H. C.M.O.S devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon. Electronics Letters. 1978. Vol. 14, №18. P. 593–594. DOI: 10.1049/el:19780397.
96. Izumi K., Omura Y., Sakai T. SIMOX technology and its application to CMOS LSI. Journal of Electronic Materials. 1983. Vol. 12, №5. P. 845–861.
97. Lam H.W. SIMOX SOI for integrated circuit fabrication. IEEE Circuits and Devices Magazine. 1987. Vol. 3, №4. P. 6–11.
98. Hemment P.L.F. Silicon on insulator formed by O+ or N+ ion implantation. Material Research Society Symposium Proceedings. 1986. Vol. 53. P. 207–221. DOI:10.1557/PROC-53-207.
99. Tuppen C. G. The effects of different implantation and annealing temperatures on the structural and chemical properties of high dose oxygen-ion implanted silicon. Thin Solid Films. 1985. Vol. 131, №3-4. P. 233-244.
100. Barklie R. C., Ennis T. J., Reeson K., Hemment P.L.F. Defect production during the fabrication of SOI by oxygen ion implantation. Applied Surface Science. 1989. Vol. 36, №1-4. P. 400-407.DOI:10.1016/0169-4332(89)90935-5
101. Venables D., Jones K. S. Low-dislocation-density silicon-on-insulator material produced by sequential oxygen implantation and low-temperature annealing. Applied Physics Letters. 1992. Vol. 60, №25. P. 3147-3149.
102. Maszara W.P., Bennet J., Boden T., Dockerty R., Gondran C.F.H., Jackett-Murphy S., Vasudev P.K.,.Anc M.J, Hovel H. Low dose SIMOX and impact of ITOX process on quality of SOI film. IEEE International SOI Conference Proceedings. 1997. P. 18-19. DOI:10.1109/SOI.1997.634911
103. Matsumura A., Kawamura K., Hamaguchi I., Nagatake Y. Low-dose SIMOX wafers for LSIs fabricated with internal-thermal-oxidation (ITOX) process: electrical characterization. Journal of Materials Science: Materials in Electronics. 1999. Vol. 10, № 5. P. 365-371.
104. Zimmer G., Neubert E., Zetzrnann W., Liu Z. L.CMOS devices isolated by ion-implanted buried silicon nitride. IEDM Technical Digest. 1982. P. 789-792.
105. Zimmer G., Vogt H. CMOS on buried nitride – A VLSI SOI technology. IEEE Transactions on Electron Devices. 1983. Vol. 30, № 11. P.1515-1520.
106. Serre C., Perez-Rodriguez A., Romano-Rodriguez A., Morante J. R., Esteve J., Acero M. C., Kogler R., Skorupa W.. SiCOI Structures. Technology and characterization. In: Progress in SOI Structures and Devices Operating at Extreme Conditions / Editors: Hemment P. L. F., Lysenko V. S., Nazarov A. N. Kluwer, NATO Science Series II, 2002. Vol. 17. P. 17-29,
107. Lasky J.B. Wafer bonding for silicon-on-insulator technologies. Applied Physics Letters. 1986. Vol. 48, № 1. P. 78–80. DOI:10.1063/1.96768.
108. Maszara W.P., Goetz G., Caviglia A., McKitterick J.B. Bonding of silicon wafers for silicon-on-insulator. J. Appl. Phys. 1988. Vol. 64, № 10. P. 4943–4950. DOI:10.1063/1.342443.
109. Tong Q.-Y. and Gösele U. Semiconductor Wafer Bonding: Science and Technology / John Wiley & Sons, New York, 1999. 320 p.
110. Bruel M. Silicon on insulator material technology. Electronics Letters. 1995. Vol. 31, №14. P. 1201–1202. DOI:10.1049/el:19950805.
111. Bruel M. The history, physics, and applications of the Smart-Cut™ process. MRS Bulletin. 1998. Vol. 23, №12. P. 35–39.
112. Auberton-Herve A.-J., Metral F., Bruel M., Aspar B., Maleville C., Moriceau H., Poumeyrol T. Smart-Cut®: The basic fabrication process for UNIBOND™ SOI wafers. Materials Research Society Symposia Proceedings. 1997. Vol. 446. P. 177–186.
113. Bruel M. Smart-Cut® Technology: Basic mechanisms and applications. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices / Editors: Hemment P. L.F., Lysenko V.S. and Nazarov A.N., NATO Science Series 3. High Technology. Springer, Dordrecht, 2000. Vol. 73. P. 1–15. DOI:10.1007/978-94-011-4261-8_1.
114. Global Silicon-on-Insulator (SOI) Market 2020: Recent Study including Growth Factors, Applications, Regional Analysis, Key Players and Forecasts 2024.
115. Maleville C., Mazuré C. Smart-Cut® technology: from 300 mm ultrathin SOI production to advanced engineered substrates. Solid-State Electronics. 2004. Vol. 48, № 6. P. 1055–1063. DOI:10.1016/j.sse.2003.12.029.
116. Joly J.-P., Aspar B., Bruel M., Cioccio Di L., Hugonnard-Bruyère E. New SiC on insulator wafers based on the Smart-Cut™ approach and their potential applications. In: Progress in SOI Structures and Devices Operating at Extreme Conditions / Editors: Balestra F., Nazarov A. N., Lysenko V. S. NATO Science Series II. Mathematics, Physics and Chemistry. Vol. 58. Kluwer Academic Publ., 2002. P. 31–38.
117. Cioccio Di L., Jalaguier E., Letertre F. E. Compound Semiconductor Heterostructures by Smart Cut™: SiC on Insulator, QUASIC™ Substrates, InP and GaAs Heterostructures on Silicon. Springer Series in Materials Science. 2004. Vol. 75. P. 263–314. DOI:10.1007/978-3-662-10827-7_7.
118. Akatsu T., Deguet C., Sanchez L., Richtarch C., Allibert F., Letertre F., Mazure C. Kemevez N., Clavelier L., Royer C. Hartmann Le, J.M., Loup V., Meuris M., De Jaeger B., Raskin J.-P. 200-mm germanium-on-insulator (GeOI) by Smart Cut™ technology and recent GeOI pMOSFETs achievements. 2005 IEEE International SOI Conference Proceedings. 2005. P. 137–138. DOI:10.1109/SOI.2005.1563565.
119. Yonehara T., Sakaguchi K., Sato N. Epitaxial layer transfer by bond and etch back of porous Si. Applied Physics Letters. 1994. Vol. 64, № 16. P. 2108–2110. DOI:10.1063/1.111698
120. Sakaguchi K., Yonehara T. ELTRAN® Technology Based on Wafer Bonding and Porous Silicon. Springer Series in Materials Science. 2004. Vol.75. P. 107-156.
121. Sleight J. W., Rios R. A continuous compact MOSFET model for fully and partially-depleted SOI devices. IEEE Transactions on Electron Devices. 1998. Vol. 45, № 4. P. 821-825.
122. Zi S. Fizika poluprovodnikovyh priborov. T.1. Moskva: «Mir». 1984. S.388–455.
123. Tihaniy J., Schlotterer H. Properties of ESFI MOS transistors due to the floating substrate and the finite volume. IEEE Transactions on Electron Devices. 1975. Vol. 22, № 11. P. 1017-1023.
124. Pelella M. M., Fossum J. G., Suh D., Krishnan S., Jenkins K.A., Michael J. Hargrove M. J. Low-voltage transient bipolar effect induced by dynamic floating-body charging in scaled PD/SOI MOSFETs. IEEE Electron Device Letters. 1996. Vol. 17, №5. P. 196-198.
125. Colinge J.-P. Reduction of kink effect in thin-film SOI MOSFETs. IEEE Electron Device Letters. 1988. Vol. 9, №2. P. 97–99. DOI:10.1109/55.2052.
126. Colinge J.-P. Transconductance of Silicon-On-Insulator (SOI) MOSFETs. IEEE Electron Device Letters. 1985. Vol. 6, №11. P. 573-574.
127. Wouters D.J., Colinge J.-P., Maes H.E. Subthreshold slope in thin-film SOI MOSFETs. IEEE Transactions on Electron Devices. 1990. Vol. 37, № 9. P.2022–2033. DOI:10.1109/16.57165.
128. Lim H. K., Fossum J. G. Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Transactions on Electron Devices. 1983. Vol. 30, №10. P. 1244-1251.
129. Ohata A., Cristoloveanu S., Vandooren A., Cassé M., Daugé F. Coupling effect between the front and back interfaces in thin SOI MOSFETs. Microelectronic Engineering. 2005. Vol. 80, №7. P. 245-248.
130. Eminente S. Cristoloveanu S., Clerc R., Ohata A., Ghibaudo G. Ultra-thin fully depleted SOI MOSFETs: special charge properties and coupling effects. Solid-State Electronics. 2007. Vol. 51, №2. P. 239-244.
131. Rudenko T., Kilchytska V., Raskin J.-P., Nazarov A., Flandre F. Special features of the back-gate effects in ultra-thin body SOI MOSFETs. In: Semiconductor-on-Insulator Materials for Nanoelectronics Applications / Editors: Nazarov A.N., Colinge J.-P., Balestra F., Raskin J.-P., Gamiz F., Lysenko V. S. Springer, 2011. P. 323–339.
132. Rudenko T., Nazarov A., Kilchytska V., Flandre D. A review of special gate coupling effects in long-channel SOIMOSFET with lightly doped ultra-thin bodies and their compact analytical modeling. Solid-State Electronics. 2016. Vol. 117, № 6. P. 66–76. DOI:10.1016/j.sse.2015.11.017.
133. Quisse T., Cristoloveanu S., Borel G. Influence of series resistances and interface coupling on the transconductance of fully-depleted silicon-on-insulator MOSFETs. Solid-State Electronics. 1992. Vol.35, №2. P.141-149.
134. Rudenko T.E., Rudenko A.N., Nazarov A.N., Lysenko V.S. Characterization of SOI by capacitance and current measurements with combined gated diode and depletion-mode MOS FET structure. Microelectronic Engineering. 1995. Vol. 28, №1-4. P. 475-478.
135. Passi V., Ravaux F., Dubois E., Clavaguera S., Carella A., Celle C., Simonato J.-P., Silvestri L, Reggiani S., Vuillaume D., Raskin J.-P. High gain and fast detection of warfare agents using back-gated silicon nanowired MOSFETs. IEEE Electron Device Letters. 2011. Vol. 10, №7. P. 976-978.
136. Ahn J.-H. Choi S.-J., Han J.-W., Park T. J., Lee S. Y., Choi Y.-K. Double-gate nanowire field effect transistor for a biosensor. Nano Letters. 2010. Vol. 10, №8. P. 2934-2938.
137. Yang I. Y., Vieri C., Chandrakasan A., Antoniadis D. A. Back-gated CMOS on SOIAS for dynamic threshold voltage control. IEEE Transactions on Electron Devices. 1997. Vol. 44, №5. P. 822-831.
138. Stern F., Howard W. E. Properties of semiconductor surface inversion layers in the electric quantum limit. Physical Review. 1967. Vol. 163, №3. P. 816–835. DOI:10.1103/PhysRev.163.816
139. Stern F. Self-consistent results for n-type Si inversion layers. Physical Revew B. 1972. Vol. 5, №12. P. 4891–4899. DOI:10.1103/PhysRevB.5.4891.
140. Ohkura Y. Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid State Electronics. 1990. Vol. 33, №12. P. 1581–1585. DOI:10.1016/0038-1101(90)90138-5
141. Janik T. and Majkusiak B. Influence of carrier energy quantization on threshold voltage of metal oxide semiconductor transistor. J. Appl. Phys. 1994. Vol. 75, №10. P. 5186–5190. DOI:10.1063/1.355766
142. Balestra F., Cristoloveanu S., Benachir M., Drini J., Elewa T. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Letters. 1987. Vol. 8, №9. P. 410–412. DOI:10.1109/EDL.1987.26677.
143. Omura Y., Horiguchi S., Tabe M., Kishi K. Quantum-mechanical effects on the threshold voltage of ultrathin-SOI n MOSFETs. IEEE Electron Device Letters. 1993. Vol. 14, № 12. P. 569-571.
144. Uchida K., Koga J., Ohba R., Numata T., Takagi S. Experimental evidences of quantum-mechanical effects on low field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs. IEDM Technical Digest. 2001. P. 633-634.
145. Majkusiak B., Janik T., Walczak J. Semiconductor thickness effects in the double-gate SOI MOSFET. IEEE Transactions on Electron Devices. 1998. Vol. 45, № 5. P. 1127-1134.
146. Colinge J.-P., Alderman J.C., Xiong W., Cleavelin C. R. Quantum-mechanical effects in trigate SOI MOSFETs. IEEE Transactions on Electron Devices. 2006. Vol. 53, № 5. P. 1131-1136.
147. Colinge J.-P., Xiong W., Cleavelin C. R., Schulz T., Schrüfer K., Matthews K., Patruno P. Room-temperature low-dimensional effects in Pi-gate SOI MOSFETs. IEEE Electron Device Letters. 2006. Vol. 27, № 9. P. 775-777.
148. Colinge J.-P. Quantum-wire effects in trigate SOI MOSFETs. Solid-State Electronics. 2007. Vol.51, № 9. P. 1153-1160.
149. Na K.-I., Park K. H., Cristoloveanu S., Chroboczek J. A., Ohata A., Xiong W., Lee J.-H., Bae Y. Low-frequency noise and mobility in triple-gate silicon-on-insulator transistors: Evidence for volume inversion effects. Microelectronic Engineering. 2012. Vol. 98. P. 85-88.
150. Uchida K., Takagi Shin-ichi. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs − Coulomb scattering, volume inversion, and δTSOI-induced scattering. IEDM Technical Digest. 2003. P. 805-808.
151. Esseni D., Mastrapasqua M., Celler G.K., Fiegna C., Selmi L., Sangiorgi E. Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicron technology application. IEEE Transactions on Electron Devices. 2001. Vol. 48, №12. P. 2842-2850.
152. Esseni D. Study of low field electron transport in ultrathin single and double gate SOI MOSFETs. IEDM Technical Digest. 2002. P. 719-722.
153. Esseni D., Mastrapasqua M., Celler G.K., Fiegna C., Selmi L., Sangiorgi E. An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode. IEEE Transactions on Electron Devices. 2003. Vol. 50, №3. P. 802-808.
154. Choi J. H., Park Y., Min H. Electron mobility behavior in extremely thin SOI MOSFET’s. IEEE Electron Device Letters. 1995. Vol. 18, № 11. P. 527-529.
155. Koga J., Takagi S., Toriumi A. Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs. IEEE Transactions on Electron Devices. 2002. Vol. 49, № 6. P. 1042-1048.
156. Gámiz F., López-Villanueva J. A., Roldán J. B., Carceller J. E., Cartujo P. Monte Carlo simulation of electron transport properties in extremely thin SOI MOSFET’s. IEEE Transactions on Electron Devices. 1998. Vol. 45, № 5. P.1122-1126.
157. Shoji M., Horiguchi S. Phononlimited inversion layer electron mobility in extremely thin Si layer of silicon-on-insulator metal–oxide–semiconductor field-effect transistor. J. Appl. Phys. 1997. Vol. 82, №12. P. 6096-6101.
158. Gámiz F., López-Villanueva J.A., Roldán J.B. Phonon-limited electron mobility in ultrathin silicon-on-insulator inversion layers. J. Appl. Phys. 1998. Vol. 83, № 9. P. 4802-4806.
159. Gámiz F., Roldán J.B., Cartujo-Cassinello P. Electron mobility in extremely thin single-gate silicon-on-insulator inversion layers. J. Appl. Phys. 1999. Vol. 86, № 11. P. 6269-6275.
160. Gámiz F., Roldán J. B., López-Villanueva J. A., Cartujo-Cassinello P., and Carceller J. E. Surface roughness at the Si–SiO2 interfaces in fully depleted silicon-on-insulator inversion layers. J. Appl. Phys. 1999. Vol. 86, №12. P. 6854-6863.
161. Esseni D., Abramo A., Selmi L. and Sangiorgi E. Physically based modelling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs. IEEE Transactions on Electron Devices. 2003. Vol. 50, № 12. P. 2445-2455.
162. Takagi S., Koga J., and Toriumi A. Mobility enhancement of SOI MOSFETs due to subband modulation in ultrathin SOI films. Japanese Journal of Applied Physics. 1998. Vol. 37, № 3S. P. 1289-1294.
163. Gámiz F., Roldán J. B., López-Villanueva J. A., Jimenez-Molinos F., Carceller J. E. Electron transport in ultrathin double-gate SOI devices. Microelectronic Engineering. 2001. Vol. 59. P. 423-427.
164. Gámiz F., Fischetti M. V. Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion. J. Appl. Phys. 2001. Vol. 89, № 10. P. 5478-5487.
165. Shoji M., Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on-insulator Si inversion. J. Appl. Phys. 1999. Vol. 85, №5. P. 2722-2731.
166. Gámiz F., Roldán J. B., Cartujo-Cassinello P., López-Villanueva J. A., Cartujo P. Role of surface-roughness scattering in double gate silicon-on-insulator inversion layers. J. Appl. Phys. 2001. Vol. 89, №12. P. 1764-1770.
For Part 2
For Chapter 2.1
1. Cristoloveanu S., Li. S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
2. Cristoloveanu S. Fully Depleted Silicon-On-Insulator: Nanodevices, Mechanisms and Characterization: Elsevier Inc., 2021. 384 p.
3. Cristoloveanu S., Wiliams S. Point-contact pseudo-MOSFET for in-situ characterization of as-grown silicon-on-insulator wafers. IEEE Electron Device Letters. 1992. Vol. 13, № 2. P. 102-104.
4. Cristoloveanu S., Munteanu D., Liu M. S. T. A review of the pseudo-MOS transistor in SOI wafers: Operation, parameter extraction, and applications. IEEE Transactions on Electron Devices. 2000. Vol. 47, № 5. P. 1018-1027.
5. Komiya K., Bresson N., Sato S., Cristoloveanu S., Omura Y. Detailed investigation of geometrical factor for pseudo-MOS transistor technique. IEEE Transactions on Electron Devices. 2005. Vol. 52, № 3. P. 406-412.
6. Ionica I., Savin I., Daele W. V. D., Nguyen T., Mescot X., Cristoloveanu S. Characterization of silicon-on-insulator films with pseudo-metal–oxide–semiconductor field-effect transistor: correlation between contact pressure, crater morphology, and series resistance. Applied Physics Letters. 2009. Vol. 94, № 1. P. 012111-012111-3.
7. Rodriguez N., Cristoloveanu S., Gamiz F. Revisited pseudo-MOSFET models for the characterization of ultrathin SOI wafers. IEEE Transactions on Electron Devices. 2009. Vol. 56, № 7. P. 1507-1515.
8. Ghibaudo G. New method for the extraction of MOSFET parameters. Electronics Letters. 1988. Vol. 24, №9. P. 543-545.
9. Fleury D., Cros A., Brut H., Ghibaudo G. New Y-function-based methodology for accurate extraction of electrical parameters on nanoscaled MOSFETs: 2008 IEEE International Conference on Microelectronic Test Structures, 2008. P. 160–165.
10. Karsenty A., Chelly A. Application, modeling and limitations of Y-function based methods for massive series resistance in nanoscale SOI MOSFETs. Solid-State Electronics. 2014. Vol. 92, №2. P. 12-19.
11. Henry J.B., Rafhay Q., Cros A., Ghibaudo G. New Y-function based MOSFET parameter extraction method from weak to strong inversion range // Solid-State Electronics. 2016. Vol. 123, № 9. P. 84-88.
12. Zi S. Fizika poluprovodnikovyh priborov. T.2. Moskva: «Mir», 1984. 455 s.
13. Maler R., Kejmins T. Elementy integral’nyh shem. Moskva: «Mir», 1989. 630 s.
14. Tobey M. C., Gordon N. Concerning the onset of heavy inversion in MIS devices. IEEE Transactions on Electron Devices. 1974. Vol. 21, № 10. P. 649-650.
15. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Academic Publishers, 2004. 384 p.
16. Lim H. K., Fossum J. G. Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Electron Device Letters. 1983. Vol. 30, №10. P. 1244-1251.
17. Lee С.T., Young K. Submicrometer near-intrinsic thin-film SO1 complementary. IEEE Transactions on Electron Devices. 1989. Vol. 36, №12. P. 2537-2547.
18. Mazhari B., Ioannou D. E. Surface potential at threshold in thin-film SOI MOSFETs. IEEE Transactions on Electron Devices. 1993. Vol. 40, №6. P.1129-1133.
19. Shih C.-H., Wang J.-S. Threshold voltage of ultrathin gate-insulator MOSFETs. IEEE Electron Device Letters. 2009. Vol. 30, № 3. P. 278-281.
20. Shi X., Wong M. On the threshold voltage of metal-oxide-semiconductor field effect transistor. Solid-State Electronics. 2005. Vol. 49, №7. P.1179-1184.
21. Garcıa-Sanchez F. J., Ortiz-Conde A., Muci J. Understanding threshold voltage in undoped-body MOSFETs: An appraisal of various criteria. Microelectronics Reliability. 2006. Vol. 46. P. 731-742.
22. Ortiz-Conde A., Garcia-Sanchez F. J., Muci J. Revisiting MOSFET threshold voltage extraction methods. Microelectronics Reliability. 2013. Vol. 53, №1. P. 90-104.
23. Fowler A. B., A. M. Hartstein. Techniques for determining threshold. Surface Science. 1980. Vol. 98, №1-3. P. 169-172.
24. Krutsick T. J., White M. H., Wong H.-S., Booth R.V.H. An improved model of MOSFET modeling and parameter extraction. IEEE Transactions on Electron Devices. 1987. Vol. 43, №8. P. 1676-1680
25. Flandre D., Kilchytska V., Rudenko T. gm/Id method for threshold voltage extraction applicable in advanced MOSFETs with non-linear behavior above threshold. IEEE Electron Device Letters. 2010. Vol. 31, №9. P. 930-932.
26. Wong H. S., White M. H, Krutsick T. J., Booth R.V.H. Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET. Solid-State Electronics. 1987. Vol. 30, №9. P. 953-968.
27. Aoyama K. A method for extracting the threshold voltage of MOSFETs based on current components. Simulation of Semiconductor Devices and Processes /Eds. H. Ryssel and P. Pichler. 1995. Vol. 6. P. 118-121.
28. Cunha A. A., Pavanello M. A., Trevisoli R. D., Galup-Montoro C., Schneider M. C. Direct determination of threshold voltage condition in DG-MOSFETs from the gm /ID curve. Solid-State Electronics. 2011. Vol. 56, № 1. P. 89-94.
29. Rudenko T., Kilchytska V., Arshad M. K. Md., Raskin J.–P., Nazarov A., Flandre D. Impact of mobility variation on threshold voltage extraction by transconductance change and gm/Id methods in advanced SOI MOSFETs: Proceedings of the Seventh Workshop of the Thematic Network on Silicon on Insulator Technology EuroSOI 2011, Granada, Spain, 2011. P. 25-26.
30. Rudenko T., Kilchytska V., Md Arshad M.K., Raskin J.–P., Nazarov A., Flandre D. On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part I – Effect of gate-voltage-dependent mobility. IEEE Transactions on Electron Devices. 2011. Vol. 58, №12. P. 4172-4179.
31. Park C.-K., Lee C.-Y., Lee K., Moon B.-Y., Byun Y. H., Shur M. A unified current-voltage model for long-channel MOSFETs. IEEE Transactions on Electron Devices. 1991. Vol. 38, № 2. P. 399-406.
32. Rudenko T., Kilchytska V., Md Arshad M.K., Raskin J.–P., Nazarov A., Flandre D. On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part II – Effect of drain voltage. IEEE Transactions on Electron Devices. 2011. Vol. 58, №12. P. 4180-4188.
33. Schred Simulation Tool [Online]. Available:http:// nanohub.org
34. Takagi S., Iwase M., and Toriumi A. On the universality of inversion-layer mobility in N- and P-channel MOSFETs. IEDM Tech. Digest. 1988. P. 398-401.
35. Tsuno M., Suga M., Tanaka M., Shibahara K., Miura-Mattausch M., and Hirose M. Physically-based threshold voltage determination for MOSFET’s of all gate lengths. IEEE Transactions on Electron Devices. 1999. Vol. 46, № 7. P. 1429-1434.
36. Gámiz F., López-Villanueva J.A., Banquerri J., Carceller J. E., Cartujo P. Universality of electron mobility curves in MOSFETs: A Monte Carlo study. IEEE Transactions on Electron Devices. 1995. Vol. 42, № 2. P. 258-265.
37. Pao H. C., Sah C. T. Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electronics. 1966. Vol. 9, №10. P. 927-937.
38. Rudenko T., Md Arshad M.K., Raskin J.-P., Nazarov A., Flandre D., Kilchytska V. On the gm/ID-based approaches for threshold voltage extraction in advanced MOSFETs and their application to ultra-thin body SOI MOSFETs. Solid-State Electronics. 2014. Vol. 97, №7. P. 52-58.
For Chapter 2.2
1. Grove A. S., Deal B. E., Snow E. H., Sah C. T. Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures. Solid-State Electronics. 1965. Vol. 8, №2. P. 145-163.
2. Zi S. Fizika poluprovodnikovyh priborov. T.2. Moskva: «Mir», 1984. 455 s.
3. Nicollian E. H. and Brews J. R. MOS Physics and Technology / Wiley, New York, 1982. 928 p.
4. Terman L. M. An investigation of surface states at a silicon/silicon dioxide interface employing metal-oxide-silicon diodes. Solid-State Electronics. 1962. – Vol. 5, №5. P. 285-299.
5. Berglund C. N. Surface states at steam-grown silicon-silicon dioxide interface. IEEE Transactions on Electron Devices. 1966. Vol. 13, № 10. P.701-705.
6. Kuhn M. A quasi-static technique for MOS C-V and surface state measurements. Solid-State Electronics. 1970. Vol. 13, №6. P. 873-885. DOI: 10.1016/0038-1101(70)90073-0.
7. Castagne R. and Vapaille A. Description of the SiO2-Si interface properties by means of very low frequency MOS capacitance measurements. Surface Science. 1971. Vol. 28. P. 157–193.
8. Baccarani G., Solmi S. and Soncini G. The silicon impurity profile as revealed by high-frequency non-equilibrium MOS C–V characteristics. Alta Frequenza. 1972. Vol. 41, №2. P. 113–115.
9. Zohta Y. Rapid Determination of Semiconductor Doping Profiles in MOS Structures. Solid-State Electronics. 1973. Vol. 16, №1. P. 124–126.
10. Lee J.-H., Cristoloveanu S. Accurate technique for CV measurements on SOI structures excluding parasitic capacitance effects. IEEE Electron Device Letters. 1986. Vol. 1, №9. P. 537-539.
11. Nagai K., Sekigawa T. Hayashi Y. Capacitance-voltage characteristics of SIS structures. Solid-State Electronics. 1985. Vol. 28, №8. P. 789–798.
12. H.-S. Chen, Sheng S. Li. A model for analyzing the interface properties of a semiconductor-insulator-semiconductor Structure-I: Capacitance and conductance techniques. IEEE Transactions on Electron Devices. 1992. Vol. 39, № 7. P. 1740-1746.
13. Rudenko T.E., Rudenko A.N., Nazarov A.N., Lysenko V.S., Kilchitskaya V.I. Elektrofizicheskie svojstva ZMR KNI-struktur: metody issledovaniya i eksperimental’nye rezul’taty. Mikroelektronika. 1994. T. 23, vyp. 6. S.18-31.
14. Cristoloveanu S., Li. S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
15. Rudenko T. E., Rudenko A. N., Lysenko V. S. Electrical properties of ZMR SOI structures: Characterization techniques and experimental results. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V. S. and Nazarov A. N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 169–180. DOI:10.1007/978-94-011-0109-7_16.
16. Ikraiam F. A., Beck R. B., Jakubowski A. Modeling of SOI-MOS capacitors C–V behavior: Partially- and fully-depleted cases. IEEE Transactions on Electron Devices. 1998. Vol. 45, №5. P. 1026-1032.
17. Nazarov A.N., Mikhajlov S.N., Lysenko V.S., Givargizov E.I., Limanov A.B. Issledovanie processov perenosa i nakopleniya zaryada vo vnutrennih dielektricheskih sloyah SiO2 v KNI strukturah, poluchennyh zonnoj perekristallizaciej. Mikroelektronika. 1992. T. 21, vyp. 3. S. 3-13.
18. Nazarov A.N., Lysenko V.S., Gusev V.A., Kilchitskaya V.I. C-V and thermally activated investigation of ZMR SOI meza structures. Proceedings of the 6th International Electrochemical Society Meeting and Symposium on Silicon-on-Insulator Technology and Devices: San Francisco, 1994. Vol. 94-11. P.236-244.
19. Nazarov A. N., Barchuk I. P., and Kilchitskaya V. I. Thermal polarization and depolarization processes in BOX of SOI SIMOX structure. Proceedings of the Seventh International Symposium on Silicon-on-Insulator Technology and Devices / Editors: Hemment P. L.F., Cristoloveanu S., Izumi K., Houston T., Wilson S, ECS Publisher, 1996, Vol. 96-3. P. 302-308.
20. Barchuk I.P., Kilchitskaya V.I., Lysenko V.S., Nazarov A.N., Rudenko T.E., Djurenko S.V., Rudenko A.N., Yurchenko A.P., Ballutaud D., and Colinge J.P. Electrical properties and radiation hardness of SOI systems with multilayer buried dielectric. IEEE Transactions on Nuclear Science. 1997. Vol. 44, № 6. P. 2542-2552.
21. Nazarov A. N., Barchuk I. P., and Kilchytska V. I. Electrical instabilities in silicon-on-insulator structures and devices during voltage and temperature stressing. In: Perspectives, Science and Technology for Novel Silicon on Insulator Devices / Editors: Hemment P.L.F., Lysenko V.S., and Nazarov A.N. NATO Science Series 3: High Technology. Kluwer Academic Publishers, 2000. Vol.73. P. 163–178.
22. Barchuk I., Kilchytska V., Nazarov A. Study of the positive charge buildup into buried oxide of SIMOX SOI structure during bias-temperature stress. Microelectronics Reliability. 2000. Vol. 40, №4-5. P. 811-814.
23. Nicollian E. H., Goetzberger A. MOS conductance technique for measuring surface state parameters. Applied Physics Letters. 1965. Vol. 7. № 8. P. 216-219. DOI: 10.1063/1.1754385
24. Nicollian E. H., Goetzberger A. The Si−SiO2 interface – Electrical properties as determined by the metal–insulator–silicon conductance technique. Bell Syst. Tech. J. 1967. Vol. 46, №6. P. 1055-1133.
25. Lang D. V. Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 1974. Vol. 45, № 7. P. 3023–3032. DOI:10.1063/1.1663719
26. Zerbst M. Relaxation effects at semiconductor-insulator interfaces (in German). Z. Angew. Phys. 1966. Vol. 22, №1. P.30–33.
27. Ouisse T., Cristoloveanu S., Elewa T., Boukriss B., and Chovet A. Interface coupling effects in thin silicon-on-insulator MOSFET’s. Superlattices and Microstructures. 1990. Vol.8, №1. P.111-116. DOI:10.1016/0749-6036(90)90286-G
28. Grove A.S., Fitzgerald A.S. Surface effects on p-n junctions: Characteristics of surface space-charge regions under non-equilibrium condition. Solid-State Electronics. 1966. Vol. 9, № 8. P. 783-806.
29. Rudenko T., Nazarov A., Kilchytska V., Flandre D., Popov V., Ilnitsky M., and Lysenko V. Revision of interface coupling in ultra-thin body silicon-on-insulator MOSFETs. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. Vol. 16, № 3. P. 300-309.
30. Rudenko T., Nazarov A., Kilchytska V., Flandre D. A review of special gate coupling effects in long-channel SOI MOSFETs with lightly doped ultra-thin bodies and their compact analytical modeling. Solid-State Electronics. 2016. Vol. 117, №3. P. 66-76.
31. Koomen J. Investigation of the MOSFET channel conduction in weak inversion. Solid-State Electronics. 1973. Vol. 16, №7. P.801-810. DOI:10.1016/0038-1101(73)90177-9
32. Sodini C. G., Ekstedt T. W., Moll J. L. Charge accumulation and mobility in thin dielectric MOS transistors. Solid-State Electronics. 1982. Vol. 25, №9. P.833-841.
33. Lime F., Guiducci C., Clerc R., Ghibaudo G., Leroux C., Ernst T. Characterization of effective mobility by split C(V) technique in N-MOSFETs with ultra-thin gate dielectrics. Solid-State Electronics. 2003. Vol. 47, №7. P.1147-1153.
34. Rudenko T.E., Rudenko A.N., Lysenko V.S., Limanov A.B., Givargizov E.I. Issledovanie profilej primesi i podvizhnosti v strukturah KNI, poluchennyh lazernoj zonnoj perekristallizaciej. Mikroelektronika. 1993. T. 22, vyp. 1. S. 3-13.
35. Rudenko T. E., Rudenko A. N., Nazarov A. N., Lysenko V. S. Characterization of SOI by capacitance and current measurements with combined gated diode and depletion-mode MOS FET structure. Microelectronic Engineering. 1995. Vol. 28. №1-4. P.475-478.
36. Kjar R.A. and Peel J. Radiation-induced leakage current in n-channel SOS transistors. IEEE Transactions on Nuclear Science. 1974. Vol. NS-21, Dec. P.208–210.
37. Peel J. L., Pancholy R. K., Kuhlmann G. J., Oki T. J., Williams R. A. Investigation of radiation effects and hardening procedures for CMOS/SOS. IEEE Transactions on Nuclear Science. 1975. Vol. N 29, No 6. P. 2185–2189. DOI:10.1109/tns.1975.4328102
38. Davis G.E., Hughes H.L., Kamins T.I. Total dose radiation-bias effects in laser-recrystallized SOI MOSFET’s. IEEE Transactions on Nuclear Science. 1983. Vol.NS-29, №6. P. 1685–1689. DOI:10.1109/TNS.1982.4336429.
39. Nazarov A.N. Problems of radiation hardness of SOI structures and devices. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V. S. and Nazarov A. N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 217-239.
For Chapter 2.3
1. Cristoloveanu S. and Li. S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
2. Lim H. K. and Fossum J. G. Transient drain current and propagation delay in SOI CMOS. IEEE Transactions on Electron Devices. 1984. Vol. 31, № 9. P.1251-1258.
3. Assaderaghi F., Chen J., Solomon R., Chan T.-Y., Ko P.K., Hu C. Transient behavior of subthreshold characteristics of fully depleted SOI MOSFET’s. IEEE Electron Device Letters. 1991. Vol. 12, №10. P. 518-520.
4. Kato K., Wada T., Taniguchi K. Analysis of kink characteristics in silicon-on-insulator MOSFET’s using two-carrier modeling. IEEE Transactions on Electron Devices. 1985. Vol. 32, № 2. P. 458-462.
5. Gautier J., Jenkins K. A., and Sun J. Y. C. Body charge related transient effects in floating body SOI NMOSFET’s. IEDM Technical Digest. 1995. P. 623-626.
6. Wei A., Sherony M. J., Antoniadis D. A. Effect of floating body charge in SOI MOSFET design. IEEE Transactions on Electron Devices. 1998. Vol. 45, № 2. P. 430-438.
7. Ioannou D. E., Cristoloveanu S., Mukherjee M., Mazhari B. Characterization of carrier generation in enhancement-mode SOI MOSFET’s. IEEE Electron Device Letters. 1990. Vol. 11, №9. P. 409-411.
8. Sinha S. P., Zaleski A., and Ioannou D. E. Investigation of carrier generation in fully depleted enhancement and accumulation mode SOI MOSFET’s. IEEE Transactions on Electron Devices. 1994. Vol. 41, № 12. P. 2413-2416.
9. Munteanu D., Weiser D.A., Cristoloveanu S., Faynot O., Pelloie J.-L., and Jerry G. Fossum J. G. Generation/recombination transient effects in SOI transistors: Systematic experiment and simulations. IEEE Transactions on Electron Devices. 1998. Vol. 45, № 8. P.1678-1683.
10. Grove A.S., Fitzgerald D.J. Surface effects on p-n junctions: Characteristics of surface space-charge regions under non-equilibrium condition. Solid-State Electronics. 1966. Vol. 9, № 8. P. 783-806.
11. Rudenko T. E., Rudenko A. N., Lysenko V. S. Electrical properties of ZMR SOI structures: Characterization techniques and experimental results. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V. S. and Nazarov A. N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 169–180. DOI:10.1007/978-94-011-0109-7_16.
12. Rudenko T.E., Rudenko A.N., Lysenko V.S., and Nazarov A.N. Influence of volume inversion effect on reverse and forward currents in SOI gated diodes. Extended Abstracts of the 185th Meeting of the Electrochemical Society, San Francisco, USA. 1994. P. 37.
13. Rudenko T. Evaluation of generation and recombination parameters of SOI MOS structures from gated-diode measurements. Electron Technology. 1999. Vol. 32, №1/2. P. 110-115.
14. Rudenko T. E. and Kilchytska V. I. Modeling and measurements of generation and recombination currents in thin-film SOI gated-diodes. In: Progress in SOI Structures and Devices Operating at Extreme Conditions / Editors: Balestra F., Nazarov A.N., Lysenko V.S. NATO Science Series II. Mathematics, Physics and Chemistry. Kluwer Academic Publishers. 2002. Vol. 58. P. 249-261.
15. Rudenko T. E. Issledovanie generacionnyx xarakteristik metall-oksid-poluprovodnikovyx priborov na osnove struktury kremnij na izolyatore s pomoshh’yu dioda, kontroliruemogo zatvorom. Optoehlektronika i poluprovodnikovaya texnika: nauchn.-texn. sb.: Naukova Dumka, 2003. Vyp. 38. C. 87-97.
16. Rudenko T., Rudenko A., Kilchytska V., Cristoloveanu S., Ernst T., Colinge J.-P., Dessard V., Flandre D. Determination of film and surface recombination in thin-film SOI devices using gated-diode technique. Solid-State Electronics. 2004. Vol. 48, №3. P. 389-399.
17. Rudenko T., Kilchytska V., Flandre D. Characterization of carrier generation in thin-film SOI devices by reverse gated-diode technique and its application at high temperatures. NATO ARW Science and Technology of Semiconductor-on-Insulator Structures and Devices Operating in a Harsh Environment /Editors: Flandre D., Nazarov A. N., Hemment P. L. F.. NATO Science Series II. Mathematics, Physics and Chemistry. Kluwer Academic Publishers, 2005. Vol.185. P. 247-254.
18. Rudenko T., Kilchytska V., Dessard V., Flandre D. A revised reverse gated-diode technique for determining generation parameters in thin-film silicon-on-insulator devices and its application at high temperatures. J. Appl. Phys. 2005. Vol. 97, №5. P. 093718-1-9.
19. Shockley W., Read W.T. Statistics of the recombinations of holes and electrons. Physical Review. 1952. Vol. 87, № 9. P. 835-842.
20. Hall R. N. Electron-hole recombination in germanium. Physical Review. 1952. Vol. 87, № 7. P. 387-392.
21. Ernst T., Cristoloveanu S., Vandooren A., Colinge J.-P., Rudenko T. E., Carrier lifetime extraction in fully-depleted SOI devices. Proceedings of the 1998 IEEE International SOI Conference, October 5-8, 1998, Stuart, Florida, USA. 1998. P. 21-22.
22. Ernst T., Cristoloveanu S., Vandooren A., Rudenko T., Colinge J.-P. Recombination current modeling and carrier lifetime extraction in dual-gate fully-depleted SOI devices. IEEE Transactions on Electron Devices. 1999. Vol. 46, №7. P. 1503-1509.
23. Ernst T., Cristoloveanu S., Vandooren A., Rudenko T., Colinge J.-P. Recombination current in fully-depleted SOI diodes: Compact model and lifetime extraction. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices / Editors: Hemment P. L. F., Lysenko V. S., Nazarov A. N. NATO ASI Series 3: High Technology. Vol.73: Kluwer Academic Publishers, 2000. P. 213-216.
24. Schröder D. K. The concept of generation and recombination lifetimes in semiconductors. IEEE Transactions on Electron Devices. 1982. Vol. 29, № 8. P. 1336-1338.
25. Schröder D. K. Carrier lifetimes in silicon. IEEE Transactions on Electron Devices. 1997. Vol. 44, № 1. P. 160-170.
26. Fleetwood D. M., Thome F. V., Tsao S., Dressendorfer P. V., Dandini, V. J., Schwank, J. R. High temperature Silicon-On-Insulator electronics for space nuclear power: requirements and feasibility. IEEE Transactions on Nuclear Science. 1988. Vol. 35, №5. P. 1099-1112.
27. Flandre D. Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits. Materials Science and Engineering. 1995. Vol. 29, №1-3. P.7-12.
28. Colinge J. P. SOI CMOS for high temperature applications. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices / Editors:. Hemment P. L. F, Lysenko V. S. and Nazarov A. N. NATO Science Series 3. High Technology. Springer, Dordrecht,. Kluwer Academic Publishers. 2000. Vol. 73. P. 249-256.
29. Pierret R. F. The gate-controlled diode s0 measurement and steady-state lateral current flow in deeply depleted MOS structures. Solid-State Electronics. 1974. Vol. 17, № 12. P. 1257-1269.
For Part 3
For Chapter 3.1
1. International Technology Roadmap for Semiconductors (ITRS), 2001 Edition. Emerging Research Devices. 2001. P. 29-40.
2. Wong H.-S., Frank D., Solomon P. Device design considerations for double-gate, ground-plane, and single-gate ultra-thin SOI MOSFETs at the 25 nm channel length. IEDM Technical Digest. 1998. P. 407-410.
3. Suzuki S., Ishii K., Kanemaru S., Maeda T., Tsutsumi T., Sekiwaga T., Nagai K., and Hiroshima H. Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Transactions on Electron Devices. 2000. Vol. 47, №2. P. 354-359.
4. Choi Y.K., Asano K., Lindert N., Subramanian V., Tsu-Jae King Y.-Y., Bokor J., and Hu C. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Letters. 2000. Vol. 21, № 5. P. 254 – 255.
5. Doris B., Ieong M., Kanarsky T. Zhang Y., Ronnen A. Roy R.A., Dokumaci O., Ren Z., Jamin F. F., Shi L., Natzle W., Huang H.-J., Mezzapelle J., Mocuta A., Womack S., Gribelyuk M., Jones E. C., Miller R.J., Wong H-S. P., Haensch W. Extreme scaling with ultra-thin Si channel MOSFETs. IEDM Technical Digest. 2002. P. 267-270.
6. Chang L., Choi Y.-K., Ha D., Ranade P., Xiong S., Bokor J., Hu S., King T.-J. Extremely scaled silicon nano-CMOS devices. Proceedings of the IEEE. 2003. Vol. 91, №11. P. 1860-1873.
7. Fenouillet-Beranger C., Skotnicki T., Monfray S., Carriere N., Boeuf F. Requirements for ultra-thin-film devices and new materials for the CMOS roadmap. Solid-State Electronics. 2004. Vol. 48, №6. P. 961-967.
8. Zaslavsky A, Aydin C, Luryi S, Cristoloveanu S, Mariolle D, Fraboulet D, et al. Ultrathin silicon-on-insulator vertical tunneling transistor. Appl. Phys. Lett. – 2003. Vol. 83. – 1653–5.
9. Luryi S., Zaslavsky A. Blue sky in SOI: new opportunities for quantum and hot-electron devices. Solid-State Electronics. 2004. Vol. 48, №6. P.877–885.
10. Ouisse T. Self-consistent quantum-mechanical calculations in ultrathin siilicon-on-insulator structures. J. Appl. Phys. 1994. Vol.76, №10. P. 5989-5995.
11. Pretet S., Ohata A., Dieudonne F., Allibert F., Bresson N., Matsumoto T., Poiroux T., Jomaah J., and Cristoloveanu S. Scaling issues for advanced SOI devices: gate oxide tunnelling, thin buried oxide, and ultra-thin films. Electrochem. Soc. Proceedings. 2003. Vol. 2. P. 476-487.
12. Yang Y., Vieri C., Chandrakasan A., Antoniadis A. Back-gated CMOS on SOIAS for dynamic threshold voltage control. IEEE Transactions on Electron Devices. 1997. Vol. 44, №5. P. 822-831.
13. Hiramoto T. Low power and low voltage MOSFETs with variable threshold voltage controlled by back-bias. IEICE Transactions on Electronics. 2000. Vol. E83-C, №2. P. 161-169.
14. Tsuchiya R., Horiuchi M., Kimura S., Yamaoka M., Kawahara T., Maegawa S., Ipposhi T., Ohji Y., and Matsuoka H. A new paradigm of the MOSFET for low-power and high-performance applications featuring wide-range back-bias control. IEDM Technical Digest. 2004. P. 631-634.
15. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Academic Publishers, 2004. 384 p.
16. Cristoloveanu S., Li. S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
17. Whitfield J., Thomas S. An electrical method to measure SOI film thickness. IEEE Electron Device Letters. 1986. Vol. 7, №6. P.347-349.
18. Rudenko T.E., Rudenko A.N., Nazarov A.N., Lysenko V.S., Kilchitskaya V.I. Elektrofizicheskie svojstva ZMR KNI-struktur: metody issledovaniya i eksperimental’nye rezul’taty. Mikroelektronika. 1994. T. 23, vyp. 6. S.18-31.
19. Rudenko T. E., Rudenko A. N., Lysenko V. S. Electrical properties of ZMR SOI structures: Characterization techniques and experimental results. In: Physical and Technical Problems of SOI Structures and Devices / Editors: Colinge J.-P., Lysenko V. S. and Nazarov A. N.: NATO ASI Series 3. Springer, Dordrecht, 1995. Vol. 4. P. 169–180. DOI:10.1007/978-94-011-0109-7_16.
20. Ahn J.-H., Choi S.-J., Han J.-W., Park T. J., Lee S. Y., Choi Y.-K. Double-gate nanowire field effect transistor for a biosensor. Nano Letters. 2010. Vol. 10, №8. P. 2934-2938.
21. Passi V., Ravaux F., Dubois E., Clavaguera S., Carella A., Celle C., Simonato J.-P., Silvestri L., Reggiani S., Vuillaume D., and Raskin J.-P. High gain and fast detection of warfare agents using back-gated silicon nanowired MOSFETs. IEEE Electron Device Letters. 2011. Vol. 10, №7. P. 976-978.
22. Lim H. K., and Fossum J. G. Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Transactions on Electron Devices. 1983. Vol. 30, №10. P. 1244-1251.
23. Poiroux T., Widiez J., Lolivier J., Vinet M., Cassé M., Prévitali B., Deleonibus S. New and accurate method for electrical extraction of silicon film thickness on fully-depleted SOI and double-gate transistors. Proceedings of the IEEE International SOI Conference. 2004. P. 73-74.
24. Ohata A., Cristoloveanu S., Vandooren A., Cassé M. and Daugé F. Coupling effect between the front and back interfaces in thin SOI MOSFETs. Microelectronic Engineering. 2005. Vol. 80, №7. P. 245-248.
25. Eminente S., Cristoloveanu S., Clerc R., Ohata A., Ghibaudo G. Ultra-thin fully depleted SOI MOSFETs: special charge properties and coupling effects. Solid-State Electronics. 2007. Vol. 51, №2. P. 239-244.
26. Trivedi V.P., Fossum J.G., Zhang W. Threshold voltage and bulk inversion effects in nonclassical CMOS devices with undoped ultra-thin bodies. Solid-State Electronics. 2007. Vol. 51, №1. P.170-178.
27. Rudenko T., Kilchytska V., Raskin J.–P., Nazarov A., Flandre D. Special features of the back-gate effects in ultra-thin body SOI MOSFETs. In: Semiconductor-On-Insulator Materials for Nanoelectronics Applications / Editors: Nazarov A. N., Colinge J.-P., Balestra F., Raskin J.-P, Gamiz F., Lysenko V. S.. Dordrecht: Springer, 2011. P. 323-339.
28. Schred Simulation Tool [Online]. Available: http:// nanohub.org
29. Lee С. T., Young K. Submicrometer near-intrinsic thin-film SO1 complementary MOSFET’s. IEEE Transactions on Electron Devices. 1989. Vol. 36, № 12. P. 2537-2547.
30. Mazhari B., Ioannou D. E. Surface potential at threshold in thin-film SOI MOSFETs. IEEE Transactions on Electron Devices. 1993. Vol. 40, № 6. P. 1129-1133.
31. Shih C.-H., Wang J.-S. Threshold voltage of ultrathin gate-insulator MOSFETs. IEEE Electron Device Letters. 2009. Vol. 30, № 3. P. 278-281.
32. Garcıa Sanchez F. J., Ortiz-Conde A., Muci J. Understanding threshold voltage in undoped-body MOSFETs: An appraisal of various criteria. Microelectronics Reliability. 2006. Vol. 46. P. 731-742.
33. Krutsick T. J., White M. H., Wong H.-S., Booth R.V.H. An improved model of MOSFET modeling and parameter extraction. IEEE Transactions on Electron Devices. 1987. Vol. 43, №8. P. 1676-1680.
34. Rudenko T., Rudenko A., Kilchytska V., Md Arshad M.K. , Raskin J.–P., Nazarov A., and Flandre D. Impact of mobility variation on threshold voltage extraction by transconductance change and gm/Id methods in advanced SOI MOSFETs. Proceedings of the Seventh Workshop of the Thematic Network on Silicon on Insulator Technology EuroSOI 2011, Granada, Spain, January 17-19, 2011. P. 25-26.
35. Rudenko T., Kilchytska V., Md Arshad M.K., Raskin J.–P., Nazarov A., Flandre D. On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part I – Effect of gate-voltage-dependent mobility. IEEE Transactions on Electron Devices. 2011. Vol. 58, №12. P. 4172-4179.
36. Rudenko T., Kilchytska V., Burignat S., Raskin J.–P., Andrieu F., Faynot O., Nazarov A., and Flandre D. Transconductance and mobility behaviors in UTB SOI MOSFETs with standard and thin BOX. Proceedings of the Fifth Workshop of the Thematic Network on Silicon on Insulator Technology EuroSOI 2009, Göteborg, Sweden, 2009. – P.111-112.
37. Rudenko T., Kilchytska V., Burignat S., Raskin J.–P., Andrieu F., Faynot O., Le Tiec Y, Landry K., Nazarov A., Lysenko V. S. and Flandre D. Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides. Solid-State Electronics. 2010. Vol. 54, №2. P. 164-170.
38. Rudenko T., Nazarov A., Kilchytska V., Flandre D., Popov V., Ilnitsky M., and Lysenko V. Revision of interface coupling in ultra-thin body silicon-on-insulator MOSFETs. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2013. Vol. 16, № 3. P. 300-309.
39. Rudenko T., Nazarov A., Kilchytska V., Flandre D. A review of special gate coupling effects in long-channel SOI MOSFETs with lightly doped ultra-thin bodies and their compact analytical modeling. Solid-State Electronics. 2016. Vol. 117, №3. P. 66-76.
40. Omura Y., Horiguchi S., Tabe M., Kishi K. Quantum-mechanical effects on the threshold voltage of ultrathin-SOI n MOSFETs. IEEE Electron Device Letters. 1993. Vol. 14, № 12. P. 569-571.
41. Park C.-K., Lee C.-Y., Lee K., Moon B.-Y., Byun Y. H., and Michael Shur M. A unified current-voltage model for long-channel MOSFETs. IEEE Transactions on Electron Devices. 1991. Vol. 38, № 2. P. 399-406.
42. Zi S. Fizika poluprovodnikovyh priborov. T. 2. Moskva: «Mir», 1984. 455 s.
43. Maler R., Kejmins T. Elementy integral’nyh shem. Moskva: «Mir», 1989. 630 s.
44. Stern F. Self-consistent results for n-type Si inversion layers. Physical Review B. 1972. Vol. 5, №12. P. 4891-4899.
45. Choi J. H., Park Y., and Min H. Electron mobility behavior in extremely thin SOI MOSFET’s. IEEE Electron Device Letters. 1995. Vol. 18, № 11. P. 527-529.
46. Esseni D., Mastrapasqua M., Celler G.K., Fiegna C., Selmi L., and Sangiorgi E. Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicron technology application. IEEE Transactions on Electron Devices. 2001. Vol. 48, №12. P. 2842-2850.
47. Gámiz F., López-Villanueva J. A., Roldán J. B., Carceller J. E., and Cartujo P. Monte Carlo simulation of electron transport properties in extremely thin SOI MOSFET’s. IEEE Transactions on Electron Devices. 1998. Vol. 45, № 5. P.1122-1126.
48. Shoji M. and Horiguchi S. Phononlimited inversion layer electron mobility in extremely thin Si layer of silicon-on-insulator metal–oxide–semiconductor field-effect transistor. J. Appl. Phys. 1997. Vol. 82, №12. P. 6096-6101.
49. Gámiz F., López-Villanueva J.A., Roldán J.B. Phonon-limited electron mobility in ultrathin silicon-on-insulator inversion layers. J. Appl. Phys. 1998. Vol. 83, № 9. P. 4802-4806.
50. Gámiz F., Roldán J. B., Cartujo-Cassinello P. Electron mobility in extremely thin single-gate silicon-on-insulator inversion layers. J. Appl. Phys. 1999. Vol. 86, № 11. P. 6269-6275.
51. Gámiz F., Roldán J. B., López-Villanueva J. A., Cartujo-Cassinello P., and Carceller J. E. Surface roughness at the Si–SiO2 interfaces in fully depleted silicon-on-insulator inversion layers. J. Appl. Phys. 1999. Vol. 86, №12. P. 6854-6863.
52. Uchida K., Koga J., and Takagi S. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs − Coulomb scattering, volume inversion, and δTSOI-induced scattering. IEDM Technical Digest. 2003. P. 805-808.
53. Esseni D., Mastrapasqua M., Fiegna C., Celler G. K., Selmi L. and Sangiorgi E. An experimental study of low field electron mobility in double-gate, ultra-thin SOI MOSFETs. IEDM Technical Digest. 2001. P. 445-448.
54. Esseni D. Study of low field electron transport in ultrathin single and double gate SOI MOSFETs. IEDM Technical Digest. 2002. P. 719-722.
55. Esseni D., Mastrapasqua M., Celler G. K., Fiegna C., Selmi L., Sangiorgi E. An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode. IEEE Transactions on Electron Devices. 2003. Vol. 50, №3. P. 802-808.
56. Gámiz F., Roldán J. B., López-Villanueva J. A., Jimenez-Molinos F., Carceller J. E. Electron transport in ultrathin double-gate SOI devices. Microelectronic Engineering. 2001. Vol. 59. P. 423-427.
57. Gámiz F., Fischetti M. V. Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion. J. Appl. Phys. 2001. Vol.89, № 10. P. 5478-5487.
58. Koga J., Takagi Shin-ichi, and Toriumi A. Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs. IEEE Transactions on Electron Devices. 2002. Vol. 49, № 6. P. 1042-1048.
59. Takagi S., Koga J., and Toriumi A. Mobility enhancement of SOI MOSFETs due to subband modulation in ultrathin SOI films. Japanese Journal of Applied Physics. 1998. Vol. 37, № 3. P. 1289-1294.
60. Donetti L., Gámiz F., Rodriguez N., Jimenez F., and Sampedro C. Influence of acoustic phonon confinement on electron mobility in ultrathin silicon on insulator layers. Applied Physics Letters. 2006. Vol. 88, №12. P. 122108-1-3.
61. Esseni D., Abramo A., Selmi L., Sangiorgi E. Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs. IEEE Transactions on Electron Devices. 2003. Vol. 50, №12. P. 2445-2455.
62. Shoji M., Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on-insulator Si inversion. J. Appl. Phys. 1999. Vol. 85, №5. P. 2722-2731.
63. Gámiz F., Roldán J. B., Cartujo-Cassinello P., López-Villanueva J. A., and Cartujo P. Role of surface-roughness scattering in double gate silicon-on-insulator inversion layers. J. Appl. Phys. 2001. Vol. 89, №12. P.1764-1770.
64. Ohata A., Cristoloveanu S., Cassé M. Mobility comparison between front and back channels in ultrathin silicon-on-insulator metal-oxide-semiconductor field-effect transistors by the front-gate split capacitancevoltage method. Applied Physics Letters. 2006. Vol. 89, №3. P. 032104.
65. Ohata A., Cassé M., Cristoloveanu S. Front- and back-channel mobility in ultrathin SOI-MOSFETs by front-gate split CV method. Solid-State Electronics. 2007. Vol. 51, №2. P. 245-251.
66. Ernst T., Cristoloveanu S., Ghibaudo G., Ouisse T., Horiguchi S., Ono Y., Yasuo Takahashi Y., and Murase K. Ultimately thin double-gate SOI MOSFETs. IEEE Transactions on Electron Devices. 2003. Vol. 50, № 3. P. 830-838.
67. Sodini C. G., Ekstedt T. W., Moll J. L. Charge accumulation and mobility in thin dielectric MOS transistors. Solid-State Electronics. 1982. Vol. 25, №9. P. 833-841.
68. Lime F., Guiducci C., Clerc R., Ghibaudo G., Leroux C., Ernst T. Characterization of effective mobility by split C(V) technique in N-MOSFETs with ultra-thin gate dielectrics. Solid-State Electronics. 2003. Vol. 47, №7. P. 1147-1153.
69. Chau R., Datta S., Doczy M., Doyle B., Kavalieros J., Metz M. High-k / metal–gate stack and its MOSFET characteristics. IEEE Electron Device Letters. 2004. Vol. 25, №6. P. 408-410.
70. Kotlyar R., Giles M. D., Matagne P., Obradovic B., Shifren L., Stettler M., Wang E. Inversion mobility and gate leakage in high-k/metal gate MOSFETs. IEDM Technical Digest. 2004. P. 391-394.
71. Han J.-P., Ma T. P. Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics. IEEE Transactions on Electron Devices. 2004. Vol. 51, № 1. P. 98-105.
72. Majkusiak B., Badri M.H. Semiconductor thickness and back-gate voltage effects on the gate tunneling current in the MOS/SOI system with ultrathin oxide. IEEE Transactions on Electron Devices. 2000. Vol. 47, №12. P. 2347-2351.
For Chapter 3.2
1. Hisamoto D., Kaga T., Kawamoto Y., Takeda E. A fully depleted lean-channel transistor (DELTA) – A novel vertical ultra thin SOI MOSFET. IEDM Technical Digest. 1989. P. 833-836.
2. Huang X., Lee W.-C, Kuo C., Hisamoto D., Chang L., Jakub Kedzierski J., Anderson E., Takeuchi H., Choi Y.-K., Asano K., Vivek Subramanian V., King T.-J., Bokor J. and Hu C. Sub 50-nm FinFET: PMOS. IEDM Technical Digest. 1999. P. 67-70.
3. Hisamoto D., Lee W.-C., Kedzierski J., Takeuchi H., Asano K., Kuo C.,. Anderson E., King T.-J., Bokor J., Hu C. FinFET – A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices. 2000. Vol. 47, №12. P. 2320-2325.
4. Huang X., Lee W.-C., Kuo C., Hisamoto D., Chang L., Kedzierski J., Anderson E., Takeuchi H., Choi Y.-K., Asano K., Subramanian V., Tsu-Jae King,T.-J., Jeffrey Bokor J., Chenming Hu C. Sub-50 nm P-channel FinFET. IEEE Transactions on Electron Devices. 2001. Vol. 48, № 5. P. 880-886.
5. Yang F.-L., Chen H.-Y., Chen F.-C., Chan Y.-L., Yang K.-N., Chen C.-J., Tao H.-J., Choi Y.-K., M Liang M.-S., and Hu C. 35 nm CMOS FinFETs. Symposium on VLSI Technology Technical Digest. 2002. P. 104-105. DOI: 10.1109/VLSIT.2002.1015409
6. Choi Y.-K., Lindert N., Xuan P., Tang S., Ha D., Erik Anderson E., King T.-J., Bokor J., and Hu C. Sub-20nm CMOS FinFET Technologies. IEDM Technical Digest. 2001. P. 421-424.
7. Park J.-T., Colinge J.-P. Multi-gate SOI MOSFETs: Device design guidelines. IEEE Transactions on Electron Devices. 2002. Vol. 49, №12. P. 2222-2229.
8. Colinge J.-P. Multiple-gate SOI MOSFETs. Solid-State Electronics. 2004. Vol.48, №6. P. 897-905.
9. Yu B., Chang L., Ahmed S., Wang H., Bell S., Yang C.-Y., Tabery C., Ho C., Xiang O., Qi Tsu-Jae King Oi T.-J., Bokor J., Hu C., Lin M.-R., Kyser D. FinFET scaling to 10 nm gate length. IEDM Technical Digest. 2002. P. 251-254.
10. Choi Y.-K. FinFET for Terabit era. Journal of Semiconductor Technology and Science. 2004. Vol. 4, №1. P.1-11.
11. FinFETs and Other Multi-Gate Transistors / Editor: J.-P. Colinge: Springer. 2007. 350 p.
12. F.-L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, Huang C.-C., Chung T.-X., Chen H.-W., Huang C.-C., Liu Y.-H., Wu C.-C., Chen C.-C., Chen S.-C., Chen Y.-T., Chen Y.-H., Chen C., Chan B.-W., Hsu P.-F., Shieh J.-H., Tao H.-J., Yeo Y.-C., Li Y., Lee lam-Wem, Chen P., Mong-Song Liang V.-S., and Hu C.5 nm-gate nanowire FinFET. VLSI Symposium Technology Digest of Technical Papers, 2004. P. 196–197. DOI: 10.1109/VLSIT.2004.1345476
13. Wu S.-Y., Lin C.Y., Chiang M.C., Liaw J.J., Cheng J.Y., Yang S.H., Tsai C.H., Chen P.N., Miyashita T., Chang C.H., Chang V.S., Pan K.H., Chen J.H., Mor Y.S., Lai K.T., Liang C.S., Chen H.F., Chang S.Y., Lin C.J., Hsieh C.H., Tsui R.F., Yao C.H., Chen C.C., Chen R., Lee C.H., Lin H.J., Chang C.W., Chen K.W., Tsai M.H., Chen K.S., Ku Y., Jang S. M. A 7 nm CMOS platform technology featuring 4th generation FinFET transistors with a 0.027 μm2 high density 6-T SRAM cell for mobile SoC applications. IEDM Technical Digest. 2016. P. 2–6. DOI: 10.1109/IEDM.2016.7838333
14. Zhang S. Review of Modern Field Effect Transistor Technologies for Scaling. Journal of Physics: Conference Series, 2020. 1617(1):012054. DOI:10.1088/1742-6596/1617/1/012054.
15. Das U. K. and Bhattacharyya T. K. Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET. IEEE Transactions on Electron Devices. 2020. Vol. 67, №8. P.1-6. DOI:10.1109/TED.2020.2987139
16. Park J. T., Colinge J.-P., Diaz C. H. Pi-gate SOI MOSFET. IEEE Electron Device Letters. 2001. Vol. 22, №8. P. 405-407.
17. Daugé F., Pretet J., Cristoloveanu S., Vandooren A., Mathew L., Jomaah J., and Nguyen B.-Y. Coupling effects and channel separation in FinFETs. Solid-State Electronics. 2004. Vol. 48, №4. P. 535-542.
18. Rudenko T., Collaert N., De Gendt S., Kilchytska V., Jurczak M., and Flandre D. Effective mobility in FinFET structures with HfO2 and SiON gate dielectrics and TaN gate electrode. Microelectronic Engineering. 2005. Vol. 80. P. 386-389.
19. Rudenko T., Kilchytska V., Collaert N., De Gendt S., Rooyackers R., Jurczak M., and Flandre D. Specific features of the capacitance and mobility behaviors in FinFET structures. Proceedings of ESSDERC 2005 35th European Solid-State Device Research Conference, Grenoble, France, 2005 / Editors: Ghibaudo G., Cristoloveanu S., Skotnicki T., Brillouët M., 2005. P. 85-88.
20. Chowdhury M. M. and Fossum J.G. Physical insights on electron mobility in contemporary FinFETs. IEEE Electron Device Letters. 2006. Vol. 27, №6. P.482-485.
21. Landgraf E., Rösner W., Städele M., Dreeskornfeld L., Hartwich J., Hofmann F., Kretz J., Lutz T., Luyken R. J., Schulz T., Specht M., and Risch L. Influence of crystal orientation and body doping on trigate transistor performance. Solid- State Electronics. 2006. Vol. 50, №1. P. 38-43.
22. Iyenggar V.V., Kottantharayil A., Tranjan F.M., Jurczak M., and K. De Meyer. Extraction of the top and sidewall mobility in FinFETs and the impact of fin-patterning processes and gate dielectrics on mobility. IEEE Transactons on Electron Devices. 2007. Vol. 54, №5. P. 1177-1184.
23. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D. Electrical characterization and special properties of FinFET structures. In: Nanoscaled Semiconductor-on-Insulator Structures and Devices / Editors: Hall S., Nazarov A. N., Lysenko V. S. Dordrecht: Springer, 2007. P. 199-220.
24. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D. Experimental study of the effective mobility in doped- and undoped-channel triple-gate FinFET structures. Proceedings of the Third Workshop of the Thematic Network on Silicon on Insulator Technology EuroSOI 2007, Leuven, Belgium, 25-26 January, 2007. P. 34-35.
25. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Lysenko V., Flandre D. Electrical properties of FinFET structures. Sensor Electronics and Microsystem Technologies. 2007. №3. P. 13-18.
26. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D. Carrier mobility in undoped triple-gate FinFET structures and limitations of its description in terms of top and sidewall channel mobilities. IEEE Transactions on Electron Devices. 2008. Vol. 55, №12. P. 2567-2577.
27. Sato T. Effects of crystallographic orientation on mobility, surface state density, and noise in p-type inversion layers on oxidized silicon surfaces / T. Sato, Y. Takeishi, H. Hara. Japanese Journal of Applied Physics. 1969. Vol. 8, №5. P. 588-598.
28. Colman D., R. Bate T., Mize J. P. Mobility anisotropy and piezoresistance in silicon p-type inversion layers. Journal of Applied Physics. 1968. Vol. 39, №4. P.1923-1931.
29. Sato T., Takeishi Y., Hara H. Mobility anisotropy of electrons in inversion layers on oxidized silicon surfaces. Physical Review B. 1971. Vol. 4, №6. P.1950-1960.
30. Kotthaus J. P., Ranvaud R. Cyclotron resonance of holes in surface space charge layers on Si. Physical Review B. 1977. Vol.15, №12. P.5758-5762.
31. Ando T., Fauler A., Stern F. Elektronnye svojstva dvumernyh sistem. Moskva: «Mir», 1985. 415 s.
32. Takagi S., Toriumi A., Iwase M., Tango H. On the universality of inversion layer mobility in Si MOSFETs: Part II – Effects of surface orientation. IEEE Transactions on Electron Devices. 1994. Vol. 41, №12. P. 2363–2368.
33. Koomen J. Investigation of the MOSFET channel conduction in weak inversion. Solid-State Electronics. 1973. Vol. 16, № 7. P. 801-810.
34. Kim S.-H., Fossum J.G. Bulk inversion in FinFETs and implied insights on the effective gate width. IEEE Transactions on Electron Devices. 2005. Vol.52, №9. P. 1993-1997.
35. Lime F. Characterization of effective mobility by split C(V) technique in N-MOSFETs with ultra-thin gate dielectrics. Solid-State Electronics. 2003. Vol.47, №7. P.1147-1153.
36. Henson K., Collaert N., Demand M., Goodwin M., Brus S., Rooyackers R., van Ammel A., Degroote B., Ercken M., Baerts C., Anil K.G., Dixit A., Beckx S., Schram T., Deweerd, W. Boullart W., Schaekers M., De Gendt S., De Meyer K., Yim Y., Hooker J.C., Jurczak M., Biesemans S. NMOS and PMOS triple gate devices with mid-gap metal gate on oxynitride and Hf based gate dielectrics. In: Proceedings of the 2005 International Symposium on VLSI Technology, Systems and Applications (2005 VLSI-TSA). 2005. P. 136-137. K.
37. Fossum J. G., Yang I.-W., Trivedi V. P. Suppression of corner effects in triple-gate MOSFETs. IEEE Electron Device Letters. 2003. Vol.24, №12. P.745-747.
38. Momose H. S., Ohguro T., Nakamura S., Toyoshima Y., Ishiuchi H., and Iwai H. Ultra-thin gate oxide CMOS on (111) surface oriented Si substrate. IEEE Transactions on Electron Devices. 2002. Vol. 49, №9. P. 1597-1605.
39. Ge L. and Fossum J. Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs. IEEE Transactions on Electron Devices. 2002. Vol. 49, №2. P. 287-293.
40. Gámiz F. and Fischetti M. V. Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion. J. Appl. Phys. 2001. Vol. 89, № 10. P. 5478-5487.
41. Shoji M. and Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on-insulator Si inversion. J. Appl. Phys. 1999. – Vol. 85, №5. P. 2722-2731.
42. Gámiz F., Roldán J. B., Cartujo-Cassinello P., López-Villanueva J. A., and Cartujo P. Role of surface-roughness scattering in double gate silicon-on-insulator inversion layers. J. Appl. Phys. 2001. Vol. 89, №12. P.1764-1770.
43. Esseni D., Abramo A., Selmi L., Sangiorgi E. Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs. IEEE Transactions on Electron Devices. 2003. Vol. 50, №12. P. 2445-2455.
44. Landgraf E., Kretz J., Lutz T., Rösner W., Städele M., Dreeskornfeld L., Hartwich J., Hofmann F., Kretz J., Lutz T., Luyken R.J., Schulz T., Specht M., Risch L. Influence of crystal orientation and body doping on trigate transistor performance. Solid-State Electronics. 2006. Vol. 50, №1. P. 38-43.
45. Rudenko T., Nazarov A., Ferain I., Das S., Yu R., Barraud S., Razavi P. Mobility enhancement effect in heavily-doped junctionless nanowire silicon-on-insulator metal-oxide-semiconductor field-effect transistors. Applied Physics Letters. 2012. Vol. 101. P. 213502-1-4.
46. Rudenko T., Nazarov A., Yu R., Barraud S., Cherkaoui K., Razavi P., and Fagas G. Electron mobility in heavily doped junctionless nanowire SOI MOSFETs. Microelectronic Engineering. 2013. Vol. 109. P. 326-329.
47. Rudenko T., Yu R., Barraud S., Cherkaoui K., Razavi P., Fagas G., and Nazarov A.N. On the mobility behavior in highly doped junctionless nanowire SOI MOSFETs. Advanced Materials Research. 2014. Vol. 854. P. 35-43.
48. Rudenko T., Barraud S., Georgiyev Y., Lysenko V., Nazarov A. Electrical characterization and parameter extraction of junctionless nanowire transistors. Journal of Nano Research. 2016. Vol. 39. P. 17-33.
49. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Academic Publishers, 2004. 384 p.
50. Cristoloveanu S., Li. S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
51. Lim H.K. and Fossum J.G. Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Electron Device Letters. 1983. Vol. 30, №10. P. 1244-1251.
52. Ritzenthaler R., S. Cristoloveanu, Faynot O., Jahan C., Kuriyama A., Brevard L., Deleonibus S. Lateral coupling and immunity to substrate effect in FET devices. Solid-State Electronics. 2006. Vol. 50, №4. P. 558-565.
53. Cristoloveanu S. Review of radiation effects in single- and multiple-gate SOI MOSFETs. Science and Technology of Semiconductor-on-Insulator Structures and Devices Operating in a Harsh Environment: NATO Science Series, vol.-185. Boston. MA: Kluwer. 2005. P.197-214.
54. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D.Substrate bias effect linked to parasitic series resistance in multiple-gate SOI MOSFETs. IEEE Electron Device Letters. 2007. Vol. 28, №9. P. 834-836.
55. K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo. Improved split C–V method for effective mobility extraction in sub-0.1-μm Si MOSFETs. IEEE Electron Device Letters. 2004. Vol. 25, № 8. P. 583–585.
56. Quisse T., Cristoloveanu S., Borel G. Influence of series resistances and interface coupling on the transconductance of fully-depleted silicon-on-insulator MOSFETs. Solid-State Electronics. 1992. Vol.35, №2. P.141-149.
57. Nicolett A. S., A. S., Martino J.A., Simoen E., Claeys C. Back gate voltage influence on the LDD SOI nMOSFETs: series resistance extraction from 150 to 300 K. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices / Editors: Peter L.F. Hemment, V.S. Lysenko and A.N. Nazarov: NATO Science Series 3. High Technology. Vol. 73. Springer. 2000. P. 187–193.
58. Vandooren A., Cristoloveanu S., Mojarradi M., Kolawa E. Back-gate and series resistance effects in LDMOSFETs on SOI. IEEE Transactions on Electron Devices. 2001. Vol. 48, №9. P. 2410-2416.
59. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D. Evidence for substrate bias effects in SOI Omega-FETs. Proceedings of the EUROSOI 2008 Conference, 2008, Cork, Ireland. P. 137-138.
60. Lederer D., Kilchytska V., Rudenko T., Collaert N., Flandre D., Dixit A., De Meyer K., Raskin J.-P. FinFET analogue characterization from DC to 110 GHz. Solid-State Electronics. 2005. Vol. 49, №9. P. 1488-1496..
61. Chang L., Yang K. J., Yeo Y.-C., Choi Y.-K., King T.-J., and Hu C. Reduction of direct- tunneling gate leakage current in double-gate and ultra-thin body MOSFETs. IEDM Technical Digest. 2001. P. 99-102.
62. Chang L., Yang K. J., Yeo Y.-C., Polishchuk I., King T.-J., Hu C. Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs. IEEE Transactions on Electron Devices. 2002. Vol. 49, №12. P. 2288-2295.
63. Mukhopadhyay S., Kim K., Chuang C.T. Modeling and analysis of leakage currents in double-gate technologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006. Vol.10. P. 2052-2061.
64. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D. Experimental evidence for reduction of gate tunneling current in FinFET structures and its dependence on the fin width. Proceedings of the 36-th European Solid-State Device Research Conference, ESSDERC 2006: Montreux, Switzerland, 19-21 Sept, 2006. P. 375-378.
65. Rudenko T., Kilchytska V., Collaert N., Jurczak M., Nazarov A., Flandre D. Reduction of gate-to-channel tunnelling current in FinFET structures. Solid-State Electronics. 2007. Vol. 51, №11-12. P. 1467-1473.
For Chapter 3.3
1. Chang L., Choi Y.-K., Ha D., Ranade P., Xiong S., Bokor J., Hu S., King T.-J. Extremely scaled silicon nano-CMOS devices. Proceedings of the IEEE. 2003. Vol. 91, №11. P. 1860-1873.
2. Suzuki S., Ishii K., Kanemaru S., Maeda T., Tsutsumi T., Sekiwaga T., Nagai K., and Hiroshima H. Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Transactions on Electron Devices. 2000. Vol. 47. №2. P.354-359.
3. Choi Y.K., Asano K., Lindert N., Subramanian V., King T.-Y., Bokor J., Hu C. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Letters. 2000. Vol. 21, № 5. P. 254 – 255.
4. Doris B., Ieong M., Kanarsky T., Zhang Y., Roy R. A., Dokumaci O., Ren Z., Jamin F.-F., Shi L., Natzle W., Huang H.-J., Mezzapelle J., Mocuta A., Womack S., Gribelyuk M., Jones E. C., Miller R.J., Wong H-S P., Haensch W. Extreme scaling with ultra-thin Si channel MOSFETs. IEDM Technical Digest. 2002. P. 267-270.
5. Hisamoto D., Lee W.-C., Kedzierski J., Takeuchi H., Asano K., Kuo C., Anderson E., King T.-J., Bokor J., and Hu C. FinFET – A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices. 2000. Vol. 47, №12. P. 2320-2325.
6. Yu B., Chang L., Ahmed S., Wang H., Bell S., Yang C.-Y., Tabery C., Ho C., Xiang O., Qi Tsu-Jae King Oi T.-J., Bokor J., Hu C., Lin M.-R., Kyser D. FinFET scaling to 10 nm gate length. IEDM Technical Digest. 2002. P. 251-254.
7. Park J.-T., Colinge J.-P. Multi-gate SOI MOSFETs: Device design guidelines. IEEE Transactions on Electron Devices. 2002. Vol. 49, №12. P. 2222-2229.
8. FinFETs and Other Multi-Gate Transistors / Editor: J.-P. Colinge: Springer. 2007, 350 p.
9. Lee C.-W., Afzalian A., Akhavan N. D., Yan R., Ferain I., and Colinge J.-P. Junctionless multigate field-effect transistor. Applied Physics Letters. 2009. Vol.5, №5. P. 053511-1–053511-2. DOI: 10.1063/1.3079411
10. Colinge J-.P., Lee C. W., Afzalian A., Akhavan N. D., Yan R., Ferain I., Razavi P., O’Neill B., Blake B., White M., Kelleher A.-M., McCarthy B., Murphy R. Nanowire transistors without junctions. Nature Nanotechnology. 2010. Vol. 5, №3. P. 225-229. DOI: 10.1038/NNANO.2010.15
11. Lilienfeld J. E. Method and apparatus for controlling electric current. US patent 1745175 (1925).
12. Lilienfeld J. E. Device for controlling electric current. US patent 1900018 (1928).
13. ShanY., Ashok S., and Fonash S. J. Unipolar accumulation-type transistor configuration implemented using Si nanowires. Applied Physics Letters. 2007. Vol. 91, №9. P.093518-1-3.
14. Lee C.-W., Ferain I., Afzalian A., Yan R., Akhavan N. D., Razavi P., and Colinge J.-P. Performance estimation of junctionless multigate transistors. Solid-State Electronics. 2010. Vol. 54. P. 97-103.
15. Kranti A., Yan R., Lee C.W., Ferain I., Yu R., Dehdashti Akhavan N., Razavi P., Colinge J.P. Junctionless nanowire transistor (JNT): Properties and design guidelines. 2010 Proceedings of the European Solid-State Device Research Conference (ESSDERC 2010), Spain, 2010. P. 33-37.
16. Barraud S., Berthome M., Coquand R., Casse M., Ernst T., Samson M.-P., Perreau P., Bourdelle K.K., Faynot O., and Poiroux T. Scaling of trigate junctionless nanowire MOSFET with gate length down to 13nm. IEEE Electron Device Letters. 2012. Vol. 33, №9. P. 1225-1227.
17. Zhao D. D., Nishimura T., Lee C. H., Nagashio K., Kita K., Toriumi A. Junctionless Ge p-channel Metal–Oxide–Semiconductor Field-Effect Transistors Fabricated on Ultrathin Ge-on-Insulator Substrate. Applied Physics Express. 2011. Vol.4, №3. P.031302-1-031302-3.
18. Yu R., Georgiev Y. M., Das S., Hobbs R. G., Povey I. M., Petkov N., Shayesteh M., Dan O’Connell, Holmes J. D., Duffy R. Junctionless nanowire transistor fabricated with high mobility Ge channel. Physics Status Solidi (RRL) – Rapid Research Letters. 2014. Vol. 8, № 1. P. 65-68.
19. Sun C., Liang R., Wang J., and Xu J. High performance tri-gate germanium-on-insulator based junctionless nanowire transistors. ECS Transactions. 2016. – Vol. 72, № 4. P. 263-268.
20. Song Y., Zhang C., Dowdy R., Chabak K., Parsian M. K., Choi W., Li X. III-V junctionless Gate-All-Around nanowire MOSFETs for high linearity low power applications. IEEE Electron Device Letters. 2014. Vol. 35, № 3. P.324-326.
21. Guo H., Zhang X., Zhu Z., Kong E., and Yeo Y.-C. Junctionless -gate transistor with indium gallium arsenide channel. Electronics Letters. 2013. Vol.49. №6. P. 402–404.
22. Colinge J.-P., Lee C. W., Akhavan N. D., Yan R., Ferain I., Razavi P., Kranti A., Yu R. Junctionless transistors: Physics and properties. Semiconductor-On-Insulator Materials for Nanoelectronics Applications / Edited by Nazarov A. N., Colinge J.-P., Balestra F., Raskin J.-P., Gamiz F., Lysenko V. S.. Dordrecht: Springer-Verlag Berlin Heidelberg, 2011. P. 187-200. DOI: 10.1007/978-3-642-15868-1_10
23. Colinge J. P., Lee C.-W., Ferain I., Akhavan N. D., Yan R., Razavi P.,Yu R., Nazarov A. N., and Doria R.T. Reduced electric field in junctionless transistors. Applied Physics Letters. 2010. Vol. 96, №7. P. 073510-1-3. DOI:10.1063/1.3299014
24. Colinge J. P., Alderman J. C., Xiong W., and Cleavelin C. R. Quantum-mechanical effects in trigate SOI MOSFETs. IEEE Transactions on Electron Devices. 2006. Vol.53. №5. P. 1131-1136. DOI:10.1109/TED.2006.871872
25. Colinge J. P. Quantun-wire effects in trigate SOI MOSFETs. Solid-State Electronics. 2007. Vol. 51, №9. P. 1153-1160. DOI:10.1016/j.sse.2007.07.019
26. Rudenko T., Barraud S., Georgiev Y. M, Lysenko V., Nazarov A. Electrical characterization and parameter extraction of junctionless nanowire transistors. Journal of Nano Research. 2016. Vol. 39. P. 17-33.
27. Rudenko T., Yu R., Barraud S., Cherkaoui K., and Nazarov A. A method for extracting doping concentration and flat-band voltage in junctionless multigate MOSFETs using 2D electrostatic effects. IEEE Electron Device Letters. 2013. Vol. 34, №8. P. 957-959.
28. Rudenko T., Nazarov A., Barraud S., Kilchytska V., and Flandre D. A method for threshold voltage extraction in junctionless MOSFETs using the derivative of transconductance-to-current ratio. Solid-State Electronics. 2020.Vol. 168. Article 107723. DOI: 10.1016/j.sse.2019.107723
29. Ortiz-Conde A., Garcia-Sanchez F. J., Muci J., Barrios A. T., Juin J., Liou J. J., Ho C.-S. Revisiting MOSFET threshold voltage extraction methods. Microelectronics Reliability. 2013. Vol. 53, №1. P. 90-104.
30. Fowler A. B. and Hartstein A. M. Techniques for determining threshold. Surface Science. 1980. Vol. 98, №1-3. P. 169-172.
31. Ghibaudo G. New method for the extraction of MOSFET parameters. Electronics Letters. 1988. Vol. 24, №9. P. 543-545.
32. Cristoloveanu S. and Li S. Electrical Characterization of Silicon-on-Insulator Materials and Devices: Kluwer, Boston, 1995. 381 p.
33. Jeon D.-Y., Park S., Mouis M., Berthome M., Barraud S., Kim G.-T., Ghibaudo G. Revisited parameter extraction methodology for electrical characterization of junctionless transistors. Solid-State Electronics. 2013. Vol. 90, №. 1. P. 86-93. DOI: 10.1016/j.sse.2013.02.047
34. Flandre D., Kilchytska V., Rudenko T. gm/Id method for threshold voltage extraction applicable in advanced MOSFETs with non-linear behavior above threshold. IEEE Electron. Device Letters. 2010. Vol. 31, №9. P. 930-932. DOI: 10.1109/LED.2010.2055829
35. Rudenko T., Kilchytska V., Md Arshad M. K., Raskin J.–P., Nazarov A., Flandre D. On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part I – Effect of gate-voltage-dependent mobility. IEEE Transactions on Electron Devices. 2011. Vol. 58, №12. P. 4172-4179. DOI: 10.1109/TED.2011.2168226
36. Lau M.M., Chiang C.Y.T., Yeow Y.T., Yao Z. Q. A new method of threshold voltage extraction via MOSFET gate-to-substrate capacitance measurement. IEEE Transactions on Electron Devices. 2001. Vol. 48, №8. P. 1742-1744.
37. Trevisoli R. D., Doria R. T., M. de Souza, Pavanello M. A. A physically-based threshold voltage definition, extraction and analytical model for junctionless nanowire transistors. Solid-State Electronics. 2013. Vol. 90, №1. P.12-17. DOI: 10.1016/j.sse.2013.02.059
38. Rudenko T., Md Arshad M.K., Raskin J.-P., Nazarov A., Flandre D., Kilchytska V. On the gm/ID-based approaches for threshold voltage extraction in advanced MOSFETs and their application to ultra-thin body SOI MOSFETs. Solid-State Electronics. 2014. Vol. 97, №7. P. 52-58.
39. Rudenko T., Kilchytska V., Md Arshad M.K., Raskin J.-P., Nazarov A., Flandre D. Influence of drain voltage on MOSFET threshold voltage determination by transconductance change and gm/Id methods. Proceedings of the 12th European Workshop on Ultimate Integration of Silicon (ULIS 2011Conference). Cork, Ireland, 2011. P. 150-153.
40. Rudenko T., Kilchytska V., Md Arshad M. K., Raskin J.–P., Nazarov A., Flandre D. On the MOSFET threshold voltage extraction by transconductance change and transconductance-to-current ratio change methods: Part II – Effect of drain voltage. IEEE Transactions on Electron Devices. 2011. Vol. 58, №12. P. 4180-4188.
41. Duarte J.P, Choi S.-J., Choi Y.-K.. A full-range drain current model for double-gate junctionless transistors. IEEE Transactions on Electron Devices. 2011. Vol. 58, №12. P. 4219-4225. DOI: 10.1109/TED.2011.2169266
42. Sallese J.-M., Chevillon N., Lallement C., Iñiguez B., Prégaldiny F. Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Transactions on Electron Devices. 2011. Vol. 58. №8. P. 2628-2637. DOI: 10.1109/TED.2011.2156413
43. Lime F., Santana E., Iñiguez B. A simple compact model for long-channel junctionless double gate MOSFETs. Solid-State Electronics. 2013. Vol. 80. P.28-32. DOI: 10.1016/j.sse.2012.10.017
44. Lime F., Moldovan O., Iñiguez B. A compact explicit model for long-channel gate-all-around junctionless MOSFETs. Part 1: DC characteristics. IEEE Transactions on Electron Devices. 2014. Vol. 61, №9. P.3036-3041. DOI: 10.1109/TED.2014.2340441
45. Duarte J.P., Choi S.-J., Moon D.-I., Choi Y.-K. A nonpiecewise model for long-channel junctionless cylindrical nanowire FETs. IEEE Electron Device Letters. 2012. Vol. 33, №2. P.155-157. DOI: 10.1109/LED.2011.2174770
46. Sallese J.-M., Jazaeri F., Barbut L., Chevillon N., Lallement C. A common core model for junctionless nanowires and symmetric double-gate FETs. IEEE Transactions on Electron Devices. 2013. Vol. 60, №12. P. 4277-4280.
47. Synopsis, Inc., Mountain View, CA, C-2009.06 ed., Sentaurus Device Reference Manual. 2009.
48. Rudenko T., Nazarov A., Ferain I., Das S., Yu R, Barraud S., Razavi P. Mobility enhancement effect in heavily doped junctionless nanowire silicon-on-insulator metal oxide-semiconductor field-effect transistors. Applied Physics Letters. 2012. Vol. 101. P 213502-1-4.
49. Rudenko T., Nazarov A., Yu R., Barraud S., Cherkaoui K., Razavi P., Fagas G. Electron mobility in heavily doped junctionless nanowire SOI MOSFETs. Microelectronic Engineering. 2013. Vol. 109. P. 326-329.
50. Rudenko T., Yu R., Barraud S., Cherkaoui K., Razavi P., Fagas G., and Nazarov A. On the mobility behavior in highly doped junctionless nanowire SOI MOSFETs. Advanced Materials Research. 2014. Vol. 854. P. 35-43.
51. Wei K., Zeng L., Wang J., Du G., Liu X. Physically based evaluation of electron mobility in ultra-thin-body double-gate junctionless transistors. IEEE Electron Device Letters. 2014. Vol. 35. №8. P. 817-819.
52. Ueda A., Luisier M., and Sano N. Enhanced impurity limited mobility in ultra-scaled Si nanowire junctionless field-effect transistors. Applied Physics Letters. 2015. Vol. 107. P.253501-1-4.
53. Jeon D.-Y., Park S.J., Mouis M., Barraud S., Kim G.-T., Ghibaudo G. Impact of series resistance on the operation of junctionless transistors. Solid-State Electronics. 2017. Vol.129. P.103-107.
54. Jeon D.-Y., Park S. J., Mouis M., Barraud S., Kim G.-T., Ghibaudo G. A new method for the extraction of flat-band voltage and doping concentration in tri-gate junctionless transistors. Solid-State Electronics. 2013. Vol. 81. P. 113-118.
55. Finetti M. and Mazone A.M. Impurity effects on conduction in heavily doped n-type silicon. Journal of Applied Physics. 1977. Vol. 48, №11. P. 4597-4600.
56. Klaassen D. B. M. A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid-State Electronics. 1992. Vol.35, №7. P. 953-959.
57. Gámiz F. and Fischetti M. V. Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion. Journal of Applied Physics. 2001. Vol. 89, № 10. P. 5478-5487.
58. Shoji M. and Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on-insulator Si inversion. Journal of Applied Physics. 1999. Vol. 85, №5. P. 2722-2731.
59. Lee C.-W., Borne A., Ferain I., Afzalian A., Yan R., Akhavan N.D., Razavi P., Colinge J.-P. High-temperature performance of silicon junctionless MOSFETs. IEEE Transactions on Electron Devices. 2010. Vol. 57, №3. P.620-625.
60. Sy H. K., Desai D. K., Ong C. K. Electron screening and mobility in heavily doped silicon. Physica Status Solidi (b). 1985. Vol. 130. P. 787-792.
61. Ando T., Fauler A., Stern F. Elektronnye svojstva dvumernyh sistem. Glava 4. Moskva: “Mir». 1985. S. 128-134.
62. McKeon J. B., Chindalore G., Hareland S.A., Shih W.-K., Wang C., Tasch A. F., Jr., and Maziar C. M. Experimental determination of electron and hole mobilities in MOS accumulation layers. IEEE Electron Device Letters. 1997. Vol. 18, №5. P. 200-202
63. Goto K.-I., Yu T.-H., Wu J., Diaz C. H., and Colinge J. P. Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors. Applied Physics Letters. 2012. Vol. 101. P. 073503-1-2.
64. Brews J. R. Subthreshold behavior of uniformly and non-uniformly doped long-channel MOSFET. IEEE Transactions on Electron Devices. 1979. Vol.26, №9. P. 1282–1292.
65. Zi S. Fizika poluprovodnikovyh priborov. T.2. Moskva: «Mir», 1984. 455 s.
66. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI, 3rd edition. Kluwer Academic Publishers, 2004. 384 p.
67. Wouters D. J., Colinge J.-P., and Maes H. E. Subthreshold slope in thin-film SOI MOSFETs. IEEE Transactions on Electron Devices. 1990. Vo. 37, №9. P.2022–2033. DOI:10.1109/16.57165.
68. Cristoloveanu S., Wan J., Zaslavsky A. A review of sharp-switching devices for ultra-low power applications. IEEE Journal of the Electron Devices Society. 2016. Vol. 4, №5. P. 215-226.
69. Reddick W.M., Amaratunga G.A.J. Silicon surface tunneling transistor. Applied Physics Letters. 1995. Vol. 67. P. 494–496.
70. Aydin C., Zaslavsky A., Luryi S., Mariolle D., Fraboulet D., Deleonibus S. Lateral interband tunneling transistor in silicon-on-insulator. Applied Physics Letters. 2004. Vol. 84. P. 1780–1782.
71. Zhang Q., Zhao W., and Seabaugh A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Letters. 2006. Vol. 27, №4. P. 297–300.
72. Choi W. Y., Park B.-G., Lee J.D., Liu T.-J.K. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Letters. 2007. Vol. 28, №8. P. 743-745.
73. Gopalakrishnan K., Griffin P. B., and Plummer J. D. I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q. IEDM Technical Digest. 2002. P. 289–292.
74. Toh E.-H., G. Wang G. H., Chan L., Samudra G., and Yeo Y.-C. I-MOS transistor with an elevated silicon-germanium impact ionization region for bandgap engineering. IEEE Electron Device Letters. 2006. Vol. 27, №12. P.75-977. DOI:10.1109/LED.2006.886708
75. Moselund K. E., Bouvet D., Pott V., Meinen C., Kayal M., and Ionescu A. M. Punch-through impact ionization MOSFET (PIMOS): From device principle to applications. Solid-State Electronics. 2008. Vol. 52. №9. P. 1336-1344. DOI:10.1016/j.sse.2008.04.021
76. Lee C.A., Logan R. A., Batdorf R.L., Kleimack J.J., Wiegmann W. Ionization rates of holes and electrons in silicon. Physical Review. 1964. Vol.13, №3A. P.761-773.
77. Hauser J.R. Threshold energy for avalanche multiplication in semiconductors. J. Appl. Phys. 1966. Vol. 37, №2. P.507-509. DOI: 10.1063/1.1708204
78. Eitan B., Frohman-Bentchkowsky D. and Shappir J. Impact ionization at very low voltages in silicon. J. Appl. Phys. 1982. Vol. 53, №2. P.1244-1247.
DOI: 10.1063/1.330539
79. Davis J. R., Glaccum A. E., Reeson K. and Hemment P. L. F. Improved subthreshold characteristics of n-channel SOI transistors. IEEE Electron Device Letters. 1986. Vol. 7, №10. P. 570-572.
80. Fossum J. G., Sundaresan A., Matloubian M. Anomalous subthreshold current-voltage characteristics of n-Channel SOI MOSFET’s. IEEE Electron Device Letters. 1987. Vol. 8, №11. P. 544-546.
81. Mao B. Y., Sundaresan R., Chen C. E. D., Matloubian M. and Pollack G. P. The characteristics of CMOS Devices in oxygen-implanted Silicon-on-Insulator structures. IEEE Transactions on Electron Devices. 1988. Vol. 35, №5. P. 629-633.
82. Bawedin M., Cristoloveanu S., Flandre D. Innovating SOI memory devices based on floating-body effects. Solid-State Electronics. 2007. Vol. 51, №10. P.252–1262.
83. Lee C.-W., Nazarov A.N., Ferain I., Akhavan N. D., Yan R., Razavi P. Yu R., Doria R. T., Colinge J.-P. Low subthreshold slope in junctionless multigate transistors. Applied Physics Letters. 2010. Vol. 96, №10. P. 102106-102108.
84. Yu R., Nazarov A.N., Lysenko V.S., Das S., Ferain I., Razavi P., Shayesteh M., Kranti A., Duffy R., Colinge J.-P. Impact ionization induced dynamic floating body effect in junctionless transistors. Solid-State Electronics. 2013. Vol. 90, №1. P.28-33.
85. Documentation available at http://www.silvaco.com
86. Baraff G. A. Distribution junctions and ionization rates for hot electrons in semiconductors. Physical Review. 1962. Vol. 128, №6. P.2507-2517.
87. Crowell C.R., Sze S.M. Temperature dependence of avalanche multiplication in semiconductors. Applied Physics Letters. 1966. Vol. 9, №6. P. 242-244.
88. Krishnan S. and Fossum J. G. Compact non-local modeling of impact ionizatyion in SOI MOSFETs for oprimal CMOS device/circuit design. Solid-State Electronics. 1996. Vol. 39, №5. P. 661-668.
89. Lanyon H. P. D. and Tuft R. A. Bandgap narrowing in heavily doped silicon IEDM Technical Digest. 1978. P. 316-319.
90. Slotboom J.W., Streutker G., v. Dort M.J., Woerlee P.H., Pruijmboom A., Gravesteijn D.J. Non-local impact ionization in silicon devices. IEDM Technical Digest. 1991. P. 127-130.
91. Slotboom J. W., Streutker G., Davids G. J. T., Hartog P. B. Surface impact ionization in silicon devices. IEDM Technical Digest. 1987. P. 494-497.
92. J. P. Colinge. Reduction of kink effect in thin-film SO1 MOSFET’s. IEEE Electron Device Letters. 1988. Vol. 9, №2. P. 97-99.
93. Young K. K., Burns J. A. Avalanche-induced drain-source breakdown in silicon-on-insulator n-MOSFETs. IEEE Transactions on Electron Devices. 1988. Vol. 35. №4. P. 426-431.
94. Yu R., Das S., Ferain I., Razavi P., Akhavan N. D., Colinge C.A., and Colinge J.-P. Simulation of impact ionization effect in short channel junctionless transistor. Proceedings of the EUROSOI 2012 Conference, 23-25 January 2012: Montpellier, France, 2012. P.37-36.
95. Ralls K. S., Skocpol W. J., Jackel L. D., Howard R. E., Fetter L. A., Epworth R. W., and Tennant D. M. Discrete resistance switching in submicrometer silicon inversion layers: Individual interface traps and low-frequency (1/f) noise Physical Review Letters. 1984. Vol. 52, №3. P. 228-231.
96. Uren M. J., Day D. J., and Kirton M. I. l/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors. Applied Physics Letters. 1985. Vol.47, №11. P. 1195-1197.
97. Hung K. K., Ko P. K., Hu C., Cheng Y. C. Random telegraph noise of deep-submicrometer MOSFET’s. IEEE Electron Device Letters. 1990. Vol.11, №2. P. 90-92.
98. Hung K. K., Ko P. K., Hu C., Cheng Y. C. A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. IEEE Transactions on Electron Devices. 1990. Vol. 37, №3. P. 654-665.
99. Ghibaudou G. Critical MOSFETs operation for low voltage/low power IC’s: Ideal characteristics, parameter extraction, electrical noise and RTS fluctuations. Microelectronic Engineering. 1997. Vol. 39. P. 31-57.
100. Nazarov A. N., Ferain I., Akhavan N. D., Razavi P., Yu R., and Colinge J.P. Random telegraph-signal noise in junctionless transistors. Applied Physics Letters. 2011. Vol. 98, № 9. P. 092111-1-3.
101. Nazarov A. N., Lee C. W., Kranti A., Ferain I., Yan R., Akhavan N. D., Razavi P., Yu R., Colinge J.P. Comparative study of random telegraph noise in junctionless and inversion-mode MuGFETs. ECS Transactions. 2011. Vol. 35, № 5. P. 73-78.
102. Nazarov A. N., Ferain I., Akhavan N. D., Razavi P., Yu R., and Colinge J.P. Field-effect mobility extraction in nanowire field-effect transistors by combination of transfer characteristics and random telegraph noise measurements. Applied Physics Letters. 2011. Vol. 99, № 7. P. 073502-1-3.