Organic photovoltaic structures

Authors:

Bulavko Gennadiy V., Senior Researcher of the Colour and Structure of Organic Compounds Department of the Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ph.D. in Chemistry; Associate Professor of Supramolecular Chemistry Department of Educational and Scientific Institute of High Technologies of Taras Shevchenko National University of Kyiv. Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine, 02094 Kyiv, Murmanska St., 5; Educational and Scientific Institute of High Technologies of Taras Shevchenko National University of Kyiv, Ukraine, 03022 Kyiv Akademika Hlushkova avenue, 4-g.

ORCID: https://orcid.org/0000-0002-1725-4934

Scopus Author ID: 56095124500

 

Ishchenko Alexander A., Head of the Colour and Structure of Organic Compounds Department of the Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Professor, Academician of the National Academy of Sciences of Ukraine, Doctor of the Chemical Sciences. Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine, 02094 Kyiv, Murmanska St., 5; Educational and Scientific Institute of High Technologies of Taras Shevchenko National University of Kyiv, Ukraine, 03022 Kyiv Akademika Hlushkova avenue, 4-g.

ORCID: https://orcid.org/0000-0003-2722-3944

Scopus Author ID: 8338223800

 

Reviewers:

Kuchmiy Stepan Ya., Head of the Department of Photochemistry, Corresponding member of the National Academy of Sciences of Ukraine, Doctor of the Chemical Sciences. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Ukraine, 03028 Kyiv, Nauky Ave., 31.

ORCID: https://orcid.org/0000-0002-5576-5858

Scopus Author ID: 6603570730

 

Kolbasov Gennadiy Ya., Head of the Department of Electrochemistry and Fotoelectrochemistry of Non-metallic Systems, Corresponding member of the National Academy of Sciences of Ukraine, Doctor of the Chemical Sciences. V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Ukraine, 03142 Kyiv, Academician Palladin Ave., 32/34.

ORCID: https://orcid.org/0000-0001-9208-2135

Scopus Author ID: 7003674961

 

Affiliation:

Project: Scientific book

Year: 2022

Publisher: PH "Naukova Dumka"

Pages: 208

DOI:

https://doi.org/10.15407/978-966-00-1839-6

ISBN: 978-966-00-1839-6

Language: Ukrainian

How to Cite:

Bulavko, G., Ishchenko, A. (2022) Organic photovoltaic structures. Kyiv, Naukova Dumka. 208p. [in Ukrainian].

Abstract:

It is summarized and systematized the main approaches to creation of organic bulk heterojunction photovoltaic structures in the monograph. New photovoltaic materials based on fullerenes, conjugated polymers, organic dyes, graphenes and dendrimers are considered. The main attention is paid to the relationship between structure and material property. The morphology influence of the photoactive layer on the photovoltaic characteristics of solar cells is analyzed. The main ways of optimizing these characteristics are considered. The factors that determine them are identified and analyzed. New effects in organic photovoltaics – photocurrent hysteresis and photovoltaic effect of optically transparent materials – are discussed. Much attention is paid to the use of quantum chemical calculations for the interpretation of photovoltaic effects. The ways of purposeful design of new photovoltaic organic structures are proposed. The monograph will be useful to researchers and engineers working in the field of photonics, organic semiconductors, macromolecular compounds, organic chemistry, electronic structure of molecules and materials for photovoltaics, as well as university teachers, graduate students and students of chemical, physical and materials science profile.

Keywords:

photovoltaic structures; organic semiconductors; photoconductive polymers; polymethine dyes; electronic structure; spectral-fluorescence properties; electron-hole pairs; dissociation and recombination; frontier molecular orbitals

References:

  1. Bulavko G.V., Ishchenko A.A. Organic bulk heterojunction photovoltaic structures: design, morphology and properties. Russian Chemical Reviews. 2014. Vol. 83, N 7. P. 575–599.
  2. Chapin D.M., Fuller C.S., Pearson G.L. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics. 1954. Vol. 25, N 5. P. 676–677.
  3. Dulov A.A., Slinkin A.A. Organicheskie poluprovodniki. Moscow: Nauka, 1970. 125 p. [In Russian]
  4. Cidil’kovskij I.M. Elektrony i dyrki v poluprovodnikah. Energeticheskij spektr i dinamika. Moscow: Nauka, 1972. 640 p. [In Russian]
  5. Cidil’kovskij I.M. Elektrony i dyrki v poluprovodnikah. Energeticheskij spektr i dinamika. Moscow: Nauka, 1972. 640 p. [In Russian]
  6. Zhao J., Wang A., Green M.A., Ferrazza F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters. 1998. Vol. 73, N 14. P. 1991–1993.
  7. Ginley D.S., Cahen D. Fundamentals of Materials for Energy and Environmental Sustainability. Cambridge:Cambridge University Press, 2012. 695 с.
  8. McCann M., Catchpole K., Weber K., Blakers A. A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Solar Energy Materials and Solar Cells. 2001. Vol. 68, N 2. P. 135–171.
  9. Reinhard P., Buecheler S., Tiwari A.N. Technological status of Cu(In,Ga)(Se,S)2-based photovoltaics. Solar Energy Materials and Solar Cells. 2013. Vol. 119. P. 287–290.
  10. Chirilă A., Buecheler S., Pianezzi F. et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials. 2011. Vol. 10, N 11. P. 857–861.
  11. Polizzotti A., Repins I. L., Noufi R. et al.The state and future prospects of kesterite photovoltaics. Energy & Environmental Science. 2013. Vol. 6, N 11. P. 3171.
  12. Green M.A., Emery K., Hishikawa Y., Warta W. Solar cell efficiency tables (version 35). Progress in Photovoltaics: Research and Applications. 2010. Vol. 18, N 2. P. 144–150.
  13. Tao C.S., Jiang J., Tao M. Natural resource limitations to terawatt-scale solar cells. Solar Energy Materials and Solar Cells. 2011. Vol. 95, N 12. P. 3176–3180.
  14. Milichko V.A., Shalin A.S., Mukhin I.S. et al. Solar photovoltaics: current state and trends. Uspekhi Fizicheskih Nauk. 2016. Vol. 186, N 8. P. 801–852.
  15. Akkuratov A.V. Sintez novyh sopryazhennyh polimerov na osnove tiofena i benzotiadiazola – perspektivnyh fotoaktivnyh materialov dlya organicheskih solnechnyh batarej. Diss. kand. him. nauk. CHernogolovka:IPHF RAN, 2015. [In Russian]
  16. Dimroth F., Grave M., Beutel P. et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications. 2014. Vol. 22, N 3. P. 277–282.
  17. O’Regan B., Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991. Vol. 353, N 6346. P. 737–740.
  18. Dualeh A., Angelis F., Fantacci S. et al. Influence of Donor Groups of Organic D−π–A Dyes on Open-Circuit Voltage in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2012. Vol. 116, N 1. P. 1572–1578.
  19. Delcamp J.H., Yella A., Nazeeruddin M.K., Grätzel M. Modulating dye E(S+/S*) with efficient heterocyclic nitrogen containing acceptors for DSCs. Chemical Communications. 2012. Vol. 48, N 17. P. 2295.
  20. Park J., Barolo C., Sauvage F. et al. Symmetric vs. asymmetric squaraines as photosensitisers in mesoscopic injection solar cells: a structure–property relationship study. Chemical Communications. 2012. Vol. 48, N 22. P. 2782.
  21. Katono M., Bessho T., Wielopolski M. et al. Influence of the Anchoring Modes on the Electronic and Photovoltaic Properties of D−π–A Dyes. The Journal of Physical Chemistry C. 2012. Vol. 116, N 32. P. 16876–16884.
  22. Haid S., Marszalek M., Mishra A. et al. Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in π-Conjugated Donor-Acceptor Dyes. Advanced Functional Materials. 2012. Vol. 22, N 6. P. 1291–1302.
  23. Chang D.W., Tsao H.N., Salvatori P. et al. Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances. 2012. Vol. 2, N 15. P. 6209–6215.
  24. Powar S., Daeneke T., Ma M.T. et al. Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) Electrolytes. Angewandte Chemie International Edition. 2013. Vol. 52, N 2. P. 602–605.
  25. ed. S.-S. Sun, ed. N.S. Sariciftci Organic Photovoltaics: Mechanisms, Materials and Devices. CRC Press; Taylor and Francis Group, 2005. 674 p.
  26. Ishchenko A.A. In Speciality Polymers. Materials and Application. Ed. Mohammad F. New Delhi; Bangalore; Mumbai:International Publishing House Pvt., 2007. P. 397.
  27. Davidenko N.A., Ishchenko A.A., Kuvshinskij N.G. Fotonika molekulyarnyh poluprovodnikovyh kompozitov na osnove organicheskih krasitelej. Kiev:Naukova dumka, 2005. 295 p.[In Russian]
  28. Schmechel R., Seggern H. Electronic traps in organic transport layers. physica status solidi (a). 2004. Vol. 201, N 6. P. 1215–1235.
  29. Bulavko G.V., Davidenko N.A., Derevyanko N.A., Ishchenko A.A. Effect of Isomerism of Polymethine Dyes on Photovoltaic Properties of Carbazole- and Thiophene-Containing Polymeric Composites. Theoretical and Experimental Chemistry. 2017. Vol. 52, N 6. P. 331–336.
  30. Peet J., Heeger A.J., Bazan G.C. “Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation. Accounts of Chemical Research. 2009. Vol. 42, N 11. P. 1700–1708.
  31. Berson S., Bettignies R., Bailly S., Guillerez S. Poly(3-hexylthiophene) Fibers for Photovoltaic Applications. Advanced Functional Materials. 2007. Vol. 17, N 8. P. 1377–1384.
  32. Moulé A.J., Meerholz K. Controlling Morphology in Polymer–Fullerene Mixtures. Advanced Materials. 2008. Vol. 20, N 2. P. 240–245.
  33. Nelson J. Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Physical Review B. 2003. Vol. 67, N 15. P. 155209.
  34. Bulavko G.V., Davidenko N.A., Shkavro A.G. et al. Photovoltaic effect in dye-doped polymer films with free-surface and sandwich structures. Functional Materials Letters. 2017. Vol. 10, N 02. P. 1750007.
  35. Troshin P.A., Lyubovskaya R.N., Razumov V.F. Organicheskie solnechnye batarei: struktura, materialy, kriticheskie parametry i perspektivy razvitiya. Rossijskie nanotekhnologii. 2008. T. 3, N 5–6. P. 56–77. [In Russian]
  36. Tao C., Ruan S., Xie G. et al. Role of tungsten oxide in inverted polymer solar cells. Applied Physics Letters. 2009. Vol. 94, N 4. P. 043311.
  37. Liao H.-H., Chen L.-M., Xu Z. et al. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Applied Physics Letters. 2008. Vol. 92, N 17. P. 173303.
  38. Morteani A.C., Sreearunothai P., Herz L. M. et al. Exciton Regeneration at Polymeric Semiconductor Heterojunctions. Physical Review Letters. 2004. Vol. 92, N 24. P. 247402.
  39. Koster L.J. A., Smits E.C. P., Mihailetchi V.D., Blom P.W.M. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B. 2005. Vol. 72, N 8. P. 085205.
  40. Piliego C., Loi M.A. Charge transfer state in highly efficient polymer–fullerene bulk heterojunction solar cells. Journal of Materials Chemistry. 2012. Vol. 22, N 10. P. 4141.
  41. Blom P.W.M., Mihailetchi V.D., Koster L.J.A., Markov D.E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials. 2007. Vol. 19, N 12. P. 1551–1566.
  42. Kim J.Y., Kim S.H., Lee H.-H. et al. New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials. 2006. Vol. 18, N 5. P. 572–576.
  43. Hau S.K., Yip H.-L., Baek N.S. et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters. 2008. Vol. 92, N 25. P. 253301.
  44. Wei Q., Nishizawa T., Tajima K., Hashimoto K. Self-Organized Buffer Layers in Organic Solar Cells. Advanced Materials. 2008. Vol. 20, N 11. P. 2211–2216.
  45. Hsieh C.-H., Cheng Y.-J., Li P.-J. et al. Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer. Journal of the American Chemical Society. 2010. Vol. 132, N 13. P. 4887–4893.
  46. Meier H. Organic Semiconductors. Weinheim:Werlag Chemie, 1974. 661 p.
  47. Harima Y., Yamashita K., Suzuki H. Spectral sensitization in an organic p ‐ n junction photovoltaic cell. Applied Physics Letters. 1984. Vol. 45, N 10. P. 1144–1145.
  48. Tang C.W. Two‐layer organic photovoltaic cell. Applied Physics Letters. 1986. Vol. 48, N 2. P. 183–185.
  49. Sariciftci N.S., Heeger A.J. Conjugated polymer – acceptor heterojunctions: diodes, photodiodes, and photovoltaic cells. 1994.
  50. Sariciftci N.S., Smilowitz L., Heeger A.J., Wudl F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science. 1992. Vol. 258, N 5087. P. 1474–1476.
  51. Hoven C.V., Dang X.-D., Coffin R.C. et al.Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives. Advanced Materials. 2010. Vol. 22, N 8. P. E63–E66.
  52. Park S.H., Roy A., Beaupré S. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics. 2009. Vol. 3, N 5. P. 297–302.
  53. Wynands D., Levichkova M., Riede M. et al.Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. Journal of Applied Physics. 2010. Vol. 107, N 1. P. 014517.
  54. Bavel S., Veenstra S., Loos J. On the Importance of Morphology Control in Polymer Solar Cells. Macromolecular Rapid Communications. 2010. Vol. 31, N 21. P. 1835–1845.
  55. Perez M.D., Borek C., Forrest S.R., Thompson M.E. Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices. Journal of the American Chemical Society. 2009. Vol. 131, N 26. P. 9281–9286.
  56. Jo J., Na S.-I., Kim S.-S. et al. Three-Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells. Advanced Functional Materials. 2009. Vol. 19, N 15. P. 2398–2406.
  57. Zhou H., Yang L., You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules. 2012. Vol. 45, N 2. P. 607–632.
  58. Duan C., Huang F., Cao Y. Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. Journal of Materials Chemistry. 2012. Vol. 22, N 21. P. 10416.
  59. Zhang Z., Wang J. Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. Journal of Materials Chemistry. 2012. Vol. 22, N 10. P. 4178.
  60. Scharber M.C., Mühlbacher D., Koppe M. et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials. 2006. Vol. 18, N 6. P. 789–794.
  61. Kroto H.W., Heath J.R., O’Brien S.C. et al. C60: Buckminsterfullerene. Nature. 1985. Vol. 318, N 6042. P. 162–163.
  62. Davidenko N.A., Derevyanko N.A., Ishchenko A.A. et al. Near-infrared photosensitive composites with electron conductivity. High Energy Chemistry. 2006. Vol. 40, N 5. P. 336–340.
  63. Drechsel J., Männig B., Kozlowski F. et al. High efficiency organic solar cells based on single or multiple PIN structures. Thin Solid Films. 2004. Vol. 451–452. P. 515–517.
  64. Gommans H.H.P., Cheyns D., Aernouts T. et al. Electro-Optical Study of Subphthalocyanine in a Bilayer Organic Solar Cell. Advanced Functional Materials. 2007. Vol. 17, N 15. P. 2653–2658.
  65. Koeppe R., Sariciftci N.S., Troshin P.A., Lyubovskaya R.N. Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure. Applied Physics Letters. 2005. Vol. 87, N 24. P. 244102.
  66. Troshin P.A., Koeppe R., Peregudov A.S. et al. Supramolecular Association of Pyrrolidinofullerenes Bearing Chelating Pyridyl Groups and Zinc Phthalocyanine for Organic Solar Cells. Chemistry of Materials. 2007. Vol. 19, N 22. P. 5363–5372.
  67. Günes S., Neugebauer H., Sariciftci N.S. Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews. 2007. Vol. 107, N 4. P. 1324–1338.
  68. Kietzke T., Hörhold H.-H., Neher D. Efficient Polymer Solar Cells Based on M3EH−PPV. Chemistry of Materials. 2005. Vol. 17, N 26. P. 6532–6537.
  69. Hoppe H., Sariciftci N.S. Organic solar cells: An overview. Journal of Materials Research. 2004. Vol. 19, N 7. P. 1924–1945.
  70. Wienk M.M., Kroon J.M., Verhees W.J.H. et al. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angewandte Chemie International Edition. 2003. Vol. 42, N 29. P. 3371–3375.
  71. He Y., Li Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011. Vol. 13, N 6. P. 1970–1983.
  72. Padinger F., Rittberger R.S., Sariciftci N.S. Effects of Postproduction Treatment on Plastic Solar Cells. Advanced Functional Materials. 2003. Vol. 13, N 1. P. 85–88.
  73. Peet J., Tamayo A.B., Dang X.-D. et al. Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells. Applied Physics Letters. 2008. Vol. 93, N 16. P. 163306.
  74. Hoppe H., Sariciftci N.S. Polymer Solar Cells. Photoresponsive Polymers II. Berlin, Heidelberg:Springer Berlin Heidelberg, 2007. P. 1–86.
  75. Pandey S.S., Takashima W., Nagamatsu S. et al. Regioregularity vs Regiorandomness: Effect on Photocarrier Transport in Poly(3-hexylthiophene). Japanese Journal of Applied Physics. 2000. Vol. 39, N Part 2, No. 2A. P. L94–L97.
  76. Schilinsky P., Waldauf C., Brabec C.J. Performance Analysis of Printed Bulk Heterojunction Solar Cells. Advanced Functional Materials. 2006. Vol. 16, N 13. P. 1669–1672.
  77. Shrotriya V., Li G., Yao Y. et al. Accurate Measurement and Characterization of Organic Solar Cells. Advanced Functional Materials. 2006. Vol. 16, N 15. P. 2016–2023.
  78. Ma W., Yang C., Gong X. et al. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials. 2005. Vol. 15, N 10. P. 1617–1622.
  79. Reyes-Reyes M., Kim K., Dewald J. et al. Meso-Structure Formation for Enhanced Organic Photovoltaic Cells. Organic Letters. 2005. Vol. 7, N 26. P. 5749–5752.
  80. Zhao G., He Y., Li Y. 6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Advanced Materials. 2010. Vol. 22, N 39. P. 4355–4358.
  81. Chen H.-Y., Hou J., Zhang S. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics. 2009. Vol. 3, N 11. P. 649–653.
  82. He Z., Zhong C., Su S. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics. 2012. Vol. 6, N 9. P. 591–595.
  83. Nguyen T.L., Choi H., Ko S.-J. et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device. Energy Environ. Sci. 2014. Vol. 7, N 9. P. 3040–3051.
  84. An Q., Zhang F., Li L. et al. Enhanced performance of polymer solar cells by employing a ternary cascade energy structure. Phys. Chem. Chem. Phys. 2014. Vol. 16, N 30. P. 16103–16109.
  85. Liang Y., Xu Z., Xia J. et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials. 2010. Vol. 22, N 20. P. E135–E138.
  86. Wang H.-W., Pentzer E., Emrick T., Russell T.P. Preparation of Low Band Gap Fibrillar Structures by Solvent-Induced Crystallization. ACS Macro Letters. 2014. Vol. 3, N 1. P. 30–34.
  87. Soon Y.W., Cho H., Low J. et al. Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. Chemical Communications. 2013. Vol. 49, N 13. P. 1291.
  88. Arbab E.A.A., Taleatu B., Mola G.T. Environmental stability of PTB7:PCBM bulk heterojunction solar cell. Journal of Modern Optics. 2014. Vol. 61, N 21. P. 1749–1753.
  89. Blouin N., Michaud A., Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Advanced Materials. 2007. Vol. 19, N 17. P. 2295–2300.
  90. Peters C.H., Sachs-Quintana I.T., Kastrop J.P. et al. High Efficiency Polymer Solar Cells with Long Operating Lifetimes. Advanced Energy Materials. 2011. Vol. 1, N 4. P. 491–494.
  91. Sun Y., Takacs C.J., Cowan S.R. et al. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Advanced Materials. 2011. Vol. 23, N 19. P. 2226–2230.
  92. Synooka O., Eberhardt K.-R., Singh C.R. et al. Influence of Thermal Annealing on PCDTBT:PCBM Composition Profiles. Advanced Energy Materials. 2014. Vol. 4, N 5. P. 1300981.
  93. Ameri T., Dennler G., Lungenschmied C., Brabec C. J. Organic tandem solar cells: A review. Energy & Environmental Science. 2009. Vol. 2, N 4. P. 347.
  94. Brabec C., Dyakonov V., U.Scherf Organic Photovoltaics. Materials, Device Physics, and Manufacturing Technologies. Weinheim:Wiley, 2008. 642 с. ISBN 978-3-527-33225-0.
  95. Nam S., Kim J., Kim H., Kim Y. Effect of Film Thickness in Hybrid Polymer/Polymer Solar Cells with Zinc Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology. 2011. Vol. 11, N 7. P. 5733–5736.
  96. Theander M., Yartsev A., Zigmantas D. et al. Photoluminescence quenching at a polythiophene/C60 heterojunction. Physical Review B. 2000. Vol. 61, N 19. P. 12957–12963.
  97. Chu T.-Y., Lu J., Beaupré S. et al. Bulk Heterojunction Solar Cells Using Thieno[3,4- c ]pyrrole-4,6-dione and Dithieno[3,2- b :2′,3′- d ]silole Copolymer with a Power Conversion Efficiency of 7.3%. Journal of the American Chemical Society. 2011. Vol. 133, N 12. P. 4250–4253.
  98. Peet J., Kim J.Y., Coates N.E. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials. 2007. Vol. 6, N 7. P. 497–500.
  99. Mühlbacher D., Scharber M., Morana M. et al. High Photovoltaic Performance of a Low-Bandgap Polymer. Advanced Materials. 2006. Vol. 18, N 21. P. 2884–2889.
  100. Blouin N., Michaud A., Gendron D. et al. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society. 2008. Vol. 130, N 2. P. 732–742.
  101. Wu J.-S., Cheng Y.-J., Lin T.-Y. et al. Dithienocarbazole-Based Ladder-Type Heptacyclic Arenes with Silicon, Carbon, and Nitrogen Bridges: Synthesis, Molecular Properties, Field-Effect Transistors, and Photovoltaic Applications. Advanced Functional Materials. 2012. Vol. 22, N 8. P. 1711–1722.
  102. Price S.C., Stuart A.C., You W. Polycyclic Aromatics with Flanking Thiophenes: Tuning Energy Level and Band Gap of Conjugated Polymers for Bulk Heterojunction Photovoltaics. Macromolecules. 2010. Vol. 43, N 2. P. 797–804.
  103. Banerji N., Gagnon E., Morgantini P.-Y. et al. Breaking Down the Problem: Optical Transitions, Electronic Structure, and Photoconductivity in Conjugated Polymer PCDTBT and in Its Separate Building Blocks. The Journal of Physical Chemistry C. 2012. Vol. 116, N 21. P. 11456–11469.
  104. Wang E., Hou L., Wang Z. et al. An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells. Advanced Materials. 2010. Vol. 22, N 46. P. 5240–5244.
  105. Dierschke F., Grimsdale A.C., Müllen K. Efficient Synthesis of 2,7-Dibromocarbazoles as Components for Electroactive Materials. Synthesis. 2003. N 16. P. 2470–2472.
  106. Brzeziński J.Z., Reynolds J.R. A New, Improved and Convenient Synthesis of 4H-Cyclopenta[2,1-b:3,4-b′]-dithiophen-4-one. Synthesis. 2002. Vol. 2002, N 08. P. 1053–1056.
  107. Xiao S., Zhou H., You W. Conjugated Polymers of Fused Bithiophenes with Enhanced π-Electron Delocalization for Photovoltaic Applications. Macromolecules. 2008. Vol. 41, N 15. P. 5688–5696.
  108. ed. M. Leclerc, ed. J.F. Morin Design and Synthesis of Conjugated Polymers. Weinheim:Wiley-VCH, 2010. 379 p.
  109. Kowalski S., Allard S., Zilberberg K. et al. Direct arylation polycondensation as simplified alternative for the synthesis of conjugated (co)polymers. Progress in Polymer Science. 2013. Vol. 38, N 12. P. 1805–1814.
  110. ed. A.d. Meijere, ed. S. Brase, ed. M. Oestreich Metal Catalyzed Cross-Coupling Reactions and More. Weinheim:Wiley-VCH, 2014. 1576 p. ISBN 978-3-527-33154-3.
  111. Bao Z., Chan W.K., Yu L. Exploration of the Stille Coupling Reaction for the Synthesis of Functional Polymers. Journal of the American Chemical Society. 1995. Vol. 117, N 50. P. 12426–12435.
  112. Jo J., Pron A., Berrouard P. et al. A New Terthiophene-Thienopyrrolodione Copolymer-Based Bulk Heterojunction Solar Cell with High Open-Circuit Voltage. Advanced Energy Materials. 2012. Vol. 2, N 11. P. 1397–1403.
  113. Kowalski S., Allard S., Scherf U. Synthesis of Poly(4,4-dialkyl-cyclopenta[2,1- b :3,4- b ′]dithiophene- alt -2,1,3-benzothiadiazole) (PCPDTBT) in a Direct Arylation Scheme. ACS Macro Letters. 2012. Vol. 1, N 4. P. 465–468.
  114. Zhang F., Jespersen K.G., Björström C. et al. Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends. Advanced Functional Materials. 2006. Vol. 16, N 5. P. 667–674.
  115. Slooff L.H., Veenstra S.C., Kroon J.M. et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Applied Physics Letters. 2007. Vol. 90, N 14. P. 143506.
  116. Zhou H., Yang L., Stuart A.C. et al. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7 % Efficiency. Angewandte Chemie International Edition. 2011. Vol. 50, N 13. P. 2995–2998.
  117. Najari A., Beaupré S., Berrouard P. et al. Synthesis and Characterization of New Thieno[3,4-c]pyrrole-4,6-dione Derivatives for Photovoltaic Applications. Advanced Functional Materials. 2011. Vol. 21, N 4. P. 718–728.
  118. Peng Q., Liu X., Su D. et al. Novel Benzo[1,2- b :4,5- b ′]dithiophene-Benzothiadiazole Derivatives with Variable Side Chains for High-Performance Solar Cells. Advanced Materials. 2011. Vol. 23, N 39. P. 4554–4558.
  119. Liu B., Chen X., He Y. et al. New alkylthienyl substituted benzo[1,2-b:4,5-b′]dithiophene-based polymers for high performance solar cells. J. Mater. Chem. A. 2013. Vol. 1, N 3. P. 570–577.
  120. Zhou H., Yang L., Price S. C. et al. Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels. Angewandte Chemie International Edition. 2010. Vol. 49, N 43. P. 7992–7995.
  121. Chen M.-H., Hou J., Hong Z. et al. Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Advanced Materials. 2009. Vol. 21, N 42. P. 4238–4242.
  122. Moul A.J., Tsami A., Bünnagel T.W. et al. Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for High-Efficiency Bulk-Heterojunction-Type Solar Cells. Chemistry of Materials. 2008. Vol. 20, N 12. P. 4045–4050.
  123. Huo L., Chen H.-Y., Hou J. et al. Low band gap dithieno[3,2-b:2′,3′-d]silole-containing polymers, synthesis, characterization and photovoltaic application. Chemical Communications. 2009. N 37. P. 5570.
  124. Kim J., Yun M.H., Anant P. et al. Copolymers Comprising 2,7-Carbazole and Bis-benzothiadiazole Units for Bulk-Heterojunction Solar Cells. Chemistry – A European Journal. 2011. Vol. 17, N 51. P. 14681–14688.
  125. Mataka S., Takahashi K., Ikezaki Y. et al. Sulfur Nitride in Organic Chemistry. Part 19. Selective Formation of Benzo- and Benzobis[1,2,5]thiadiazole Skeleton in the Reaction of Tetrasulfur Tetranitride with Naphthalenols and Related Compounds. Bulletin of the Chemical Society of Japan. 1991. Vol. 64, N 1. P. 68–73.
  126. Li H., Tam T.L., Lam Y.M. et al. Synthesis of Low Band Gap [1,2,5]-Thiadiazolo[3,4- g ]quinoxaline and Pyrazino[2,3- g ]quinoxaline Derivatives by Selective Reduction of Benzo[1,2- c ;4,5- c ′]bis[1,2,5]thiadiazole. Organic Letters. 2011. Vol. 13, N 1. P. 46–49.
  127. Dexter Tam T.L., Salim T., Li H. et al. From benzobisthiadiazole, thiadiazoloquinoxaline to pyrazinoquinoxaline based polymers: effects of aromatic substituents on the performance of organic photovoltaics. Journal of Materials Chemistry. 2012. Vol. 22, N 35. P. 18528.
  128. Osaka I., Shimawaki M., Mori H. et al. Synthesis, Characterization, and Transistor and Solar Cell Applications of a Naphthobisthiadiazole-Based Semiconducting Polymer. Journal of the American Chemical Society. 2012. Vol. 134, N 7. P. 3498–3507.
  129. Vohra V., Kawashima K., Kakara T. et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics. 2015. Vol. 9, N 6. P. 403–408.
  130. Hou J., Chen T.L., Zhang S., Yang Y. Poly[4,4-bis(2-ethylhexyl)cyclopenta[2,1- b ;3,4- b′ ]dithiophene-2,6-diyl- alt -2,1,3- benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells. The Journal of Physical Chemistry C. 2009. Vol. 113, N 4. P. 1601–1605.
  131. Padhy H., Huang J.-H., Sahu D. et al. Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells. Journal of Polymer Science Part A: Polymer Chemistry. 2010. Vol. 48, N 21. P. 4823–4834.
  132. Zhao W., Cai W., Xu R. et al. Novel conjugated alternating copolymer based on 2,7-carbazole and 2,1,3-benzoselenadiazole. Polymer. 2010. Vol. 51, N 14. P. 3196–3202.
  133. Mikroyannidis J.A., Suresh P., Sharma G.D. Synthesis of benzoselenadiazole-based small molecule and phenylenevinylene copolymer and their application for efficient bulk heterojunction solar cells. Organic Electronics. 2010. Vol. 11, N 2. P. 311–321.
  134. Yang R., Tian R., Hou Q. et al. Synthesis and Optical and Electroluminescent Properties of Novel Conjugated Copolymers Derived from Fluorene and Benzoselenadiazole. Macromolecules. 2003. Vol. 36, N 20. P. 7453–7460.
  135. Chakravarthi N., Kranthiraja K., Song M. et al. New alkylselenyl substituted benzodithiophene-based solution-processable 2D π-conjugated polymers for bulk heterojunction polymer solar cell applications. Solar Energy Materials and Solar Cells. 2014. Vol. 122. P. 136–145.
  136. Yang J., Jiang C., Zhang Y. et al. High-Efficiency Saturated Red Emitting Polymers Derived from Fluorene and Naphthoselenadiazole. Macromolecules. 2004. Vol. 37, N 4. P. 1211–1218.
  137. Kurdyukova I.V., Ishchenko A.A. Organic dyes based on fluorene and its derivatives. Russian Chemical Reviews. 2012. Vol. 81, N 3. P. 258–290.
  138. Kurdyukova I.V., Derevyanko N.A., Ishchenko A.A., Mysyk D.D. Deeply colored anionic polymethine dyes derived from bis(2,2,3,3,4,4,5,5-octafluoropentyl) 9 H-fluorene-2,7-disulfonate. Russian Chemical Bulletin. 2009. Vol. 58, N 4. P. 828–837.
  139. Kurdyukova I.V., Ishchenko A.A. Dianionnye skvarilievyj i krokonievyj krasiteli na osnove tetranitrofluorena. Dopovіdі NAN Ukraїni. 2012. N 2. C. 151–157.[In Russian]
  140. Kurdyukova I.V., Derevyanko N.A., Ishchenko A.A., Mysyk D.D. Synthesis and spectral properties of merocyanine dyes based on fluorene and its derivatives. Russian Journal of General Chemistry. 2012. Vol. 82, N 4. P. 703–719.
  141. Kurdyukova I.V., Ishchenko A.A., Derevyanko N.A., Mysyk D.D. Synthesis and Spectral Properties of Merocyanine Dyes Derived from Tetranitrofluorene and Heterocycles of Various Electron-donating Ability. Chemistry of Heterocyclic Compounds. 2013. Vol. 49, N 2. P. 281–293.
  142. Kurdyukova I.V., Ishchenko A.A., Mysyk D.D. Synthesis and spectral properties of merocyanine dyes based on polynitrofluorenes. Russian Journal of General Chemistry. 2013. Vol. 83, N 7. P. 1349–1358.
  143. Kurdiukova I.V., Kulinich A.V., Ishchenko A.A. Near-infrared squarate and croconate dianions derived from tetranitrofluorene. New Journal of Chemistry. 2012. Vol. 36, N 8. P. 1564.
  144. Nie W., MacNeill C.M., Li Y. et al. Soluble High Molecular Weight Copolymer of Benzo[1,2-b:4,5-b′]dithiophene and Benzoxadiazole for Efficient Organic Photovoltaics. Macromolecular Rapid Communications. 2011. Vol. 32, N 15. P. 1163–1168.
  145. Goker S., Hizalan G., Aktas E. et al. 2,1,3-Benzooxadiazole, thiophene and benzodithiophene based random copolymers for organic photovoltaics: thiophene versus thieno[3,2-b]thiophene as π-conjugated linkers. New Journal of Chemistry. 2016. Vol. 40, N 12. P. 10455–10464.
  146. Dong Y., Cai W., Hu X. et al. Synthesis of novel narrow-band-gap copolymers based on [1,2,5]thiadiazolo[3,4-f]benzotriazole and their application in bulk-heterojunction photovoltaic devices. Polymer. 2012. Vol. 53, N 7. P. 1465–1472.
  147. Bailey-Salzman R.F., Rand B.P., Forrest S.R. Semitransparent organic photovoltaic cells. Applied Physics Letters. 2006. Vol. 88, N 23. P. 233502.
  148. Ng G.-M., Kietzke E.L., Kietzke T. et al. Optical enhancement in semitransparent polymer photovoltaic cells. Applied Physics Letters. 2007. Vol. 90, N 10. P. 103505.
  149. Huang J., Li G., Yang Y. A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process. Advanced Materials. 2008. Vol. 20, N 3. P. 415–419.
  150. Lee Y.-Y., Tu K.-H., Yu C.-C. et al. Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACS Nano. 2011. Vol. 5, N 8. P. 6564–6570.
  151. Ameri T., Dennler G., Waldauf C. et al. Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk-Heterojunction Organic Solar Cells in an Inverted Structure. Advanced Functional Materials. 2010. Vol. 20, N 10. P. 1592–1598.
  152. Gaynor W., Lee J.-Y., Peumans P. Fully Solution-Processed Inverted Polymer Solar Cells with Laminated Nanowire Electrodes. ACS Nano. 2010. Vol. 4, N 1. P. 30–34.
  153. Colsmann A., Puetz A., Bauer A. et al. Efficient Semi-Transparent Organic Solar Cells with Good Transparency Color Perception and Rendering Properties. Advanced Energy Materials. 2011. Vol. 1, N 4. P. 599–603.
  154. Lunt R.R., Bulovic V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Applied Physics Letters. 2011. Vol. 98, N 11. P. 113305.
  155. Meiss J., Holzmueller F., Gresser R. et al. Near-infrared absorbing semitransparent organic solar cells. Applied Physics Letters. 2011. Vol. 99, N 19. P. 193307.
  156. Bauer A., Wahl T., Hanisch J., Ahlswede E. ZnO:Al cathode for highly efficient, semitransparent 4% organic solar cells utilizing TiO x and aluminum interlayers. Applied Physics Letters. 2012. Vol. 100, N 7. P. 073307.
  157. Chen C.-C., Dou L., Zhu R. et al. Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano. 2012. Vol. 6, N 8. P. 7185–7190.
  158. Zhu R., Chung C.-H., Cha K.C. et al. Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano. 2011. Vol. 5, N 12. P. 9877–9882.
  159. Baran D., Kirchartz T., Wheeler S. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy & Environmental Science. 2016. Vol. 9, N 12. P. 3783–3793.
  160. Sharma G.D., Balraju P., Mikroyannidis J.A., Stylianakis M.M. Bulk heterojunction organic photovoltaic devices based on low band gap small molecule BTD-TNP and perylene–anthracene diimide. Solar Energy Materials and Solar Cells. 2009. Vol. 93, N 11. P. 2025–2028.
  161. Sharma G.D., Suresh P., Mikroyannidis J.A., Stylianakis M.M. Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide. Journal of Materials Chemistry. 2010. Vol. 20, N 3. P. 561–567.
  162. Mikroyannidis J.A., Suresh P., Sharma G.D. Synthesis of a perylene bisimide with acetonaphthopyrazine dicarbonitrile terminal moieties for photovoltaic applications. Synthetic Metals. 2010. Vol. 160, N 9–10. P. 932–938.
  163. Sharenko A., Proctor C.M., Poll T.S. et al. High-Performing Solution-Processed Small Molecule:Perylene Diimide Bulk Heterojunction Solar Cell. Advanced Materials. 2013. Vol. 25, N 32. P. 4403–4406.
  164. Li C., Wonneberger H. Perylene Imides for Organic Photovoltaics: Yesterday, Today, and Tomorrow. Advanced Materials. 2012. Vol. 24, N 5. P. 613–636.
  165. Mihailetchi V.D., Duren J.K.J. van Blom P.W.M. et al. Electron Transport in a Methanofullerene. Advanced Functional Materials. 2003. Vol. 13, N 1. P. 43–46.
  166. Howard I.A., Laquai F., Keivanidis P.E. et al. Perylene Tetracarboxydiimide as an Electron Acceptor in Organic Solar Cells: A Study of Charge Generation and Recombination. The Journal of Physical Chemistry C. 2009. Vol. 113, N 50. P. 21225–21232.
  167. Dittmer J.J., Marseglia E.A., Friend R.H. Electron Trapping in Dye/Polymer Blend Photovoltaic Cells. Advanced Materials. 2000. Vol. 12, N 17. P. 1270–1274.
  168. Chesterfield R.J., McKeen J.C., Newman C.R. et al. Organic Thin Film Transistors Based on N -Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature. The Journal of Physical Chemistry B. 2004. Vol. 108, N 50. P. 19281–19292.
  169. Rajaram S., Shivanna R., Kandappa S.K., Narayan K.S. Nonplanar Perylene Diimides as Potential Alternatives to Fullerenes in Organic Solar Cells. The Journal of Physical Chemistry Letters. 2012. Vol. 3, N 17. P. 2405–2408.
  170. Sonar P., Fong Lim J.P., Chan K.L. Organic non-fullerene acceptors for organic photovoltaics. Energy & Environmental Science. 2011. Vol. 4, N 5. P. 1558.
  171. Sommer M., Huettner S., Thelakkat M. Donor–acceptor block copolymers for photovoltaic applications. Journal of Materials Chemistry. 2010. Vol. 20, N 48. P. 10788.
  172. Zhan X., Tan Z., Domercq B. et al. A High-Mobility Electron-Transport Polymer with Broad Absorption and Its Use in Field-Effect Transistors and All-Polymer Solar Cells. Journal of the American Chemical Society. 2007. Vol. 129, N 23. P. 7246–7247.
  173. Hou J., Zhang S., Chen T.L., Yang Y. A new n-type low bandgap conjugated polymer P-co-CDT: synthesis and excellent reversible electrochemical and electrochromic properties. Chemical Communications. 2008. N 45. P. 6034.
  174. Kim K.-S., Jeong S., Kim C., Kim H. et al. Synthesis and Optical Properties of n -Type Polymers Containing Perylene Moieties. Molecular Crystals and Liquid Crystals. 2010. Vol. 532, N 1. P. 29/[445]-38/[454].
  175. Sakai J., Taima T., Yamanari T., Saito K. Annealing effect in the sexithiophene:C70 small molecule bulk heterojunction organic photovoltaic cells. Solar Energy Materials and Solar Cells. 2009. Vol. 93, N 6–7. P. 1149–1153.
  176. Sakai J., Taima T., Saito K. Efficient oligothiophene:fullerene bulk heterojunction organic photovoltaic cells. Organic Electronics. 2008. Vol. 9, N 5. P. 582–590.
  177. Barbarella G., Favaretto L., Sotgiu G. et al. Oligothiophene S , S -Dioxides. Synthesis and Electronic Properties in Relation to the Parent Oligothiophenes. The Journal of Organic Chemistry. 1998. Vol. 63, N 16. P. 5497–5506.
  178. Barbarella G., Pudova O., Arbizzani C. et al.Oligothiophene- S , S -dioxides: a New Class of Thiophene-based Materials. The Journal of Organic Chemistry. 1998. Vol. 63, N 5. P. 1742–1745.
  179. Ridolfi G., Camaioni N., Samorì P. et al. All-thiophene donor–acceptor blends: photophysics, morphology and photoresponse. Journal of Materials Chemistry. 2005. Vol. 15, N 8. P. 895–901.
  180. Camaioni N., Ridolfi G., Fattori V. et al. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics. Applied Physics Letters. 2004. Vol. 84, N 11. P. 1901–1903.
  181. Barbarella G., Favaretto L., Zanelli A. et al. V-Shaped Thiophene-Based Oligomers with Improved Electroluminescence Properties. Advanced Functional Materials. 2005. Vol. 15, N 4. P. 664–670.
  182. Camaioni N., Ridolfi G., Fattori V. et al. Branched thiophene-based oligomers as electron acceptors for organic photovoltaics. Journal of Materials Chemistry. 2005. Vol. 15, N 22. P. 2220.
  183. Bostwick A., Ohta T., Seyller T. et al. Quasiparticle dynamics in graphene. Nature Physics. 2007. Vol. 3, N 1. P. 36–40.
  184. McCann E., Koshino M. The electronic properties of bilayer graphene. Reports on Progress in Physics. 2013. Vol. 76, N 5. P. 056503.
  185. Peres N.M.R., Ribeiro R.M. FOCUS ON GRAPHENE. New Journal of Physics. 2009. Vol. 11, N 9. P. 095002.
  186. Geim A.K. Graphene: Status and Prospects. Science. 2009. Vol. 324, N 5934. P. 1530–1534.
  187. Flynn G.W. Perspective: The dawning of the age of graphene. The Journal of Chemical Physics. 2011. Vol. 135, N 5. P. 050901.
  188. Sun Z., Yan Z., Yao J. et al. Growth of graphene from solid carbon sources. Nature. 2010. Vol. 468, N 7323. P. 549–552.
  189. Wan X., Long G., Huang L., Chen Y. Graphene – A Promising Material for Organic Photovoltaic Cells. Advanced Materials. 2011. Vol. 23, N 45. P. 5342–5358.
  190. Gilje S., Han S., Wang M. et al. Chemical Route to Graphene for Device Applications. Nano Letters. 2007. Vol. 7, N 11. P. 3394–3398.
  191. Gunlycke D., Areshkin D.A., White C.T. Semiconducting graphene nanostrips with edge disorder. Applied Physics Letters. 2007. Vol. 90, N 14. P. 142104.
  192. Ouyang Y., Yoon Y., Fodor J.K., Guo J. Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors. Applied Physics Letters. 2006. Vol. 89, N 20. P. 203107.
  193. Han M.Y., Özyilmaz B., Zhang Y., Kim P. Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters. 2007. Vol. 98, N 20. P. 206805.
  194. Trauzettel B., Bulaev D.V., Loss D., Burkard G. Spin qubits in graphene quantum dots. Nature Physics. 2007. Vol. 3, N 3. P. 192–196.
  195. Berson S., de Bettignies R., Bailly S. et al. Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells. Advanced Functional Materials. 2007. Vol. 17, N 16. P. 3363–3370.
  196. Liu Q., Liu Z., Zhang X. et al. Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT. Advanced Functional Materials. 2009. Vol. 19, N 6. P. 894–904.
  197. Wang X., Zhi L., Müllen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters. 2008. Vol. 8, N 1. P. 323–327.
  198. Kymakis E., Servati P., Tzanetakis P. et al. Effective mobility and photocurrent in carbon nanotube–polymer composite photovoltaic cells. Nanotechnology. 2007. Vol. 18, N 43. P. 435702.
  199. Liu Z., He D., Wang Y. et al. Graphene doping of P3HT:PCBM photovoltaic devices. Synthetic Metals. 2010. Vol. 160, N 9–10. P. 1036–1039.
  200. Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958. Vol. 80, N 6. P. 1339–1339.
  201. Stankovich S., Dikin D.A., Dommett G.H.B. et al. Graphene-based composite materials. Nature. 2006. Vol. 442, N 7100. P. 282–286.
  202. Liu Z., Liu Q., Huang Y. et al. Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Advanced Materials. 2008. Vol. 20, N 20. P. 3924–3930.
  203. Liu Q., Liu Z., Zhang X. et al. Organic photovoltaic cells based on an acceptor of soluble graphene. Applied Physics Letters. 2008. Vol. 92, N 22. P. 223303.
  204. Kim Y.-H., Lee S.-H., Noh J., Han S.-H. Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid Films. 2006. Vol. 510, N 1–2. P. 305–310.
  205. van de Lagemaat J., Barnes T.M., Rumbles G. et al. Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Applied Physics Letters. 2006. Vol. 88, N 23. P. 233503.
  206. Li S.-S., Tu K.-H., Lin C.-C. et al. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano. 2010. Vol. 4, N 6. P. 3169–3174.
  207. Schniepp H.C., Li J.-L., McAllister M. J. et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B. 2006. Vol. 110, N 17. P. 8535–8539.
  208. Lerf A., He H., Forster M., Klinowski J. Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B. 1998. Vol. 102, N 23. P. 4477–4482.
  209. He H., Klinowski J., Forster M., Lerf A. A new structural model for graphite oxide. Chemical Physics Letters. 1998. Vol. 287, N 1–2. P. 53–56.
  210. Mattevi C., Eda G., Agnoli S. et al. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials. 2009. Vol. 19, N 16. P. 2577–2583.
  211. Eda G., Mattevi C., Yamaguchi H. et al. Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C. 2009. Vol. 113, N 35. P. 15768–15771.
  212. Eda G., Fanchini G., Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology. 2008. Vol. 3, N 5. P. 270–274.
  213. Gómez-Navarro C., Weitz R.T., Bittner A.M. et al. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters. 2007. Vol. 7, N 11. P. 3499–3503.
  214. Wang S., Chia P.-J., Chua L.-L. et al. Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets. Advanced Materials. 2008. Vol. 20, N 18. P. 3440–3446.
  215. Yu Y.-J., Zhao Y., Ryu S. et al. Tuning the Graphene Work Function by Electric Field Effect. Nano Letters. 2009. Vol. 9, N 10. P. 3430–3434.
  216. Watcharotone S., Dikin D.A., Stankovich S. et al. Graphene−Silica Composite Thin Films as Transparent Conductors. Nano Letters. 2007. Vol. 7, N 7. P. 1888–1892.
  217. Li D., Kaner R.B. MATERIALS SCIENCE: Graphene-Based Materials. Science. 2008. Vol. 320, N 5880. P. 1170–1171.
  218. Becerril H.A., Mao J., Liu Z. et al. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano. 2008. Vol. 2, N 3. P. 463–470.
  219. Wang Y., Chen X., Zhong Y. et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters. 2009. Vol. 95, N 6. P. 063302.
  220. Eda G., Lin Y.-Y., Miller S. et al. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters. 2008. Vol. 92, N 23. P. 233305.
  221. Su Q., Pang S., Alijani V. et al. Composites of Graphene with Large Aromatic Molecules. Advanced Materials. 2009. Vol. 21, N 31. P. 3191–3195.
  222. Xu Y., Long G., Huang L. et al. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon. 2010. Vol. 48, N 11. P. 3308–3311.
  223. Cox M., Gorodetsky A., Kim B. et al. Single-layer graphene cathodes for organic photovoltaics. Applied Physics Letters. 2011. Vol. 98, N 12. P. 123303.
  224. Sahoo N.G., Pan Y., Li L., Chan S.H. Graphene-Based Materials for Energy Conversion. Advanced Materials. 2012. Vol. 24, N 30. P. 4203–4210.
  225. Liu L., Kan Y., Gao K. et al. Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity. Advanced Materials. 2020. Vol. 32, N 11. P. 1907604.
  226. Lopez S.A., Sanchez-Lengeling B., de Goes Soares J., Aspuru-Guzik A. Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics. Joule. 2017. Vol. 1, N 4. P. 857–870.
  227. Ruderer M.A., Müller-Buschbaum P. Morphology of polymer-based bulk heterojunction films for organic photovoltaics. Soft Matter. 2011. Vol. 7, N 12. P. 5482.
  228. Li L., Lu G., Yang X. Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. Journal of Materials Chemistry. 2008. Vol. 18, N 17. P. 1984.
  229. Moule A.J., Meerholz K. Inside Front Cover: Controlling Morphology in Polymer–Fullerene Mixtures (Adv. Mater. 2/2008). Advanced Materials. 2008. Vol. 20, N 2. P. 240–245.
  230. Bertho S., Oosterbaan W.D., Vrindts V. et al. Controlling the morphology of nanofiber-P3HT:PCBM blends for organic bulk heterojunction solar cells. Organic Electronics. 2009. Vol. 10, N 7. P. 1248–1251.
  231. Troshin P.A., Hoppe H., Renz J. et al. Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells. Advanced Functional Materials. 2009. Vol. 19, N 5. P. 779–788.
  232. Kostner C., Susarova D.K., Jadhav R. et al. Morphology evaluation of a polymer–fullerene bulk heterojunction ensemble generated by the fullerene derivatization. Journal of Materials Chemistry. 2012. Vol. 22, N 31. P. 15987.
  233. Mayorova J.Y., Nikitenko S.L., Troshin P.A. et al. Synthesis and investigation of fullerene-based acceptor materials. Mendeleev Communications. 2007. Vol. 17, N 3. P. 175–177.
  234. Shaheen S.E., Brabec C.J., Sariciftci N.S. et al. 2.5% efficient organic plastic solar cells. Applied Physics Letters. 2001. Vol. 78, N 6. P. 841–843.
  235. Hoppe H., Sariciftci N.S. Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry. 2006. Vol. 16, N 1. P. 45–61.
  236. Min J., Luponosov Y.N., Ameri T. et al. A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Organic Electronics. 2013. Vol. 14, N 1. P. 219–229.
  237. Lee J.K., Ma W.L., Brabec C.J. et al. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society. 2008. Vol. 130, N 11. P. 3619–3623.
  238. Yao Y., Hou J., Xu Z. et al. Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells. Advanced Functional Materials. 2008. Vol. 18, N 12. P. 1783–1789.
  239. Peet J., Cho N.S., Lee S.K., Bazan G.C. Transition from Solution to the Solid State in Polymer Solar Cells Cast from Mixed Solvents. Macromolecules. 2008. Vol. 41, N 22. P. 8655–8659.
  240. Renz J.A., Ashraf R.S., Erb T. et al. Correlation Between Crystallinity and Solar-Cell Efficiency of the Low-Bandgap Polymer PDDTP. Macromolecular Chemistry and Physics. 2010. Vol. 211, N 15. P. 1689–1694.
  241. Kleymyuk E.A., Troshin P.A., Khakina E.A. et al. 3D quater- and quinquethiophenesilanes as promising electron-donor materials for BHJ photovoltaic cells and photodetectors. Energy & Environmental Science. 2010. Vol. 3, N 12. P. 1941.
  242. Valitov M.I., Romanova I.P., Gromchenko А.A. et al. Indolinone-substituted methanofullerene—A new acceptor for organic solar cells. Solar Energy Materials and Solar Cells. 2012. Vol. 103. P. 48–52.
  243. Burkhard G.F., Hoke E.T., Scully S.R., McGehee M.D. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells. Nano Letters. 2009. Vol. 9, N 12. P. 4037–4041.
  244. Bakulin A.A., Hummelen J.C., Pshenichnikov M.S., van Loosdrecht P.H.M. Ultrafast Hole-Transfer Dynamics in Polymer/PCBM Bulk Heterojunctions. Advanced Functional Materials. 2010. Vol. 20, N 10. P. 1653–1660.
  245. Wei H.-Y., Huang J.-H., Ho K.-C., Chu C.-W. A Strategic Buffer Layer of Polythiophene Enhances the Efficiency of Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces. 2010. Vol. 2, N 5. P. 1281–1285.
  246. Bjerring M., Nielsen J.S., Nielsen N.C., Krebs F.C. Polythiophene by Solution Processing. Macromolecules. 2007. Vol. 40, N 16. P. 6012–6013.
  247. Gevorgyan S.A., Krebs F.C. Bulk Heterojunctions Based on Native Polythiophene. Chemistry of Materials. 2008. Vol. 20, N 13. P. 4386–4390.
  248. Crispin X., Jakobsson F.L.E., Crispin A. et al. The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes. Chemistry of Materials. 2006. Vol. 18, N 18. P. 4354–4360.
  249. de Kok M.M., Buechel M., Vulto S.I.E. et al. Modification of PEDOT:PSS as hole injection layer in polymer LEDs. physica status solidi (a). 2004. Vol. 201, N 6. P. 1342–1359.
  250. Hwang J., Amy F., Kahn A. Spectroscopic study on sputtered PEDOT·PSS: Role of surface PSS layer. Organic Electronics. 2006. Vol. 7, N 5. P. 387–396.
  251. Sahingoz R., Soykan C., Yakuphanoglu F. et al. The determination of the conduction mechanism and extraction of diode parameters of ITO/PEDOT-PSS/POLYMER/Al heterojunction diode. Optical Materials. 2006. Vol. 28, N 8–9. P. 962–965.
  252. Lam L., McBride J.W., Swingler J. The influence of thermal cycling and compressive force on the resistance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid)-coated surfaces. Journal of Applied Polymer Science. 2006. Vol. 101, N 4. P. 2445–2452.
  253. Kugler T., Salaneck W.R., Rost H., Holmes A.B. Polymer band alignment at the interface with indium tin oxide: consequences for light emitting devices. Chemical Physics Letters. 1999. Vol. 310, N 5–6. P. 391–396.
  254. Kemerink M., Timpanaro S., de Kok M.M. et al. Three-Dimensional Inhomogeneities in PEDOT:PSS Films. The Journal of Physical Chemistry B. 2004. Vol. 108, N 49. P. 18820–18825.
  255. Tait J.G., Worfolk B.J., Maloney S.A. et al. Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Solar Energy Materials and Solar Cells. 2013. Vol. 110. P. 98–106.
  256. John H., Bauer R., Espindola P. et al. 3D-Hybrid Networks with Controllable Electrical Conductivity from the Electrochemical Deposition of Terthiophene-Functionalized Polyphenylene Dendrimers. Angewandte Chemie International Edition. 2005. Vol. 44, N 16. P. 2447–2451.
  257. Lo S.-C., Burn P.L. Development of Dendrimers: Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells. Chemical Reviews. 2007. Vol. 107, N 4. P. 1097–1116.
  258. Roncali J., Leriche P., Cravino A. From One- to Three-Dimensional Organic Semiconductors: In Search of the Organic Silicon? Advanced Materials. 2007. Vol. 19, N 16. P. 2045–2060.
  259. Andreitchenko E.V., Clark C.G., Bauer R.E. et al. Pushing the Synthetic Limit: Polyphenylene Dendrimers with “Exploded” Branching Units—22-nm-Diameter, Monodisperse, Stiff Macromolecules. Angewandte Chemie International Edition. 2005. Vol. 44, N 39. P. 6348–6354.
  260. Kimoto A., Cho J.-S., Ito K. et al. Novel Hole-Transport Material for Efficient Polymer Light-Emitting Diodes by Photoreaction. Macromolecular Rapid Communications. 2005. Vol. 26, N 8. P. 597–601.
  261. Xia C., Fan X., Locklin J. et al. Characterization, Supramolecular Assembly, and Nanostructures of Thiophene Dendrimers. Journal of the American Chemical Society. 2004. Vol. 126, N 28. P. 8735–8743.
  262. Ma C.-Q., Fonrodona M., Schikora M.C. et al. Solution-Processed Bulk-Heterojunction Solar Cells Based on Monodisperse Dendritic Oligothiophenes. Advanced Functional Materials. 2008. Vol. 18, N 20. P. 3323–3331.
  263. Ishchenko A.A. Structure and spectral-luminescent properties of polymethine dyes. Russian Chemical Reviews. 1991. Vol. 60, N 8. P. 865–884.
  264. Barger W.R., Hur E., Ferraudi G. et al. Phthalocyanines, Properties and Applications. New York:VCH, 1989. 520 с.
  265. Davidenko N.A., Ishchenko A.A., Kulinich A.V., Studzinsky S.L. Effect of concentration of anionic polymethine dye in poly-N-epoxypropylcarbazole polymer film composite on the spectral-luminescent properties and photoconductivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012. Vol. 98. P. 271–274.
  266. Castro F. A., Benmansour H., Moser J.-E. et al. Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield. Physical Chemistry Chemical Physics. 2009. Vol. 11, N 39. P. 8886.
  267. Benmansour H., Castro F.A., Nagel M. et al. Ionic Space Charge Driven Organic Photovoltaic Devices. CHIMIA International Journal for Chemistry. 2007. Vol. 61, N 12. P. 787–791.
  268. Bulavko G.V., Ishchenko A.A., Davidenko N.A. et al. Photoelectric and Spectral Properties of Composite Films Based on GCBE-Oligomer with Different Concentrations of Polymethine Dyes. French-Ukrainian Journal of Chemistry. 2013. Vol. 1, N 1. P. 129–133.
  269. Bulavko G.V., Davidenko N.A., Davidenko I.I. et al. Photovoltaic Characteristics of Film Composites Based on Glycidylcarbazole Cooligomer with Symmetrical Cationic Polymethine Dyes. Theoretical and Experimental Chemistry. 2013. Vol. 49, N 4. P. 219–223.
  270. Bliznyuk V.N., Gasiorowski J., Ishchenko A.A. et al. Photoresistance and photo induced current hysteresis in bulk heterojunction systems P3HT–PCBM–polymethine dye. Organic Electronics. 2014. Vol. 15, N 6. P. 1105–1112.
  271. Bulavko G.V., Davidenko N.A., Derevyanko N.A., Ishchenko A.A. Effects of the nature of the anion of cationic polymethine dyes on the photovoltaic properties of polymer photosemiconductor composites. High Energy Chemistry. 2015. Vol. 49, N 5. P. 331–335.
  272. Bulavko G.V., Davidenko N.A., Derevyanko N.A. et al. Effect of the Structure of Polymethine Dyes on Their Photovoltaic Properties in Polymer Films. Theoretical and Experimental Chemistry. 2015. Vol. 51, N 1. P. 37–44.
  273. Bulavko G.V., Davidenko N.A., Ishchenko A.A. et al. Peculiarities of the photovoltaic properties of films based on photoconducting polymer and organic dye in samples with free surfaces and between electric contacts. Technical Physics Letters. 2015. Vol. 41, N 2. P. 191–194.
  274. Bliznyuk V.N., Gasiorowski J., Ishchenko A.A. et al. Photovoltaic cells based on ternary P3HT:PCBM:polymethine dye active layer transparent in the visible range of light. Applied Surface Science. 2016. Vol. 389. P. 419–427.
  275. Kulinich A.V., Ishchenko A.A., Bulavko G.V., Davidenko N.A. Effect of Structure on the Photovoltaic Properties of Merocyanine Dyes in Polymer Films. Theoretical and Experimental Chemistry. 2018. Vol. 54, N 3. P. 178–185.
  276. Azovskyi V.A., Yashchuk V.M., Bulavko G.V., Ishchenko A.A. Some Problems in Designing a Luminescence Converter for Si Solar Cells. Ukrainian Journal of Physics. 2020. Vol. 65, N 6. P. 476.
  277. Arslanov V.V. Polymer monolayers and Langmuir–Blodgett films. Polythiophenes. Russian Chemical Reviews. 2000. Vol. 69, N 10. P. 883–898.
  278. Zhang H., Wan X., Xue X. et al. Selective Tuning of the HOMO-LUMO Gap of Carbazole-Based Donor-Acceptor-Donor Compounds toward Different Emission Colors. European Journal of Organic Chemistry. 2010. Vol. 2010, N 9. P. 1681–1687.
  279. Zhang K., Tao Y., Yang C. et al. Synthesis and Properties of Carbazole Main Chain Copolymers with Oxadiazole Pendant toward Bipolar Polymer Host: Tuning the HOMO/LUMO Level and Triplet Energy. Chemistry of Materials. 2008. Vol. 20, N 23. P. 7324–7331.
  280. Dennler G., Scharber M.C., Brabec C.J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials. 2009. Vol. 21, N 13. P. 1323–1338.
  281. Shrotriya V., Ouyang J., Tseng R.J. et al. Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. Chemical Physics Letters. 2005. Vol. 411, N 1–3. P. 138–143.
  282. Nolasco J.C., Cabré R., Ferré-Borrull J. et al. Extraction of poly (3-hexylthiophene) (P3HT) properties from dark current voltage characteristics in a P3HT/n-crystalline-silicon solar cell. Journal of Applied Physics. 2010. Vol. 107, N 4. P. 044505.
  283. Alferov Zh.I. The semiconductor revolution in the 20th century. Russian Chemical Reviews. 2013. Vol. 82, N 7. P. 587–596.
  284. Danovich D., Apeloig Y., Shaik S. A reliable and inexpensive method for calculating ionization potentials and electron affinities of radicals and molecules. Journal of the Chemical Society, Perkin Transactions 2. 1993. N 3. P. 321.
  285. Ishchenko A.A. Stroenie i spektral’no-lyuminescentnye svojstva polimetinovyh krasitelej. Kiev:Naukova dumka, 1994. 232 p. [In Russian]
  286. Kiprianov A.I. Vvedenie v elektronnuyu teoriyu organicheskih soedinenij. Kiev:Naukova dumka, 1975. 650 p. [In Russian]
  287. Іshchenko O.O., Slomіns’kij YU.L. Tolmachov O.І. Suchasnі dosyagnennya v galuzі polіmetinovih barvnikіv shkoli A.І. Kіprіanova. ZHurnal organіchnoї ta farmacevtichnoї hіmії. 2009. Vol. 7, N 3. P. 3–24. [In Ukrainian]
  288. Kulinich A.V., Derevyanko N.A., Ishchenko A.A. et al. Structure and redox properties of polymethine dyes: Electrochemical and DFT/TD-DFT study. Dyes and Pigments. 2019. Vol. 161. P. 24–33.
  289. Dzhejms T.H. Teoriya fotograficheskogo processa. Moscow: Himiya, 1980. 597 p. [In Russian]
  290. Fabian J. TDDFT-calculations of Vis/NIR absorbing compounds. Dyes and Pigments. 2010. Vol. 84, N 1. P. 36–53.
  291. Malinkiewicz O., Grancha T., Molina-Ontoria A. et al. Efficient, Cyanine Dye Based Bilayer Solar Cells. Advanced Energy Materials. 2013. Vol. 3, N 4. P. 472–477.
  292. Hany R., Fan B., de Castro F.A. et al. Strategies to improve cyanine dye multi layer organic solar cells. Progress in Photovoltaics: Research and Applications. 2011. Vol. 19, N 7. P. 851–857.
  293. Bulavko G.V., Ishchenko A.A. Priroda aniona i fotovol’taicheskie svojstva kationnyh polimetinovyh krasitelej. Dopovіdі NAN Ukraїni. 2015. N 7. P. 110–115. [In Russian]
  294. Bouit P.-A., Aronica C., Toupet L. et al. Continuous Symmetry Breaking Induced by Ion Pairing Effect in Heptamethine Cyanine Dyes: Beyond the Cyanine Limit. Journal of the American Chemical Society. 2010. Vol. 132, N 12. P. 4328–4335.
  295. Rienstra-Kiracofe J.C., Tschumper G.S., Schaefer H.F. et al. Atomic and Molecular Electron Affinities: Photoelectron Experiments and Theoretical Computations. Chemical Reviews. 2002. Vol. 102, N 1. P. 231–282.
  296. Gutsev G.L. A theoretical study on the structure and stability of the PF n and PF n − series n =1–6. The Journal of Chemical Physics. 1993. Vol. 98, N 1. P. 444–452.
  297. Chibisov A.K., Zaharova G.V., SHapovalov V.L. i dr. Impul’snyj fotoliz polimetinovyh krasitelej s razlichnymi protivoionami v nepolyarnyh sredah. Himiya vysokih energij. 1995. T. 29, N 3. P. 211–218. [In Russian]
  298. Ishchenko A.A. Photonics and molecular design of dye-doped polymers for modern light-sensitive materials. Pure and Applied Chemistry. 2008. Vol. 80, N 7. P. 1525–1538.
  299. Renbi B., Rabek YA. Fotodestrukciya, fotookislenie, fotostabilizaciya polimerov. Moscow: Mir, 1978. 675 p. [In Russian]
  300. Grabchuk G.P., Derevyanko N.A., Ishchenko A.A. Effect of electron-donating ability of terminal groups of cationic polymethine dyes on thermal polymerization of methyl methacrylate in solution. Russian Journal of Applied Chemistry. 2013. Vol. 86, N 5. P. 739–746.
  301. Meng F., Hua J., Chen K. et al. Synthesis of novel cyanine–fullerene dyads for photovoltaic devices. Journal of Materials Chemistry. 2005. Vol. 15, N 9. P. 979–986.
  302. Villegas C., Krokos E., Bouit P.-A. et al. Efficient light harvesting anionic heptamethine cyanine–[60] and [70]fullerene hybrids. Energy & Environmental Science. 2011. Vol. 4, N 3. P. 679.
  303. Alferov Zh.I., Andreev V.M., Rumyantsev V.D. Solar photovoltaics: Trends and prospects. Semiconductors. 2004. Vol. 38, N 8. P. 899–908.
  304. Honda S., Nogami T., Ohkita H. et al. Improvement of the Light-Harvesting Efficiency in Polymer/Fullerene Bulk Heterojunction Solar Cells by Interfacial Dye Modification. ACS Applied Materials & Interfaces. 2009. Vol. 1, N 4. P. 804–810.
  305. Svetlichnyi V.M., Aleksandrova E.L., Matyushina N.V. et al. Molecular design of optoelectronic structures based on carbazole- and indolocarbazole-containing polyphenylquinolines. High Performance Polymers. 2017. Vol. 29, N 6. P. 730–749.
  306. Kulinich A.V, Ishchenko A.A. Merocyanine dyes: synthesis, structure, properties and applications. Russian Chemical Reviews. 2009. Vol. 78, N 2. P. 141–164.
  307. Baryshnikov G.V, Minaev B.F., Minaeva V.A. Electronic structure, aromaticity and spectra of hetero[8]circulenes. Russian Chemical Reviews. 2015. Vol. 84, N 5. P. 455–484.
  308. Kido J., Hongawa K., Okuyama K., Nagai K. Bright blue electroluminescence from poly( N ‐vinylcarbazole). Applied Physics Letters. 1993. Vol. 63, N 19. P. 2627–2629.
  309. Ishchenko A.A., Kulinich A.V., Shishkina S.V. Effect of donor terminal group and polymethine chain length on structure of merocyanine dyes in the crystal state. Dyes and Pigments. 2017. Vol. 145. P. 181–188.
  310. Dastoor P.C., McNeill C.R., Frohne H. et al. Understanding and Improving Solid-State Polymer/C 60 -Fullerene Bulk-Heterojunction Solar Cells Using Ternary Porphyrin Blends. The Journal of Physical Chemistry C. 2007. Vol. 111, N 42. P. 15415–15426.
  311. Kaulach I., Muzikante I., Gerca L. et al. PV and magnetic field effects in poly(3-hexylthiophene)-fullerene cells doped with phthalocyanine soluble derivative. The European Physical Journal Applied Physics. 2007. Vol. 40, N 2. P. 169–173.
  312. Li H., Jensen T.J., Fronczek F.R., Vicente M.G.H. Syntheses and Properties of a Series of Cationic Water-Soluble Phthalocyanines. Journal of Medicinal Chemistry. 2008. Vol. 51, N 3. P. 502–511.
  313. Glatthaar M., Riede M., Keegan N. et al. Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Solar Energy Materials and Solar Cells. 2007. Vol. 91, N 5. P. 390–393.
  314. Ishchenko A.A., Shapovalov S.A. Heterogeneous Association of the Ions of Dyes in Solutions (Review). Journal of Applied Spectroscopy. 2004. Vol. 71, N 5. P. 605–629.
  315. Ishchenko A.A., Grabchuk G.P. Physical and chemical problems of the creation of photostable converters of light energy on the basis of dyed polymers. Theoretical and Experimental Chemistry. 2009. Vol. 45, N 3. P. 143–167.
  316. Li G., Yao Y., Yang H. et al. “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Advanced Functional Materials. 2007. Vol. 17, N 10. P. 1636–1644.
  317. Tolmachev A.I., Slominskii Y.L., Ishchenko A.A. New cyanine dyes absorbing in the NIR region. Near-Infrared Dyes for High Technology Applications, NATO ASI Series. Ed. Daehne S., Resch-Genger U., Wolfbeis O. S. Dordrecht:Kluwer, 1998. P. 385–415.
  318. Ishchenko A.A., Svidro V.A., Derevyanko N.A. Solvatofluorochromy of cationic cyanine dyes. Dyes and Pigments. 1989. Vol. 10, N 2. P. 85–96.
  319. Egginger M., Bauer S., Schwödiauer R. et al. Current versus gate voltage hysteresis in organic field effect transistors. Monatshefte für Chemie – Chemical Monthly. 2009. Vol. 140, N 7. P. 735–750.
  320. Brown A.R., Jarrett C.P., de Leeuw D.M., Matters M. Field-effect transistors made from solution-processed organic semiconductors. Synthetic Metals. 1997. Vol. 88, N 1. P. 37–55.
  321. Koppe M., Egelhaaf H.-J., Dennler G. et al. Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells. Advanced Functional Materials. 2010. Vol. 20, N 2. P. 338–346.
  322. Yuan Y., Xu Z., Yan X. Compact design of wide-band balun for dual-linear polarization microstrip antenna array. IEEE, 2011. ISBN 978-1-4244-8268-9.
  323. Nenashev A.V., Baranovskii S.D., Wiemer M. et al. Theory of exciton dissociation at the interface between a conjugated polymer and an electron acceptor. Physical Review B. 2011. Vol. 84, N 3. P. 035210.
  324. Brabec C.J., Cravino A., Meissner D. et al. Origin of the Open Circuit Voltage of Plastic Solar Cells. Advanced Functional Materials. 2001. Vol. 11, N 5. P. 374–380.
  325. Gasiorowski J., Hingerl K., Menon R. et al. Dielectric Function of Undoped and Doped Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene] by Ellipsometry in a Wide Spectral Range. The Journal of Physical Chemistry C. 2013. Vol. 117, N 42. P. 22010–22016.
  326. Gasiorowski J., Boudiba S., Hingerl K. et al. Anthracene-containing conjugated polymer showing four optical transitions upon doping: A spectroscopic study. Journal of Polymer Science Part B: Polymer Physics. 2014. Vol. 52, N 4. P. 338–346.
  327. Österbackac R., Anx P., Jiangand M., Vardeny Z.V. Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals. Science. 2000. Vol. 287, N 5454. P. 839–842.
  328. Gasiorowski J., Kollender J.P., Hingerl K. et al. Photoelectrochemical scanning droplet cell microscopy for localized photovoltaic investigations on organic semiconductors. Physical Chemistry Chemical Physics. 2014. Vol. 16, N 8. P. 3739.
  329. Rowell M.W., Topinka M.A., McGehee M.D. et al. Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters. 2006. Vol. 88, N 23. P. 233506.
  330. Wang H.-X., Wang Q., Zhou K.-G., Zhang H.-L. Graphene in Light: Design, Synthesis and Applications of Photo-active Graphene and Graphene-Like Materials. Small. 2013. Vol. 9, N 8. P. 1266–1283.
  331. Endale T., Sovernigo E., Radivo A. et al. Investigation of photodegradation in polymer solar cells blended with different fullerenes derivatives. Solar Energy Materials and Solar Cells. 2014. Vol. 123. P. 150–158.
  332. Blankenburg L., Schultheis K., Schache H. et al. Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells. Solar Energy Materials and Solar Cells. 2009. Vol. 93, N 4. P. 476–483.
  333. You J., Dou L., Yoshimura K. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications. 2013. Vol. 4, N 1. P. 1446.
  334. Studzinsky S., Syromyatnikov V., Ishchenko A. et al. Effect of Polymer Matrix on Photosensitivity of Polymethine Dye Based Composites. Nonlinear Optics, Quantum Optics. 2005. Vol. 33, N 1–2. P. 151–159.
  335. Ichikawa M., Deguchi S., Onoguchi T. et al.N,N′-diphenylperylene diimide functioning as a sensitizing light absorber based on excitation transfer for organic thin-film solar cells. Organic Electronics. 2013. Vol. 14, N 2. P. 464–468.
  336. Nepomnyashchii A.B., Bard A.J. Electrochemistry and Electrogenerated Chemiluminescence of BODIPY Dyes. Accounts of Chemical Research. 2012. Vol. 45, N 11. P. 1844–1853.
  337. Calogero G., Yum J.-H., Sinopoli A. et al. Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy. 2012. Vol. 86, N 5. P. 1563–1575.
  338. Würthner F., Kaiser T. E., Saha-Möller C.R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angewandte Chemie International Edition. 2011. Vol. 50, N 15. P. 3376–3410.
  339. Noginov M.A., Zhu G., Belgrave A.M. et al. Demonstration of a spaser-based nanolaser. Nature. 2009. Vol. 460, N 7259. P. 1110–1112.
  340. Wang Y., Ding T. Optical tuning of plasmon-enhanced photoluminescence. Nanoscale. 2019. Vol. 11, N 22. P. 10589–10594.
  341. Seliverstova E., Ibrayev N., Omarova G. et al. Competitive influence of the plasmon effect and energy transfer between chromophores and Ag nanoparticles on the fluorescent properties of indopolycarbocyanine dyes. Journal of Luminescence. 2021. Vol. 235. P. 118000 (1–7).
  342. El-Bashir S. M., Barakat F.M., Alsalhi M.S. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator. Journal of Luminescence. 2013. Vol. 143. P. 43–49.
  343. Ibrayev N.K., Seliverstova E.V., Ishchenko A.A., Kudinova M.A. The effect of sulfonate groups on spectral-luminescent and photovoltaic properties of squarylium dyes. Journal of Photochemistry and Photobiology A: Chemistry. 2017. Vol. 346. P. 570–575.
  344. Yoshida A., Uchida N., Kometani N. Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers. Langmuir. 2009. Vol. 25, N 19. P. 11802–11807.
  345. Lim S.Y., Shen W., Gao Z. Carbon quantum dots and their applications. Chemical Society Reviews. 2015. Vol. 44, N 1. P. 362–381.
  346. Ogenko V.M., Kharkova L.B., Yanko O.G. et al. Synthesis and Spectral Properties of Highly Fluorescent Nitrogen-Containing Graphene-Type Structures. Nanosistemi, Nanomateriali, Nanotehnologii. 2020. Vol. 18, N 3. P. 639–647.
  347. Krumer Z., Pera S.J., van Dijk-Moes R.J.A. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Solar Energy Materials and Solar Cells. 2013. Vol. 111. P. 57–65.

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top