Authors:
Adjamskiy Sergey – PhD, chief designer. LLC «Additive Laser Technology of Ukraine», st. Serhiy Podolinsky, 31b, 49100, Dnipro, Ukraine.
ORCID https://orcid.org/0000-0002-6095-8646;
ResearcherID: 57222181613
Kononenko Ganna – Doct. technical science, scientific secretary, materials engineer. Institute of Iron and Steel of Z.I. Nekrasov NAS of Ukraine, Sq. Ak. Starodubova, 1, 49107, LLC «Additive Laser Technology of Ukraine», st. Serhiy Podolinsky, 31b, 49100, Dnipro, Ukraine.
ORCID https://orcid.org/0000-0001-7446-4105;
ResearcherID: 7007038178
Podolskyi Rostislav – PhD-student, Junior researcher, materials engineer. Ukrainian state university of science and technologies, 4 Gagarina Ave., 49000, Institute of Iron and Steel of Z.I. Nekrasov NAS of Ukraine, Sq. Ak. Starodubova, 1, 49107, LLC «Additive Laser Technology of Ukraine», st. Serhiy Podolinsky, 31b, 49100, Dnipro, Ukraine.
ORCID https://orcid.org/0000-0002-0288-0641;
ResearcherID: 57244145000
Badyuk Sergey – PhD, process engineer. LLC «Additive Laser Technology of Ukraine», st. Serhiy Podolinsky, 31b, 49100, Dnipro, Ukraine.
ORCID https://orcid.org/0000-0002-1074-3057;
ResearcherID: 55808862200
Reviewers:
F. Sanin, Doctor of Technical Sciences, Professor, the head of the department Dnipro National University named after Oles Honchar. Dnipro National University named after Oles Honchar, Dnipro, Ukraine, Gagarina Avenue, 72, 49000.
ORCID https://orcid.org/0000-0002-5614-3882;
ResearcherID: 7005800076
M. Volchuk, Doctor of Technical Sciences, Professor, the head of the department State Higher Educational Institution “Prydniprovsk State Academy of Construction and Architecture”. State Higher Educational Institution “Prydniprovsk State Academy of Construction and Architecture”, Dnipro, Ukraine, Chernyshevsky street, 24a, 49600.
ORCID https://orcid.org/0000-0001-7199-192X;
ResearcherID: 57198819273
V. Parusov, Doctor of technical sciences, senior researcher, head of the department Iron and Steel Institute of Z. I. Nekrasov of the National Academy of Sciences of Ukraine. Iron and Steel Institute of Z. I. Nekrasov of the National Academy of Sciences of Ukraine, Dnipro, Ukraine, Sq. Ak. Starodubova, 1, 49107.
ORCID https://orcid.org/0000-0002-4560-2043;
ResearcherID: 8367262600
Affiliation:
Project: Scientific book
Year: 2022
Publisher: PH "Naukova Dumka"
Pages: 116
DOI:
https://doi.org/10.15407/978-966-00-1856-3
ISBN: 978-966-00-1856-3
Language: Ukrainian
How to Cite:
Adjamskiy,S., Kononenko,G., Podolskyi,R., Badyuk,S. (2022) Implementation Of Selective Laser Melting Technology In Ukraine. Kyiv, Naukova Dumka. 116p. [in Ukrainian].
Abstract:
Additive technologies make it possible to provide high quality products (accuracy and uniqueness of geometry, high complex of mechanical properties, high density (low porosity), uniformity of microstructure and chemical composition). A wide range of materials used allows it to find application in such industries as medical and dental, engineering, automotive and aerospace.
At present, technological capabilities, the development of laser technologies and CAD modeling systems have made it possible to develop devices for building parts by loading the original CAD model and fusing metal powder using a laser in accordance with it – what is today called SLM technology.
During this process, the metal powder is completely melted under the influence of high-power laser radiation with the formation of a metal layer that contains almost no pores and does not require further processing, which makes it possible to achieve a level of mechanical properties of the product equal to or even better than those of cast ones.
To create advanced equipment and professional control of the process of manufacturing parts, a deep understanding of the processes occurring in the melt pool under the laser beam and after hardening is necessary. At the same time, the final quality of products manufactured using SLM technology depends on many factors that can be divided into main groups: equipment (calibration, laser power, energy distribution in the beam, powder application system, shielding gas supply, distribution and purification system, system ensuring the tightness of the chamber, etc.), material (sphericity, dispersion, bulk density, fluidity, properties, handling, etc. of metal powder), process parameters, geometry features of the part, finishing.
Prospects for the development of technology in Ukraine are associated with the development of new structural materials, solving topology optimization problems, prototyping, studying the properties of materials and creating the latest production solutions in the field of additive technologies.
Keywords:
additive manufacturing, selective laser melting, equipment, technological parameters, mechanical properties, heat treatment
References:
- Mahoney M.W. (1989). Superplatic Properties of Alloy 718. “Superalloy 718 Metallurgy and Applications”, eds. E.A.Loria, TMS, 391-405.
- Kruth J.-P., Levy G., Klocke F., Childs T.H.C. (2007). Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals, 56 (2), 730-759.
- Sun J., Yang Y., Wang D. (2013). Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Optics & Laser Technology, 49, 118–124.
- Zhang B., Dembinski L., Coddet C. (2013). The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Materials Science and Engineering: A, 584, 21-31.
- Frazier W. E. (2014). Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 23(6), 1917 – 1928.
- Kruth J.-P., Leu M.-C., Nakagawa T. (1998). Progress in additive manufacturing and rapid prototyping. CIRP Ann.-Manuf. Technol, 47(2), 525–540.
- Аджамский С. В., Кононенко A. А., Подольский Р. В. (2020). Симуляция влияния остаточных напряжений и параметров SLM-технологии на формирование области границ изделия из жаропрочного никелевого сплава INCONEL 718. Ministry of Education and Science of Ukraine The National Metallurgical Academy of Ukraine, Dnipro, 17 – 19 March, 2020, 1, 4–6 doi:10.34185/1991-7848.itmm.2020.01.001.
- Аджамский С. В., Кононенко А. А., Подольский Р. В. (2020). Двумерное моделирование нестационарного температурного поля единичного трека из жаропрочного сплава INCONEL 718. Матеріали всеукраїнської науково-методичної конференції “Проблеми математичного моделювання”, 1, 42–45 Режим доступу: https://www.dstu.dp.ua/uni/downloads/material_konf_traven_%202020.pdf .
- Shifeng W., Shuai L., Qingsong W., Yan C., Sheng Z., Yusheng S. (2014). Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Tech-nol, 214(11), 2660–2667. doi:10.1016/j.jmatprotec.2014.06.002
- Loh L.-E., Chua C.-K., Yeong W.-Y., Song J., Mapar M., Sing S.-L., Liu Z.-H., Zhang D.-Q. (2015). Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061, Int. J. Heat Mass Transf, 80, 288–300. doi:10.1016/j.ijheatmasstransfer.2014.09.014
- Jia Q. Gu D. (2014). Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J. Alloys Compd. Feb, 585, 713–721. doi:10.1016/j.jallcom.2013.09.171
- Campanelli S. L., Contuzzi N., Angelastro A. (2010). Capabilities and Performances of the Selective Laser Melting process. New trends in Technologies: Devices, Computer, Communication and Industrial Systems, 233-252.
- Williams, C. B., Mistree F., Rosen D. W. (2005). Towards the design of a layerbased additive manufacturing process for the realization of metal parts of designed mesostructured, Proc. 16th Solid Free. Fabr. Symp, 217–230.
- Cheah C.M., Chua C.K., Lee C.W. et al. (2004). Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology, 25(3–4), 308–320.
- Kruth J.P., Froyen L., Van Vaerenbergh J. and all. (2004). Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 149, 616–622.
- Sharman A.R.C., Amarasinghe A., Ridgway K. (2008). Tool life and surface integrity aspects when drilling and hole making in Inconel 718. J Mater Process Technol, 200, 424-432.
- Khomutov M., Travyanov A., Petrovskii P. et al. (2018). Comparison of fatigue properties for alloy EP708 specimens prepared by selective laser melting and hot rolling. Metallurgist, 62 (3 – 4), 283 – 288.
- Osakada K., Shiomi M. (2006). Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 46, 1188–1193.
- Wang X., Gong X., Chou K. (2017). Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng B J Eng Manuf, 231, 1890–1903.
- Kempen K., Thijs L., Yasa E. et al. (2011). Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. Solid Freeform Fabrication Symposium, 22, 484–495.
- Kamath C., Eldasher B., Gallegos G.F. et al. (2014). Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol, 74, 65–78.
- Jia Q., Gu D. (2014). Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J Alloys Compd, 585, 713–721.
- Hua-Zhen Jiangab, Zheng-Yang Lib Tao, Fengc Peng-Yue, Wuc Qi-Sheng, Chenab Yun-Long, Fengc Shi-Wen, Lic Huan Gaoab, He-Jian Xub. (2019). Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method. Optics & Laser Technology, 119, 105592.
- Bidare P., Bitharas I., Ward R. M., Attallah M. M., Moore A. J. (2018). Laser powder bed fusion in high-pressure atmospheres. The International Journal of Advanced Manufacturing Technology. 99, 543–555.
- Bitharasa P. I., Wardb R.M., Attallahb M.M., Moorea A.J. (2018). Laser powder bed fusion at sub-atmospheric pressures. International Journal of Machine Tools and Manufacture, 130–131, 65-72.
- Sames W.J., List F., Pannala S. et al. (2016). The metallurgy and processing science of metal additive manufacturing. Int Mater Rev, 61, 315–360.
- Amato K.N., Gaytan S.M., Murr L.E. et al. (2012). Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater, 60, 2229–2239.
- Pröbstle M., Neumeier S., Hopfenmüller J. et al. (2016). Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater Sci Eng A, 674, 299–307.
- Bean G.E., Witkin D.B., McLouth T.D., Zaldivar R.J. (2018). The effect of laser focus and process parameters on microstructure and mechanical properties of SLM Inconel 718. International Society for Optics and Photonics,10523, 105230Y.
- Sun S., Brandt M., Easton M. (2017). Powder Bed Fusion Processes: an Overview, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Centre for Additive Manufacturing, 55-77.
- Khairallah, S.A.; Anderson, A.T. (2014). Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder. J. Mate. Process. Technol, 214, 2627–2636.
- Nesma T., Aboulkhairab I., Maskerya C., Tucka I., Ashcrofta N. (2016). On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. Journal of Materials Processing Technology, 230, 88-98.
- Hondros E. D., McLean M., Mills K. C. (1998). Marangoni effects in welding. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356 (1739), 33-44.
- Mujian X., Dongdong G., Guanqun Y., Donghua D., Hongyu C., Qimin S. (2016). Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. International Journal of Machine Tools and Manufacture, 109, 147-157.
- Zhou X., Liu X., Zhang D., Shen Z., Liu W. (2015). Balling phenomena in selective laser melted tungsten. Journal of Materials Processing Technology, 222, 33-42.
- Rombouts M., Kruth J.P., Froyen L., Mercelis P. (2006). Fundamentals of selective laser melting of alloyed steel powders CIRP. Annalse Manufacturing Technology, 55, 187-192.
- Gu D., Shen Y. (2009). Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Materials & Design, 30, 2903-2910.
- Qiu C., Panwisawas C., Ward M., Basoalto H.C., Brooks J.W., Attallah M.M. (2015). On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia, 96, 72-79.
- Yadroitsev I., Gusarov A., Smurov I. (2010). Single track formation in selective laser melting of metal powders. Journal of Materials Processing Technology, 210, 1624-1631.
- Zhang B., Dembinski L., Coddet C. (2013). The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Materials Science and Engineering: A, 584(1), 21-31.
- Daiab D., Guab D. (2015). Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Applied Surface Science, 355, 310-319.
- Klassen A., Scharowsky T., Körner C. (2014). Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. IOP science, 47(27), 5303.
- Bidare P., Bitharas I., Ward M., Attallah M.M., Moore A.J. (2018). Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 142, 107-120.
- Ly S., Rubenchik A. M., Khairallah S. A., Guss G., Matthews M. J. (2017). Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Scientific Reports, 7, 4085.
- Matthews M. J., Guss G., Khairallah S. A., Rubenchik A. M., Depond P. J., King W. E. (2016). Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia, (114), 33-42.
- Semak V., Matsunawa A. (1997). The role of recoil pressure in energy balance during laser materials processing. IOP science Journal of Physics D: Applied Physics, 30 (18), 2541.
- Mayi Y. A., Dal M., Peyre P., Bellet M., Metton C., Moriconi C., Fabbro R. (2018). Two-Phase Flow Modelling of Metal Vaporisation under Static Laser Shot using a Double Domain ALE Method. Excerpt from the Proceedings of the COMSOL Conference in Lausannо Two-Phase Flow Modeling of Metal Vaporisation under Static Laser Shot Using a Double ALE Method (comsol.com).
- Zheng H., Li H., Lang L., Gong S., Ge Y. (2018). Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing. Journal of Manufacturing Processes, 36, 60-67. doi:10.1016/j.jmapro.2018.09.011.
- Huang Y, Leu M.C., Donmez M. J. (2015). Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manufac Sci Eng. Trans ASME, 137(1), 014001.
- Nakamura H, Kawahito Y, Nishimoto K, Katayama S. (2015). Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J Laser Appl, 27(3), 032012.
- Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. (2016). Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater, 108, 36–45.
- Zhao C., Guo Q., Li X., Parab N., Fezzaa K., Tan W., Chen L., Sun T. (2019). Bulk-Explosion-Induced Metal Spattering During Laser Processing. Phys. Rev, 9, 021052.
- Anwara A. B., Ibrahim I. H., Q-Cuong. (2019). Spatter transport by inert gas flow in selective laser melting: A simulation study Pham. Powder Technology, 352, 103-116. doi:10.1016/j.powtec.2019.04.044
- Pauzon C. (2019). The process atmosphere as a parameter in the Laser-Powder Bed Fusion process (chalmers.se). Chalmers university of technology thesis for the degree of licentiate of engineering Gothenburg, Sweden.
- Bidare P., Bitharas I., Ward R.M., Attallah M.M., Moore A.J. (2018). Laser powder bed fusion at sub-atmospheric pressures. International Journal of Machine Tools and Manufacture, 130-131, 65-72. doi:10.1016/j.ijmachtools.2018.03.007.
- Wayne E. King, Holly D. Barth, Victor M. Castillo, Gilbert F. Gallegos, John W. Gibbs, Douglas E. Hahn, Chandrika Kamath, Alexander M. Rubenchik. (2014). Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. Journal of Materials Processing Technology, 214 (12), 2915-2925. doi:10.1016/j.jmatprotec.2014.06.005
- Kyogoku H., Ikeshoji T.-Taka (2020). A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process. Mechanical Engineering Reviews, 7 (1), 19-00182. doi:10.1299/mer.19-00182
- Lun C., Leung A. (2017.) X-ray imaging of powder consolidation during laser additive manufacturing. A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering.
- Fotovvati B., Wayne S. F., Lewis G., Asadi E. (2018). A Review on Melt-Pool Characteristics in Laser Welding of Metals. Advances in Materials Science and Engineering, 4920718. doi:10.1155/2018/4920718.
- Austin P. (2019). Numerical Modeling of Laser-Induced Plumes and Jets University of Alabama Institutional Repository. Thesis (M.S.)-The University of Alabama.; Publication Number: AAT 13865317; ISBN: 9781088301043; Source: Masters Abstracts International, Volume: 81-04.; 163 p.
- Ladewig A., Schlick G., Fisser M., Schulze V., Glatzel U. (2016). Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process. Additive Manufacturing, 10, 1-9. doi:10.1016/j.addma.2016.01.004.
- Gunenthiram V., Peyre P., Schneider M., Dal M., Coste F., Fabbro R. (2017). Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel. Journal of Laser Applications, 29 (2) 022303. doi:10.2351/1.4983259.
- Pang S., Chen W., Wang W. A (2014). Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy. Metallurgical and Materials Transactions A, 45, 2808–2818. doi:10.1007/s11661-014-2231-3.
- Simonelli M., Tuck C., Aboulkhair N.T., Maskery I., Ashcroft I., Wildman R.D., Hague R. (2015). A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46, 3842-3851.
- Spierings A.B., Herres N., Levy G. (2011). Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp. J, 17, 195-202.
- Khorasani A. M., Gibson I., Veetil J. K., Ghasemi A. H. (2020). A review of technological improvements in laser-based powder bed fusion of metal printers. The International Journal of Advanced Manufacturing Technology, 108, 191–209.
- SLM Solutions. (2019). SLM MACHINES. Last modified March 20,2019, accessed March 21,2019 https://slm-solutions. com/products/machines
- Akbari M, Kovacevic R. (2019). Closed loop control of melt pool width in robotized laser powder–directed energy deposition process. Int J Adv Manuf Technol, 1–12.
- Shrestha R., Shamsaei N., Seifi M., Phan N. (2019). An investigation into specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing. Addit Manuf, 29, 100807.
- Urhal P., Weightman A., Diver C., Bartolo P. (2019). Robot assisted additive manufacturing: a review. Robot Comput Integr Manuf, 59, 335–345.
- SISMA. LMF (2019). “laser metal fusion” technology, last modified March 20,2019, accessed March 21, 2019 https://www.sisma.com/en/additive-manufacturing/
- Jafari R. et al. (2019). Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. Int J Adv Manuf Technol, 1–14
- Rausch A.M., Markl M., Körner C. (2019). Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder size distribution. Comput Math Appl, 78(7), 2351–2359.
- Renishaw. (2019). Additive manufacturing products, last modified March 20,2019. https://www.renishaw.com/en/additivemanufacturing-products%2D%2D17475.
- Yeung H., Lane B., Fox J. (2019). Part geometry and conduction based laser power control for powder bed fusion additive manufacturing. Addit Manuf, 30, 100844.
- Alloy 718 manufactured by AM Selective Laser Melting Valeri Ivanov Petkov. FULLTEXT01.pdf (diva-portal.org)
- Скребцов А. А., Проскурняк Р. В., Марченко Ю. А. и др. (2019). Исследование коррозионных свойств титана для аддитивных технологий. Металознавство та термічна обробка металів, 3, 55-60.
- Аджамський С.В., Кононенко Г.А., Подольський Р.В. (2020). Вплив технологічних параметрів SLM-процесу на пористість металовиробів. Автоматичне зварювання, 10, 14-20. doi:10.37434/as2020.10.03
- Shanping Lu, Hidetoshi Fujii, Hiroyuki Sugiyama, Manabu Tanaka, Kiyoshi Nogi. (2002). Welding Weld Penetration and Marangoni Convection with Oxide Fluxes in GTA Welding, 43 (11), 2926-2931 doi:10.2320/matertrans.43.2926
- Li R., Liu J., Shi Y., Wang L., Jiang W. (2012). Balling behavior of stainless steel and nickel powder during selective laser melting process, Int. J. Adv. Manuf. Technol, 59, 1025-1035.
- Hodgson A., Haq S. (2009). Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep, 64, 381-451.
- Kruth J.P., Froyen L., Van Vaerenbergh J., Mercelis P., Rombouts M., Lauwers B. (2004). Selective laser melting of iron-based powder. J. Mater. Process. Technol, 149, 616-622.
- Simchi A., Pohl H. (2004). Direct laser sintering of iron-graphite powder mixture. Mater. Sci. Eng. A, 383, 191-200.
- Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S., Peltz M.A. (2014). Characterization of metal powders used for additive manufacturing. J. Res. Natl. Inst. Stand. Technol, 119, 460-493.
- Egger G., Gygax P.E., Glardon R., Karapatis N.P. (1999). Optimization of powder layer density in selective laser sintering. 10th Solid Free. Fabr. Symp, 255-263.
- Hebert R.J. (2016). Viewpoint metallurgical aspects of powder bed metal additive manufacturing. J. Mater. Sci, 51, 1165-1175.
- Strondl A., Lyckfeldt O., Brodin H., Ackelid U. (2015). Characterization and control of powder properties for additive manufacturing. Jom, 67, 549-554.
- Tan J.H., Wong W.L.E., Dalgarno K.W. (2017). An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Additive Manufacturing, 18, 228-255.
- Engeli R., Etter T., Hövel S., Wegener K. (2016). Processability of different IN738LC powder batches by selective laser melting. J. Mater. Process. Technol, 229, 484-491.
- Spierings A.B., Levy G. (2009). Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. Solid Free Fabr. Proc., 342-353.
- Zhang B., Coddet C. (2015). Selective laser melting of iron powder: observation of melting mechanism and densification behavior via point-track-surface-part research. J. Manuf. Sci. Eng., 138, 51001.
- Fischer P., Romano V., Weber H.P., Karapatis N.P., Boillat E., Glardon R. (2003). Sintering of commercially pure titanium powder with a Nd:YAG lasersource. Acta Mater, 51, 1651-1662.
- Rombouts M., Froyen L., Gusarov A.V., Bentefour E.H., Glorieux C. (2005). Photopyroelectric measurement of thermal conductivity of metallic powders, J. Appl. Phys., 97, 024905.
- Gusarov A.V., Laoui T., Froyen L., Titov V.I. (2003). Contact thermal conductivity of a powder bed in selective laser sintering. Int. J. Heat Mass Transf., 46, 1103-1109.
- Gu H., Gong H., Dilip J.J.S., Pal D., Hicks A., Doak H., Stucker B. (2014). Effects of powder variation on the microstructure and tensile strength of Ti6Al4Vparts fabricated by selective laser melting. Solid Free. Fabr. Symp., 470-483.
- Cheng B., Lydon J., Cooper K., Cole V., Northrop P., Chou K. (2017). Melt Pool Dimension Measurement In Selective Laser Melting Using Thermal Imaging. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference Reviewed Paper, 1252-1263.
- Rosser J., Megahed M., Mindt H.-W., Brown S.G.R., Lavery N.P. (2019). Computational modelling and experimental validation of single IN625 line tracks in laser powder bed fusion Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 1200-1215.
- Yadroitsev I., Krakhmalev P., Yadroitsava I., Johansson S., Smurova I. (2013). Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. Journal of Materials Processing Technology, 213 (4), 606-613.
- Savalani, M.M., Pizarro J.M. (2016). Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium. Rapid Prototyping Journal, 22 (1), 115-122. doi:10.1108/RPJ-07-2013-0076.
- Bidare P., Maier R.R.J., Beck R.J., Shephard J.D., Moore A.J. (2017). An open-architecture metal powder bed fusion system for in-situ process measurements Addit. Manuf, 16, 177-185.
- Loh Z.H. Liu, D.Q. Zhang, Wai Yee Yeong, Kai Ze Chua L.E. (2014). Effect of laser beam profile on melt track in Selective Laser Melting. Materials Science. – January 2014
- Okunkova A., Volosova M., Peretyagin P., Vladimirov Y., Zhirnov I., Gusarov A.V. (2014). Experimental Approbation of Selective Laser Melting of Powders by the Use of Non-Gaussian Power Density Distributions. Physics Procedia, 56, 48-57. doi:10.1016/j.phpro.2014.08.095
- Tien T.Roehling, Sheldon S.Q .Wu, Saad A. Khairallah, John D. Roehling, S. Stefan Soezeri, Michael F. Crumb, Manyalibo J. Matthews. (2017). Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Materialia, 128, 197-206. doi:10.1016/j.actamat.2017.02.025
- Alexander S. Metel, Michael M. Stebulyanin, Sergey V. Fedorov, Anna A. Okunkova (2019). Power Density Distribution for Laser Additive Manufacturing (SLM): Potential. Fundamentals and Advanced Applications Technologies, 7(1), 5. doi:10.3390/technologies7010005.
- Wischeropp Т. M., Salazar R., Herzog D., Emmelmann C. (2015). Simulation of the effect of different laser beam intensity profiles on heat distribution in selective laser melting. Lasers in Manufacturing Conference, 1-10.
- Cloots M., Uggowitzer P. J., Wegener K. (2016). Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles. Materials & Design, 89, 770-784. doi:10.1016/j.matdes.2015.10.027
- Okunkova A.A., Peretyagin P.Yu., Podrabinnik P.A., Zhirnov I.V., Gusarov A.V. (2017). Development of Laser Beam Modulation Assets for the Process Productivity Improvement of Selective Laser Melting. Procedia IUTAM, 23, 177-186. doi:10.1016/j.piutam.2017.06.019
- Gusarov A. V., Grigoriev S. N., Volosova M. A., Melnik Y. A., Laskin A., Kotoban D. V., Okunkova A. A. (2018). On productivity of laser additive manufacturing. Journal of Materials Processing Technology, 261, 213-232.
- Zhang D.Q., Liu Z.H., Kai Ze Chua. Investigation on forming process of copper alloys via Selective Laser Melting. High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, 285-289.
- Okunkova A. A., Peretyagin P., Vladimirov Y., Volosova M. A. (2014). Laser-beam modulation to improve efficiency of selecting laser melting for metal powders. Conference: SPIE Photonics Europe Proceedings, 91, 913524. doi:10.1117/12.2053602.
- Mertens R., Dadbakhsh S., Humbeeck J. V., Kruth J.-P. (2018). Application of base plate preheating during selective laser melting. Procedia CIRP, 74, 5-11. doi:10.1016/j.procir.2018.08.002
- Caprio L., Chiari G., Demir A., Previtali B. (2018). Development of Novel High Temperature Laser Powder Bed Fusion System for the Processing of Crack-Susceptible Alloys. Materials Science, 2275- 2285.
- Dai K., Shaw L. (2002). Preheating Effects on Multiple Material Laser Densification. 2002 International Solid Freeform Fabrication Symposium, 392-399. doi:10.26153/tsw/4499
- Sato Y., Tsukamoto M., Shobu T., Yamashita Y. Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum. Applied Physics A, 124 (4), 6. doi:10.1007/s00339-018-1712-4.
- Masmoudi A., Bolot R., Coddet C. (2015). Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. Journal of Materials Processing Technology, 225, 122-132. doi:10.1016/j.jmatprotec.2015.05.008
- Guo Q., Zhao C., Escano L. I., Young Z., Xiong L. (2018). Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta Materialia, 151, 169-180. doi:10.1016/j.actamat.2018.03.036.
- Anwar A. B., Pham Q.-C. (2017). Selective Laser Melting of AlSi10Mg. Effects of scan direction, part placement and inert gas flow velocity on tensile strength. Journal of Materials Processing Technology, 240, 388-396. doi:10.1016/j.jmatprotec.2016.10.015.
- Bauer D., Dietrich K., Walter M., Forêt P., Palm F., Witt, G. (2016). Effect of Process Gas and Powder Quality on Aluminum Alloys Processed by Laser Based Powder Bed Melting Process. Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 419-425.
- Nezhadfar P. D., Masoomi M., Thompson S., Phan N. (2018). Mechanical Properties of 17-4 Ph Stainless Steel Additively Manufactured Under Ar and N2 Shielding Gas. Conference: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 1301-1310. http://utw10945.utweb.utexas.edu/sites/default/files/2018/107%20MechanicalPropertiesof174PhStainlessSteelA.pdf
- Rakesh Ch. S., Raja A., Nadig P., Jayaganthan R., Vasa N. J. (2019). Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Materials Science and Engineering: A, 750, 141-151. doi:10.1016/j.msea.2019.01.103.
- Wang X.J., Zhang L.C., Fang M.H., Sercombe T.B. (2014). The effect of atmosphereon the structure and properties of a selective laser melted Al–12Si alloy. Materials Science and Engineering: A, 597, 370-375. doi:10.1016/j.msea.2014.01.012/
- Gu H., Gong H., Pal D. et al. (2013). Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. Solid Freeform Fabrication Symposium, 474-489.
- Yang J., Han J., Yu H. et al. (2016). Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Des, 110, 558–570.
- Kamath C. (2016). Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol, 86, 1659–1677.
- Wang D. (2012). Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. Int J Adv Manuf Technol, 58, 1189–1199.
- Dilip J.J.S., Zhang S., Teng C. (2017). Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Progress in Additive Manufacturing, 2, 157–167. doi:10.1007/s40964-017-0030-2
- Song B., Dong S., Liao H., Coddet C. (2012). Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol, 61, 967–974.
- Parida A.K., Maity K. (2018). Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Engineering Science and Technology, an International Journal, 21, 364–370.
- Narutaki N., Yamane Y., Hayashi K. et al. (1993). High-speed machining of Inconel 718 with ceramic tools. CIRP Annals, 42, 103–106.
- Lu L., Fuh J.Y.H., Chen Z.D. and all. (2000). In situ formation of TiC composite using selective laser melting. Materials Research Bulletin, 35, 1555–1561.
- Gong H., Gu H., Zeng K., Dilip J.J.S., Pal D., Stucker B. (2014). Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. Solid Freeform Fabrication Symposium, 256-267.
- Fotovvati B., Wayne S.F., Lewis G., Asadi E. (2018). A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng., 1–18. doi:10.1155/2018/4920718.
- Wang Z., Guan K., Gao M., Li X., Chen X., Zeng X. (2012). The microstructure and mechanical properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds, 513, 518-523. doi:10.1016/j.jallcom.2011.10.107
- Chlebus E., Gruber K., Kuźnicka B., Kurzac J., Kurzynowski T. (2015). Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A, 639, 647-655. doi:10.1016/j.msea.2015.05.035
- Popovich V.A., Borisov E.V., Popovich A.A., Sufiiarov V.Sh., Masaylo D.V., Alzina L. (2017). Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials & Design, 114, 441-449. doi:10.1016/j.matdes.2016.10.075
- Choi J.-P., Shin G.-H., Yang S., Yang D.-Y. (2017). Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technology, 310, 60-66. doi:10.1016/j.powtec.2017.01.030
- Yaakov I., Levine L. E., Allen A. J., Zhang F. (2016). Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy. JOM: the journal of the Minerals, Metals & Materials Society, 68(3), 950-958. doi:10.1007/s11837-015-1772-2
- Kuo Y.-L., Horikawa S., Kakehi K. (2017). Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing. Scripta Materialia, 129, 74-78. doi:10.1016/j.scriptamat.2016.10.035
- Yadroitsev I. et.al. (2007). Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied surface Science, 254 (4), 980-983. doi:10.1016/j.apsusc.2007.08.046
- Criales L.E., Arısoy Y.M., Lane B. et al. (2017). Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf, 121, 22–36.
- Аджамский С. В., Кононенко А. А. (2019). Закономерности влияния параметров процесса выборочного лазерного плавления (SLM) на формирование единичного слоя из жаропрочного никелиевого сплава Inconel 718. Лучевые технологии в сварке и обработке материалов, 9, 5-11.
- Аджамский С. В., Кононенко А. А., Подольский Р. В. (2020). Исследование влияния режимов SLM-процесса на качество в области контура изделий. Матеріали міжнародної науково-технічної конференції «Університетська наука – 2020» (20-21 травень 2020, Маріуполь), Маріуполь, 157–158.
- Williams R. J., Piglione A., Rønneberg T., Jones C., Pham M.-S., Davies C. M., Hooper P. A. (2019). In situ thermography for laser powder bed fusion: Effects of layertemperature on porosity, microstructure and mechanical properties. Additive Manufacturing, 1-14.
- Zheng B. et al. (2008). Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion. Metall. Mater. Trans. A Phys. Metall. Mater. Sci, 39 (9) 2237–2245
- Grasso M., Colosimo B.M. (2017). Process defects and in situ monitoring methods in metal powder bed fusion: a review. Measurement Science and Technology, 28, 1 – 25.
- Shiomi, M., Osakada, K., Nakamura, K., Yamashita, T., Abe, F. (2004). Residual stress within metallic model made by selective laser melting process. CIRP Annals Manufacturing Technology, 53 (1), 195-198.
- Zhang D., Niu W., Cao X., Liu Z. (2015). Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater. Sci. Eng. A, 644, 32–40. doi:10.1016/j.msea.2015.06.021
- Zhang Y., Li Z., Nie P., Wu Y. (2013). Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating. Metall. Mater. Trans. A Phys. Metall. Mater. Sci, 44, 708–716. doi:10.1007/s11661-012-1459-z
- Thomas G. Gallmeyera, Senthamilaruvi Moorthya, Branden B. Kappesa, Michael J. Millsb, Behnam Amin-Ahmadia, Aaron P. Stebner. (2020). Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Additive Manufacturing, 31, 100977. doi:10.1016/j.addma.2019.100977
- 2. Donachie M. J., Donachie S.J. (2020). Superalloys: a technical guide, second edition. ASM International, 409.
- Deng D. (2018). Additively Manufactured Inconel 718: Microstructures and Mechanical Properties. Linköping: Linköping University Electronic Press, P. 69.
- Hanning F. (2018). Weld Cracking in Precipitation Hardening Ni-based Superalloys. Technical report – Department of Materials and Manufacturing Technology, Chalmers University of Technology, 37
- Sims C.T., Stoloff N.S., Hagel W. C. (1987). Superalloys II: High-temperature materials for aerospace and industrial power, 640.
- Sjoberg G., Ingesten N.-G. (1991). Grain Boundary δ-phase Morphologies,Carbides and Notch Rupture Sensitivity of Cast Alloy 718. The minerals, metals & materials society, 603-620.
- Andersson J. (2011). Weldability of Precipitation Hardening Superalloys– Influence of Microstructure. Department of Materials and Manufacturing Technology. Chalmers University of Technology. Göteborg, Sweden, 66.
- Mitchell A. (1994). The precipitation of primary carbides in alloy 718. Superalloys 718, 625, 706, 65-78.
- Schirra J. J. (1991). The effect of Laves phase on the mechanical properties of wrought and cast + HIP Inconel 718. The minerals, metals & materials society, 375-388.
- Zhang D., Feng Z., Wang C., Wang W., Liu Z., Niu W. (2018). Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting. Materials Science and Engineering: A, 724, 357-367.
- Gallmeyer T. G., Moorthy S., Kappes B. B., Mills M. J., Amin-Ahmadi B., Stebner A. P. (2020). Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Additive Manufacturing, 31, 1-18. doi:10.1016/j.addma.2019.100977.
- Thompson R.G.; Dobbs J.; Mayo D. (1986). The effect of heat treatment on microfissuring in alloy 718. Weld J., 65, 299–304.
- Горелик С. С., Расторгуев Л. Н., Скаков Ю. А. (1970). Рентгенографический и электроннооптический анализ, М.: Металлургия, 366.
- Boesch W. J., Canada H. B. (1968). Precipitation reactions and stability of Ni3CB in Inconel alloy 718. International Symposium on Structural Stability in Superalloys, 579–596.
- Sundararaman, M., Mukhopadhyay, P., Banerjee, S. (1992). Some aspects of the precipitation of metastable intermetallic phases in Inconel 718. Metall. Trans. A., 23, 2015–2028.