Polyfunctional highly selective sorption materials for water purification from radionuclides and other inorganic ecotoxicatnts

Authors:

Pshinko Galyna Mykolaivna. Doctor of Science in Chemistry. Professor. Head of the Department of Analytical and Radiochemistry, Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

https://orcid.org/0000-0001-5433-7993

https://www.scopus.com/authid/detail.uri?authorId=6602912697

https://scholar.google.com.ua/citations?user=g_nSx1oAAAAJ&hl=ru

 

Puzyrna Liubov Mykolaivna. Doctor of Science in Chemistry. Senior Researcher, Department of Analytical and Radiochemistry, Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

https://orcid.org/0000-0003-1999-9021

https://www.scopus.com/authid/detail.uri?authorId=26023676900

https://www.webofscience.com/wos/author/record/2043978

https://scholar.google.com.ua/citations?user=LvBldrYAAAAJ&hl=ru

 

Reviewers:

Ogenko Volodymyr Mykhailovych. Doctor of Sciences in Chemistry. Corresponding Memberof NAS of Ukraine, Professor. Head of Department of Physical and Inorganic Chemistry, V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.

https://www.scopus.com/authid/detail.uri?authorId=7004424483

https://orcid.org/0000-0002-3243-5960

 

Maksin Victor Ivanovych. Doctor of Sciences in Chemistry. Professor. Professor of the Departament of Analytical and Bioinorganic Chemistry and Water Quality, National University of Biological Resources and Nature Management of Ukraine, Kyiv, Ukraine.

https://www.scopus.com/authid/detail.uri?authorId=7003705879

https://orcid.org/0000-0001-8903-6744

https://scholar.google.com/citations?hl=ru&user=FrZG-vIAAAAJ

 

Tananaiko Oksana Yuriivna. Doctor of Sciences in Chemistry. Professor. Head of the Department of Analytical Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

https://www.scopus.com/authid/detail.uri?authorId=57215769875

https://orcid.org/0000-0001-5109-3823

 

Affiliation:

Project: Scientific book

Year: 2023

Publisher: PH "Naukova Dumka"

Pages: 284

DOI:

https://doi.org/10.15407/978-966-00-1837-2

ISBN: 978-966-00-1837-2

Language: Ukrainian

How to Cite:

Pshinko, G., Puzyrna, L. (2023) Polyfunctional highly selective sorption materials for water purification from radionuclides and other inorganic ecotoxicatnts. Kyiv, Naukova Dumka. 284p. [in Ukrainian].

Abstract:

A solution to an important ecological problem is proposed ‒ the creation, on the basis of systematic research, of the scientific foundations for the purposeful production of environmentally friendly polyfunctional materials based on layered double hydroxides (LDHs), their magnetic composites and magnetic potassium zinc hexacyanoferrate with highly selective properties for purification (additional purification) of aqueous media from U(VI), 137Cs, 90Sr, 152,154Eu, Cu(II), Co(II), Cd(II), Ni(II), Pb(II), Zn(II) and Mn(II), chromate and phosphate anions, which will make it possible to form a reserve stock of sorbents ‒ means of rapid response in the event of emergencies at nuclear power plants and other nuclear energy enterprises, to prevent pollution of ecosystems and restore their quality. It is shown that the choice of functional and analytical groups of the interlayer ligand LDH, depending on the form of existence of ecotoxicants in the aquatic environment, provides a high sorption capacity of these materials with respect to radionuclides and other inorganic ecotoxicants, and the presence of a magnetic component ‒ the manufacturability of use in water purification processes. The advantages of these sorbents over world industrial synthetic analogs are low cost, environmental safety and technological accessibility of production (without additional costs for specific conditions and reagents) and use (high-tech and personnel-safe method for separating the solid phase of the spent sorbent by magnetic separation) in decontamination processes of significant volumes of LRW and other aqueous media.

The book is intended for specialists in the field of radiochemistry and ecology working in research laboratories and at enterprises of the atomic-industrial complex, for teachers, graduate students, students of chemical and environmental specialties.

Keywords:

polyfunctional sorbents, layered double hydroxides, radionuclides, heavy metals, chromate and phosphate-ions, ecotoxicants, water purification.

References:

Do rozdilu 1

1. Kulish Ye.A., Komov I.P., Yatsenko V.G. i dr. Strategicheskie mineralnye resursy Ukrainy dlya yadernoy energetiki. Kyyiv: Logos, 2010. 285 s.
2. Song S., Huang S., Zhang R. et al. Simultaneous removal of U(VI) and humic acid on defective TiO2-x investigated by batch and spectroscopy techniques. Chemical Engineering Journal. 2017. Vol. 325. P. 576–587.
3. Prister B.S., Klyuchnikov A.A., Shestopalov V.M., Kukhar V.P. Problemy bezopasnosti atomnoy energetiki. Uroki Chernobylya. Chernobyl (Kiev. obl.): In-t problem bezopasnosti AES, 2013. 200 s.
4. Rozporyadzhennya Kabinetu Ministriv Ukrayiny` vid 18 serpnya 2017 r. # 605-r «Pro sxvalennya Energety`chnoyi strategiyi Ukrayiny` na period do 2035 r. «Bezpeka, energoefektyvnist`, konkurentospromozhnist`»: [Elektron. resurs]. Rezhym dostupu: http://zakon2.rada.gov.ua/laws/show/605-2017-%D1%80/paran2#n2.
5. Verxovcev V.G., Semenyuk M.P., Vajlo O.V. ta in. Golovni chynnyky` zabrudnennya uranom poverkhnevykh ta kolodyaznykh vod pry rozrobci uranovykh rodovyshh Novokostyantynivskogo rudnogo polya. Zbirnyk naukovykh pracz` Instytutu geoximiyi navkolyshn`ogo seredovyshha. 2018. V. 28. S. 22–33.
6. Sushhuk K.G., Verxovcev V.G. Metalogeniya uranovyx rudnyx rajoniv v osadovomu chokhli Ukrayins`kogo shhyta. Zbirnyk naukovykh pracz` Instytutu geokhimiyi navkolyshn`ogo seredovyshha. 2017. V. 27. S. 50–74.
7. Kornilovych B.Yu., Pavlenko V.M., Koshyk Yu.J., Vajerman M.I. Ekologo-ximichni problemy` uranovoyi promyslovosti ta shlyakhy` yikh vyrishennya. «Ekologichna bezpeka: problemy` i shlyakhy` vyrishennya»: VI Mizhnarodna naukovo-praktychna konferenciya: mater. konf. Xarkiv, 2010. T. 1. S. 171-176.
8. Kuz`menko M.I. Radionuklidna anomaliya. Kyyiv: Vydavnychyj dim «Akademperiodyka», 2013. 394 s.
9. Panasyuk M.I., Sosonna N.B., Kovalenko I.O. ta in. Zminy` radiogidroekologichnykh umov pid vply`vom ustanovlennya «Arky» nad ob’yektom «Ukryttya» Chornobyl`s`koyi AES). Yaderna energetyka ta dovkillya. 2019. N 3. S. 82 – 89.
10. Kohler M., Curtis G.P., Kent D.B., Davis J.A. Experimental investigation and modeling of uranium (VI) transport under variable chemical conditions. Water Resources Research. 1996. Vol. 32, N 12. P. 3539–3551.
11. Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta. 1978. Vol. 42. P.547–569.
12. Pshynko G.M., Puzyrna L.M., Yacyk B.P. Sorbcijni materialy` dlya ochyshhennya vodnykh seredovyshh vid uranu (VI). Yaderna energetyka ta dovkillya. 2016. N 1. S. 65–71.
13. Puzyrnaya L.N., Masko A.N., Pshinko G.N., Goncharuk V.V. Radioaktivnye elementy v prirodnoy i pitevoy vode Ukrainy. Yaderna energetika ta dovkіllya. 2020. № 1. S. 84–98.
14. Pshynko G.M. Naukovi zasady` prognozuvannya povedinky radionuklidiv v dovkilli ta dezaktyvaciyi ob’yektiv pryrodnogo seredovyshha: dys… dokt. khim. nauk: specz. 21.06.01. Kyyiv, 2010. 312 s.
15. Lieser K.H. Radionuclides in the Geosphere: Sources, Mobility, Reactions in Natural Waters and Interactions with Solids. Radiochimiса Acta. 1995. Vol. 70/71. С. 355–375.
16. Udalov I.V., Kononenko A.V., Lure A.I. Osobennosti radiatsionnogo riska na territorii Severo-Vostochnogo Donbassa. Voprosy atomnoy nauki i tekhniki. 2018. № 5 (117). S. 149–153.
17. A Joint Report the Nuclear Energy Agency and the International Atomic Energy Agency. Uranium 2018: Resources, production and demand: [Yelektron. resurs]. Rezhim dostupu: https://read.oecd-ilibrary.org/nuclear-energy/uranium-2018_uranium-2018-en#page1.
18. Gupta C.K., Singh H. Uranium resource processing: secondary resources. Berlin: Springer-Verlag, 2003. 522 p.
19. Anderson D.M., Glibert P.M., Burkholder J.M. Harmful algal blooms and eutrophication nutrient sources, composition, and consequences. Estuaries. 2002. Vol. 25, N 4b. P. 704–726.
20. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities. 2000. L 327. P. 1–72.
21. Technical Report. Guidance document on eutrophication assessment. Common implementation strategy for the Water Framework Directive (2000/60/EC). Luxembourg: Office for Official Publications of the European Communities, 2009. 137 p.
22. Samchuk A.I., Kurayeva I.V. Vazhki metaly` v ob’yektakh dovkillya Kyyivs`kogo megapolisu. Kyyiv: Nash format, 2019. 164 s.
23. Siegel F.R. Environmental Geochemistry of Potentially Toxic. Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Mailand, Paris, Tokio: Springer-Verlag Berlin Heidelberg GmbH, 2002. 218 p.
24. Gaetke L.M., Chow C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003. Vol. 189, N 1–2. P. 147–163.
25. Barceloux D.G. Cobalt. Journal of Toxicology: Clinical Toxicology. 1999. Vol.37, N 2. P. 201–206.
26. Costa M., Salnikow K., Cosentino S. et al. Molecular mechanisms of nickel carcinogenesis. Environmental Health Perspectives. 1994. Vol. 102, N 3. P. 127–130.
27. Nordberg G.F. Cadmium and health in the 21st century-historical remarks and trends for the future. Biometals. 2004. Vol.17, N 5. P. 485–489.
28. Marinich O.V. Vplyv geologo-geokhimichnykh umov khvostoskhovyshh uranopererobnoyi promyslovosti na migracijnu zdatnist` radionuklidiv 226Ra, 210Pb ta 210Po: avtoref. dys… kand. geol. nauk: specz. 21.06. 29.
29. Zamostyan P., Saєnko Yu., Privalov Yu. ta іn. Bezpeka ta rozvitok Chornobilskikh spіlnot: situatsіyniy analіz. K.: Іnstitut sotsіologії NAN Ukraїni, Nash chas, 2006. 130 s.
30. Analiticheskaya khimiya urana; pod red. D.I. Ryabchikova, M.M. Senyavina. Moskva: Izdatelstvo akademii nauk SSSR, 1962. 433 s.
31. Plyushchev V.Ye., Stepin B.D. Analiticheskaya khimiya rubidiya i tseziya. Moskva: Nauka, 1975. 224 s.
32. .Poluektov N.S., Mishchenko V.T., Kononenko L.I., Beltyukova S.V. Analiticheskaya khimiya strontsiya. Moskva: Nauka, 1978. 223 s.
33. Lure Yu.Yu. Spravochnik po analiticheskoy khimii. Moskva: Khimiya, 1971. 456 s.
34. Bazhenov V.A., Buldakov L.A., Vasilenko I.Ya. i dr. Vrednye khimicheskie veshchestva. Radioaktivnye veshchestva: sprav. izd. Leningrad: Khimiya, 1990. 464 s.
35. Sobotovich E.V., Bondarenko G.N., Kononenko L.V. i dr. Geokhimiya tekhnogennykh radionuklidov. Kyyiv: Naukova dumka, 2002. 333 s.
36. Aguila B., Banerjee D., Nie Z. et al. Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications. 2016. Vol. 52. Р. 5940 – 5942.
37. Wetterhahn K.E., Hamilton J.W. Molecular basis of hexavalent chromium carcinogenicity: effect on gene expression. Science of the Total Environment. 1989. Vol. 86. P. 119–129.
38. Chen T. Li, Wise S.S., Holmes A. et al. Cytotoxicity and genotoxicity of hexavalent chromium in human and North Atlantic right whale (Eubalaena glacialis) lung cells. Comparative Biochemistry and Physiology – Part C: Toxicology & Pharmacology. 2009. Vol. 150. P. 487–494.
39. Demchenkov E.L., Nagdalian A.A., Budkevich R.O. Usage of atomic force microscopy for detection of the damaging effect of CdCl2 on red blood cells membrane. Ecotoxicology and Environmental Safety. 2021. Vol. 208, 111683. https://doi.org/10.1016/j.ecoenv.2020.111683.
40. Fosmire G.J. Zinc toxicity. American Journal of Clinical Nutrition. 1990. Vol. 51, N 2. P. 225–227.
41. Wills N.K., Sadagopa Ramanujam V.M. , Kalariya N. et al. Copper and zinc distribution in the human retina: Relationship to cadmium accumulation, age, and gender. Exp. Eye Res. Experimental Eye Research. 2008. Vol. 87, N 2. P. 80–88.
42. Debelius B., Forja J.M., Valls Á.D., Lubián L.M. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicology and Environmental Safety. 2009. Vol. 72, N 5. P. 1503–1513.
43. Costa M., Salnikow K., Cosentino S. et al. Molecular mechanisms of nickel carcinogenesis. Environmental Health Perspectives. 1994. Vol. 102, N 3. P.127–130.
44. Bourchard M.F., Sauvé S., Barbeau B. et al. Intellectual impairment in school-age children exposed to manganese from drinking water. Environmental Health Perspectives. 2011. Vol. 119. P. 138–143.
45. Li J., Wang X.X., Zhao G.X. et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews. 2018. Vol. 47. Р. 2322–2356.
46. WHO. Guidelines for drinking-water quality. World Health Organization. Geneva, Switzerland, 2011. 564 р.
47. Kuznetsov Yu.V., Shchebetkovskiy V.N., Trusov A.G. Osnovy ochistki vody ot radioaktivnykh zagryazneniy. Moskva: Atomizdat, 1974. 360 s.
48. DSTU 7525:2014. Voda pytna. Vymogy` ta metody` kontrolyuvannya yakosti. Kyyiv: Minekonomrozvytku Ukrayiny, 2014. 36 s.
49. DSTU 4808:2007. Dzherela centralizovanogo pytnogo vodopostachannya. Gigiyenichni ta ekologichni vymogy shhodo yakosti vody` i pravyla vybyrannya. Kyyiv: Derzhspozhyvstandart Ukrayiny, 2007. 36 s.
50. DSanPiN 2.2.4-171–2010. Gigiyenichni vymogy` do vody` pytnoyi, pryznachenoyi dlya spozhyvannya lyudynoyu. Oficijnyj visnyk Ukrayiny. 2010. N 51. S. 99.
51. Normy radiacijnoyi bezpeky Ukrayiny: dopovnennya. Radiacijnyj zakhyst vid dzherel potencijnogo oprominennya (NRBU/D-2000) [zatverdzhenyj Postanovoyu Golovnogo derzhavnogo sanitarnogo likarya Ukrayiny` vid 12.07.2000 r. N 116]. Rezhym dostupu: https://zakon.rada.gov.ua/rada/show/v0116488-00.
52. Pavlotskaya F. I. Migratsiya radioaktivnykh produktov globalnykh vypadeniy v pochvakh. Moskva: Atomizdat, 1974. 216 s.
53. Transuranovye elementy v okruzhayushchey srede; pod red. U.S. Khensona. Moskva: Energoatomizdat, 1985. 344 s.
54. Titaeva I.Ya. Yadernaya geokhimiya. Moskva: Izd. MGU, 1992. 272 s.
55. Geokhimiya tekhnogennykh radionuklidiv; pid red. E.V. Sobotovycha, G.M. Bondarenka. Kyyiv: Naukova dumka, 2002. 333 s.
56. Pavlotskaya F.I., Pospelov Yu. N., Myasoedov B. F. i dr. Povedenie transplutonievykh elementov v okruzhayushchey srede. Radiokhimiya. 1991. T.33, №3. S. 112–119.
57. Davydov Yu.P., Voronik N.I., Shatilo N.N. i dr. O formakh nakhozhdeniya radionuklidov v pochvakh, zagryaznennykh v rezultate avarii na Chernobylskoy AES. Radiokhimiya. 2002. T. 44, № 3. S. 285–288.
58. Choppin G. R. Humics and Radionuclide Migration. Radiochimiса Acta. 1988. Vol. 44/45. P. 23–28.
59. Lieser K.H., Ament A., Hill R. et al. Colloids in Groundwater and their Influence on Migration of Trace Elements and Radionuclides. Radiochimiса Acta. 1990. Vol. 49, N 2. P. 83–100.
60. Clearfield A. Inorganic ion exchangers: A technology ripe for development. Industrial & Engineering Chemistry Research. 1995. Vol. 34, N 8. P. 2865–2872.
61. Dyer A., Pillinger M., Amin S. Ion-exchange of caesium and strontium on a titanosilicate analogue of the mineral pharmacosiderite. Journal of Materials Chemistry. 1999. N 9. P. 2481–2487.
62. Myasoedova G.V., Nikashina V.A. Sorbtsionnye materialy dlya izvlecheniya radionuklidov iz vodnykh sred. Rossiyskiy khimicheskiy zhurnal. 2006. T. 50, № 5. S. 55–63.
63. Thanh L.H.V., Liu J.C. Flotation separation of strontium via phosphate precipitation. Water Science and Technology. 2017. Vol. 75. P. 2520–2526.
64. Zhang X., Gu P., Liu Y. Decontamination of radioactive wastewater: state of the art and challenges forward. Chemosphere. 2019. Vol. 215. Р. 543–553.
65. Combernoux N., Schrive L., Labed V. et al. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale. Water Resources. 2017. Vol. 123. P. 311–320.
66. Ojovan M.I., Lee W.E., Kalmykov S.N. An introduction to nuclear waste immobilisation. 3rd Edition. Elsevier, 2019. 493 p.
67. Kulskiy L.A., Strokach P.P. Tekhnologiya ochistki prirodnikh vod. Kyyiv: Vishcha shkola, 1986. 352 s.
68. Kulskiy L.A. Teoreticheskoe obosnovanie tekhnologii ochistki vody. Kyyiv: Naukova dumka, 1968. 127 s.
69. Khonikevich A.A. Ochistka radioaktivno-zagryaznennykh vod. Moskva: Atomizdat, 1974. 312 s.
70. Nikiforov A.S., Kulichenko V.V., Zhikharev M.I. Obezvrezhivanie zhidkikh radioaktivnykh otkhodov. Moskva: Energoatomizdat, 1985. 183 s.
71. Ekologicheskie aspekty sovremennykh tekhnologiy okhrany vodnoy sredy; pod red. V.V. Goncharuka. Kyyiv: Naukova dumka, 2005. 400 s.
72. Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management. 2011. Vol. 92. P. 407–418.
73. Dąbrowski A., Hubicki Z., Podkościelny P., Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004. Vol. 56. P. 91–106.
74. Barakat M.A. New trends in removing heavy metals from industrial wastewater. The Arabian Journal of Chemistry. 2011. Vol. 4. P. 361–377.
75. Tarasevich Yu.I. Prirodnye sorbenty v protsessakh ochistki vody. Kyyiv: Naukova dumka, 1981. 208 c.
76. Li X., Liu Y., Zhang C. et al. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chemical Engineering Journal. 2018. Vol. 336. P. 241–252.
77. Abdel Rahman R.O., Ibrahium H.A., Hung Y.-T. Liquid radioactive wastes treatment: a review. Water. 2011. N 3. Р. 551–565.
78. Rana D., Matsuura T., Kassim M.A., Ismail A.F. Radioactive decontamination of water by membrane processes. A review. Desalination. 2013. Vol. 321. P. 77–92.
79. Linnik P.N., Nabivanets B.I. Formy migratsii metallov v presnykh poverkhnostnykh vodakh. Leningrad: Gidrometeoizdat, 1986. 269 s.
80. Pylypenko A.T. Organichni reaktyvy v neorganichnomu analizi. Kyyiv: «Vyshha shkola», 1972. 216 s.
81. Myasoedova G.V., Savvin S.B. Khelatoobrazuyushchie sorbenty. Moskva: Nauka, 1984. 171 s.
82. Intsedi Ya. Primenenie kompleksov v analiticheskoy khimii. Moskva: Mir, 1979. 376 s.
83. Dyatlova N.M., Temkina V.Ya., Popov K.I. Kompleksony i kompleksonaty metallov. Moskva: Khimiya, 1988. 544 s.
84. Nazarenko V.A., Antonovich V.P., Nevskaya Ye.M. Gidroliz ionov metallov v razbavlennykh rastvorakh. Moskva: Atomizdat, 1979. 192 s.
85. Kumok V.N., Kuleshova O.M., Karabin L.A. Proizvedeniya rastvorimosti. Novosibirsk: Nauka, 1983. 267 s.
86. Zharovskyj F.G., Pylypenko A.T., P’yatnyczkyj I.V. Analitychna khimiya. Kyyiv: Vyshha shkola, 1982. 544 s.
87. Perlova N.O. Sorbciya spoluk uranu z vodnykh rozchyniv syntetychnymy` ionitamy: dys. … kand. khim. nauk: specz. 02.00.11. Odesa, 2017. 178 s.
88. Guo X., Du B., Wei Q., et al. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. Journal of Hazardous Materials. 2014. Vol. 278. Р. 211–220.
89. Zhang H., Zhao X., Wei J., Li F. Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chemical Engineering Journal. 2015. Vol. 275. Р. 262–270.
90. Maltseva T.V. Analiz vozmozhnostey primeneniya effektivnykh sorbtsionnykh materialov dlya pererabotki zhidkikh otkhodov AES. Voda i vodoochysni texnologiyi. 2015. № 2. S. 50–61.
91. Strelko V.V., Milyutin V.V., Psareva T.S. i dr. Sorbtsionno-koagulyatsionnaya ochistka zhidkikh radioaktivnykh otkhodov ot urana i transuranovykh elementov. Problemy bezpeky atomnyx elektrostancij i Chornobylya. 2016. № 26. S. 96–102.
92. Müller A., Reuter H., Dilinger S. Supramolecular inorganic chemistry: small guests in small and large hosts. Angewandte Chemie International Edition. 1995. Vol. 34, N 21. P. 2328–2361.
93. Goh K.-H., Lim T.-T., Dong Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Resources. 2008. Vol. 42. P. 1343–1368.
94. Cavani F., Trifirò F., Vaccari A. Hydrotalcite-type anionic clays: preparation, properties, and applications. Catalysis Today. 1991. Vol. 11. P. 173–301.
95. Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals. 1980. Vol. 28, N 1. P. 50–56.
96. Handbook of layered materials; еd. by S.M. Auerbach, K.A. Carrado, P.K. Dutta. New York: Marcel Dekker Inc., 2004. 650 p.
97. Rives V. Layered double hydroxides: present and future. New York: Nova Publishers, 2011. 439 р.
98. Jawad A. , Peng L., Liao Z. et al. Selective removal of heavy metals by hydrotalcites as adsorbents in diverse wastewater: Different intercalated anions with different mechanisms. The Journal of Cleaner Production. 2019. Vol. 211. P. 1112–1126.
99. Mishra G., Dash B., Pandey S. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Applied Clay Science. 2018. Vol. 153. P. 172–186.
100. Prasad C., Tang H., Liu W. Magnetic Fe3O4 based layered double hydroxides (LDHs) nanocomposites (Fe3O4/LDHs): recent review of progress in synthesis, properties and applications. Journal of Nanostructure in Chemistry. 2018. Vol. 8. P. 393–412.
101. Zubair M., Daud M., McKay G. et al. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science. 2017. Vol. 143. P. 279–292.
102. Chubar N., Gilmour R., Gerda V. et al. Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability. Advances in Colloid and Interface Science. 2017. Vol. 245. P. 62–80.
103. Del Hoyo C. Layered double hydroxides and human health: an overview. Applied Clay Science. 2007. Vol. 36. P. 103–121.
104. Bukhtiyarova M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. Journal of Solid State Chemistry. 2019. Vol. 269. P. 494–506.
105. Xu Z.P., Zhang J., Adebajo M.O. et al. Catalytic applications of layered double hydroxides and derivatives. Applied Clay Science. 2011. Vol. 53. Р. 139–150.
106. Hu Z., Cai L., Liang J. et al. Green synthesis of expanded graphite/layered double hydroxides nanocomposites and their application in adsorption removal of Cr(VI) from aqueous solution. The Journal of Cleaner Production. 2019. Vol. 209. P. 1216–1227.
107. Handbook of сlay science; еd. by F. Bergaya, B.K.G. Theng, G. Lagaly. Elsevier, 2006. 1224 p.
108. Reichle W.T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals. Journal of Catalysis. 1985. Vol. 94, N 2. P. 547–557.
109. Britvin S.N. Structural diversity of layered double hydroxides. Minerals as Advanced Materials І. 2008. P. 123–128.
110. Zhitova Ye.S. Kristallokhimiya prirodnykh sloistykh dvoynykh gidroksidov: dis.… kand. geol.-miner. nauk: spets. 25.00.05. Sankt-Peterburg, 2016. 289 s.
111. Miyata S. Synthesis of hydrotalcite-like compounds and their structures and physicochemical properties. I. The systems Mg2+–Al3+–NO3-, Mg2+–Al3+–Cl-, Mg2+–Al3+–ClO4-, Ni2+–Al3+–Cl- and Zn2+–Al3+–Cl-. Clays Clay Minerals. 1975. Vol. 23. P. 369–375.
112. Miyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Minerals. 1983. Vol. 31. P. 305–311.
113. Khan A.I., O’Hare D. Intercalation chemistry of layered double hydroxides: Recent developments and applications. Journal of Materials Chemistry. 2002. Vol. 12. P. 3191–3198.
114. Vaccari A. Preparation and catalytic properties of cationic and anionic clays. Catalysis Today. 1998. Vol. 41. P. 53–71.
115. Sasai R., Norimatsu W., Matsumoto Y. Nitrate-ion-selective exchange ability of layered double hydroxide consisting of MgII and FeIII. Journal of Hazardous Materials. 2012. Vol. 215– 216. P. 311–314.
116. Tezuka S., Chitraker R., Sonoda A. et al. Studies on selective adsorbents for oxo-anions. Nitrate ion-exchange properties of layered double hydroxides with different metal atoms. Green Chemistry. 2004. N 6. P. 104–109.
117. Lin Y., Fang Q., Chen B. Metal composition of layered double hydroxides (LDHs) regulating ClO4- adsorption to calcined LDHs via the memory effect and hydrogen bonding. Journal of Environmental Sciences. 2014. Vol. 26. Р. 493–501.
118. Kloprogge J.T., Wharton D., Hickey L., Frost R.L. Infrared and Raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg/Al-hydrotalcite. American Mineralogist. 2002. Vol. 87, N 5-6. Р. 623–629.
119. Chitraker R., Tezuka S., Sonoda A. et al. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides. Journal of Colloid and Interface Science. 2005. Vol. 290. P. 45–51.
120. Morimoto K., Sato T., Yoneda T. Complexation reactions of oxyanions on brucite surface. Journal of the Clay Science Society of Japan. 2009. Vol. 48. P. 9–17.
121. Das J., Patra B.S., Baliarsingh N., Parida K.M. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science. 2006. Vol. 32. P. 252–260.
122. Lazaridis N.K., Asouhidou D.D. Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Resources. 2003. Vol. 37, N 12. Р. 2875–2882.
123. Châtelet L., Bottero J.Y., Yvon J., Bouchelaghem A. Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Colloids and Surfaces A. 1996. Vol. 111. P. 167–175.
124. Theiss F.L., Couperthwaite S.J., Ayoko G.A., Frost R.L. A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. Journal of Colloid and Interface Science. 2014. Vol. 417. Р. 356–368.
125. Tichit D., Coq B. Catalysis by hydrotalcites and related materials. Cat Tech. 2003. Vol. 7, N 6. Р. 206–217.
126. Butenko E.O., Kravchenko V.S., Gromilov S.A. i dr. Struktura prirodnykh i sinteticheskikh anionnykh glin i ikh sorbtsionnaya sposobnost. Visnyk Pryazovskogo derzhavnogo texnichnogo universytetu. 2009. № 19. S. 301 – 306.
127. Kloprogge J.T., Hickey L., Frost R.L. Heating stage Raman and infrared emission spectroscopic study of the dehydroxylation of synthetic Mg-hydrotalcite. Applied Clay Science. 2001. Vol. 18. Р. 37–49.
128. Pryxod`ko R.V. Koloyidno-khimichni pryncypy` stvorennya metalooksydnykh nanokompozytiv: dys. … dokt. khim. nauk: specz. 02.00.11. Kyyiv, 2016. 352 s.
129. Zümreoglu-Karan B., Ay A. Layered double hydroxides – multifunctional nanomaterials. Chemical Papers. 2012. Vol. 66. Р. 1–10.
130. Pérez-Bernal M.E., Ruano-Casero R.J., Benito F., Rives V. Nickel–aluminum layered double hydroxides prepared via inverse micelles formation. Journal of Solid State Chemistry. 2009. Vol. 182. P. 1593–1601.
131. Pérez M.R., Barriga C., Fernández J.M. et al. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products. Journal of Solid State Chemistry. 2007. Vol. 180. P. 3434–3442.
132. Fernández J.M., Ulibarri M.A., Labajos F.M., Rives V. The effect of iron on the crystalline phases formed upon thermal decomposition of Mg–Al–Fe hydrotalcites. Journal of Materials Chemistry. 1998. Vol. 8, N 11. Р. 2507–2514.
133. Pérez M.R., Crespo I. , Ulibarri M.A. et al. Influence of divalent metal on the decomposition products of hydrotalcite-like ternary systems MII –Al–Cr (MII = Zn, Cd). Materials Chemistry and Physics. 2012. Vol. 132. P. 375– 386.
134. Ahmed I.S., Dessouki H.A., Ali A.A. Synthesis and characterization of NixMg1-xAl2O4 nano ceramic pigments via a combustion route. Polyhedron. 2011. Vol. 30. Р. 584–591.
135. Gabrovska M., Nikolova D., Shopska M. et al. Ni–Al layered double hydroxides as precursors of ceramic pigments. III Advanced Ceramics and Applications: сonfer. рroceed. Serbia, Belgrade, 2015. Р. 205–220.
136. Sato T., Fujita H., Endo T. et al. Synthesis of hydrotalcite-like compounds and their physico-chemical properties. Reactivity of Solids. 1988. Vol. 5. P. 219–228.
137. Wang Q., O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews. 2012. Vol. 112. P. 4124–4155.
138. He J., Wei M., Li B. et al. Preparation of layered double hydroxides. Structure and Bonding. 2005. Vol. 119. Р.89–119.
139. Butenko E.O., Kapustin A.Ye. Sintez i tekhnologiya polucheniya anionnykh adsorbentov. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy. 2010. T. 2, № 6 (44). S.41–47Chubar N. New inorganic (an)ion exchangers based on Mg-Al hydrous oxides: (alkoxide-free) sol-gel synthesis and characterisation. Journal of Colloid and Interface Science. 2011. Vol. 357. P. 198–209.
140. Xu Z.P., Lu G.Q. Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chemistry of Materials. 2005. Vol. 17. P. 1055–1062.
141. Ogawa M., Asai S. Hydrothermal synthesis of layered double hydroxide–deoxycholate intercalation compounds. Chemistry of Materials. 2000. Vol. 12. P. 3253–3255.
142. Kulyukhin S., Rumer I. , Krasavina E. Sorption of U(VI) onto layered double hydroxides and oxides of mg and al, prepared using microwave radiation. Czech Chemical Society Symposium Series. 2018. N 16(2). Р. 192–193.
143. Seida Y., Nakano Y., Nakamura Y. Crystallization of layered double hydroxides by ultrasound and the effect of crystal quality on their surface properties. Clays and Clay Minerals. 2002. Vol. 50. P. 525–532.
144. Chang Q., Zhu L., Luo Z. et al. Sono-assisted preparation of magnetic magnesium-aluminum layered double hydroxides and their application for removing fluoride. Ultrasonics Sonochemistry. 2011. Vol. 18. P. 553–561.
145. Zhong Y., Yang Q., Luo K. et al. Fe(II)-Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate. Journal of Hazardous Materials. 2013. Vol. 250. P. 345–353.
146. Lv W., Du M., Ye W., Zheng Q. The formation mechanism of layered double hydroxide nanoscrolls by facile trinal-phase hydrothermal treatment and their adsorption properties. Journal of Materials Chemistry. 2015. Vol. 3. P. 23395–23402.
147. Isupov V., Chupakhina L., Mitrofanova R. Mechanochemical synthesis of double hydroxides. Journal of Materials Synthesis and Processing. 2000. Vol. 8, N 3–4. P. 251–253.
148. Yu H., Xu B., Bian X., Gao H. Mechanochemical synthesis of hydrotalcite-like compounds. Journal of Synthetic Crystals. 2010. Vol. 39. Р. 1292–1296.
149. Khusnutdinov V.R., Isupov V.P. Mechanochemical synthesis of a hydroxycarbonate form of layered magnesium aluminum hydroxides. Inorganic Materials. 2008. Vol. 44. N 3. Р. 263–267.
150. Khusnutdinov V.R., Isupov V.P. Mechanochemical synthesis of nanocomposites based on Fe3O4 and layered double hydroxides. Materials Today: Proceedings. 2019. Vol. 12, Part 1. P. 48–51.
151. Crepaldi E.L., Pavan P.C., Valim J.B. Comparative study of the coprecipitation methods for the preparation of layered double hydroxides. Journal of the Brazilian Chemical Society. 2000. Vol. 11. P. 64–70.
152. Erickson K.L., Bostrom T.E., Frost R.L. A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Materials Letters. 2005. Vol. 59, N 2–3. Р. 226–229.
153. Zhang X., Ji L., Wang J. et al. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: Kinetic and thermodynamic investigation. Colloids Surface, A. 2012. Vol. 414. P.220–227.
154. Zhang X., Wang J., Li R. et al. Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Industrial & Engineering Chemistry Research. 2013. Vol. 52. P. 10152−10159.
155. Shou J., Jiang С., Wanga F. et al. Fabrication of Fe3O4/MgAl-layered double hydroxide magnetic composites for the effective decontamination of Co(II) from synthetic wastewater. Journal of Molecular Liquids. 2015. Vol. 207. P. 216–223.
156. Koilraj P., Sasaki K. Fe3O4/MgAl-NO3 layered double hydroxide as a magnetically separable sorbent for the remediation of aqueous phosphate. Journal of Environmental Chemical Engineering. 2016. Vol. 4, N 1. P. 984–991.
157. Prasad С., Tang H., Liu W. Magnetic Fe3O4 based layered double hydroxides (LDHs) nanocomposites (Fe3O4/LDHs): recent review of progress in synthesis, properties and applications. Journal of Nanostructure in Chemistry. 2018. Vol. 8. P. 393–412.
158. Li S., Bai H., Wang J. et al. In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chemical Engineering Journal. 2012. Vol. 193. Р. 372–380.
159. Yan L., Yang K., Shan R.R. et al. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance. Journal of Colloid and Interface Science. 2015. Vol. 448. Р.508–516.
160. Li Feng, Duan Xue. Applications of layered double hydroxides. Structure and Bonding. 2006. Vol. 119. P. 193–223.
161. Gu P., Zhang S., Li X. et al. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution. 2018. Vol. 240. P. 493–505.
162. Liang X., Zang Y., Xu Y. et al. Sorption of metal cations on layered double hydroxides. Colloid Surface, A. 2013. Vol. 433. P. 122–131.
163. O’Loughlin E.J. , Kelly S.D., Cook R.E. et al. Reduction of uranium(vi) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environmental Science and Technology. 2003. Vol. 37, N 4. P. 721–727.
164. Xie L., Zhong Y., Xiang R. et al. Sono-assisted preparation of Fe(II)-Al(III) layered double hydroxides and their application for removing uranium (VI). Chemical Engineering Journal. 2017. V. 328. P. 574.–584.
165. Milagres J.L., Bellato C.R., Vieira R.S. et al. Preparation and evaluation of the Ca-Al layered double hydroxide for removal of copper(II), nickel(II), zinc(II), chromium(VI) and phosphate from aqueous solutions. Journal of Environmental Chemical Engineering. 2017. Vol. 5, N 6. P. 5469–5480.
166. Sun M., Xiao Y., Zhang L. et al. High uptake of Cu2+, Zn2+ or Ni2+ on calcined MgAl hydroxides from aqueous solutions: changing adsorbent structures. Chemical Engineering Journal. 2015. Vol. 272. Р. 17–27.
167. Gong J., Wang L., Song D. et al. Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosensors and Bioelectronics. 2009. Vol. 25. P. 493–496.
168. Saraji M., Ghani M. Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices. Journal of Chromatography. 2014. N A1366. P. 24–30.
169. Abolghasemi M.M., Yousefi V., Piryaei M. Synthesis of carbon nanotube/layered double hydroxide nanocomposite as a novel fiber coating for the headspace olid-phase microextraction of phenols from water samples. Journal of Separation Science. 2015. N 38. P. 1344–1350.
170. Abdolmohammad-Zadeh H., Rezvani Z., Sadeghi G.H., Zorufi E. Layered double hydroxides: a novel nano-sorbent for solid-phase extraction. Analytica Chimica Acta. 2011. N 685. P. 212–219.
171. Matin A.A., Biparva P., Amanzadeh H., Farhadi K. Zinc/Aluminum layered double hydroxide-titanium dioxide composite nanosheet film as novel solid phase microextraction fiber for the gas chromatographic determination of valproic acid. Talanta. 2013. N 103. P. 207–213.
172. Sajid M., Basheer C. Layered double hydroxides: emerging sorbent materials for analytical extractions. Trends in Analytical Chemistry. 2016. N 75. P. 174–182.
173. Abdolmohammad-Zadeh H., Falaghi S., Rahimpour E. An innovative nano-sorbent for selective solid-phase extraction and spectrophotometric determination of p-amino benzoic acid in cosmetic products. International Journal of Cosmetic Sciencе. 2014. N 36. P. 140–147.
174. Abdolmohammad-Zadeh H., Kohansal S., Sadeghi G.H. Nickel-aluminum layered double hydroxide as a nanosorbent for selective solid-phase extraction and spectrofluorometric determination of salicylic acid in pharmaceutical and biological samples. Talanta. 2011. Vol. 84. P. 368–373.
175. Abdolmohammad-Zadeh H., Jouyban A., Amini R., Sadeghi G. Nickel-aluminum layered double hydroxide as a nano-sorbent for the solid phase extraction of selenium, and its determination by continuous flow HG-AAS. Microchimіса Acta. 2013. N 180. P. 619–626.
176. Abdolmohammad-Zadeh H., Talleb Z. Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg-Al layered double hydroxide nano-hybrid followed by chemiluminescence detection. Talanta. 2014. N 128. P. 147–155.
177. Wang P., Yin L., Wang X. et al. L-cysteine intercalated layered double hydroxide for highly efficient capture of U(VI) from aqueous solutions. Journal of Environmental Management. 2018. Vol. 217. Р. 468–477.
178. Zou Y., Wang X., Wu F. et al. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain. Chemical Engineering. 2017. Vol. 5. Р. 1173–1185.
179. Ma S., Huang L., Ma L. et al. Efficient uranium capture by polysulfide/layered double hydroxide composites. Journal of the American Chemical Society. 2015. Vol. 137, N 10. P. 3670– 3677.
180. Klimovich I.V. Sinteticheskie analogi gidrotalkita v protsessakh lokalizatsii radioaktivnykh elementov iz rastvorov: avtoref. dis. … kand. khim. nauk: spets. 02.00.14. Moskva, 2013. 25 s.
181. Kulyukhin S.A., Krasavina Ye.P., Gredina I.V. , Mizina L.V. Sorbtsiya U(VI) na sloistykh dvoynykh gidroksidakh Mg, Al i Nd iz vodnykh rastvorov. Radiokhimiya. 2010. T. 52, № 6. S. 553–560.
182. Kulyukhin S.A., Krasavina Ye.P., Rumer I.A. i dr. Vliyanie kompleksoobrazuyushchikh ligandov na sorbtsiyu U(VI), 90Sr i 90Y iz vodnykh rastvorov na sloistykh dvoynykh gidroksidakh Mg, Al i Nd. Radiokhimiya. 2011. T. 53, № 5. S. 427–431.
183. Kulyukhin S.A., Krasavina Ye.P., Rumer I.A., Gredina I.V. Sorbtsiya 60Co na sloistykh dvoynykh gidroksidakh Mg, Al i Nd iz vodnykh rastvorov. Radiokhimiya. 2012. T. 54, № 3. S. 232–236.
184. Kulyukhin S.A., Konovalova N.A., Gorbacheva M.P. i dr. Sorbtsiya 60Co i 137Cs iz modelnykh rastvorov trapnykh vod AES. Radiokhimiya. 2013. T. 55, № 3. S. 242–248.
185. Kulyukhin S.A., Krasavina Ye.P., Gredina I.V., Rumer I.A. Sorbtsiya radionuklidov Cs, Sr i Y na smeshannykh sloistykh dvoynykh gidroksidakh Mg, Al i Nd iz vodnoy fazy. Radiokhimiya. 2009. T. 51, № 6. S. 536 – 540.
186. Kulyukhin S.A., Krasavina E.P., Rumer I.A. Sorption of 137Cs from aqueous solutions onto layered double hydroxides containing the Fe(CN)64- ion in the interlayer space. Radiochemistry. 2015. Vol.57, N 1. P.69–72.
187. Kulyukhin S.A., Krasavina Ye.P., Gordeev A.V. Sorbtsiya U(VI) na sloistykh dvoynykh gidroksidakh Mg i Al, soderzhashchikh β-tsiklodekstrin, iz vodnykh rastvorov. Khimicheskaya tekhnologiya. T. 20, № 8. 2019. S. 374–379.
188. Pshinko G.N. , Kosorukov A.A. , Puzyrnaya L.N., Goncharuk V.V. Layered double hydroxides intercalated with EDTA as effective sorbents for U(VI) recovery from wastewater. Radiochemistry. 2011. Vol. 53, N 3. P. 303–307.
189. Timoshenko T.G., Kosorukov A.A., Pshinko G.N., Goncharuk V.V. Calcinated hydrotalcite – a sorbent for purifying uraniferous waters. Journal of Water Chemistry and Technology. 2009. Vol. 31, N 4. P. 250–255.
190. Tu J., Peng X., Wang X. et al. Effective capture of aqueous uranium from saline lake with magnesium-based binary and ternary layered double hydroxides. Science of the Total Environment. 2019. Vol. 677. P. 556–563.
191. Song S., Yin L., Wang X. et al. Interaction of U(VI) with ternary layered double hydroxides by combined batch experiments and spectroscopy study. Chemical Engineering Journal. 2018. Vol. 338. Р. 579–590.
192. Chen H., Chen Z., Zhao G. et al. Enhanced adsorption of U(VI) and 241Am(III) from wastewater using Ca/Al layered double hydroxide@carbon nanotube composites. Journal of Hazardous Materials. 2018. Vol. 347. P. 67–77.
193. Yao W., Wang X., Liang Y. et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chemical Engineering Journal. 2018. Vol. 332. P. 775–786.
194. Wang X., Yu S., Wu Y. et al. The synergistic elimination of uranium(VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide. Chemical Engineering Journal. 2018. Vol. 342. P. 321–330.
195. Yin L., Hu Y., Ma R. et al. Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. Chemical Engineering Journal. 2019. Vol. 359. Р. 1550–1562.
196. Tan L., Wang Y., Liu Q. et al. Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chemical Engineering Journal. 2015. Vol. 259. P. 752–760.
197. Yu S., Wang J., Song S. et al. One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Science China Chemistry. 2017. Vol. 60. P. 415–422.
198. Zhong C., Su S., Xu L. et al. Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater. Colloid and Surfaces A. 2019. Vol. 562. Р. 329–335.
199. Yang D., Song S., Zou Y. et al. Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chemical Engineering Journal. 2017. Vol. 323. P. 143–152.
200. Yang D., Wang X., Wang N. et al. In-situ growth of hierarchical layered double hydroxide on polydopamine-encapsulated hollow Fe3O4 microspheres for efficient removal and recovery of U(VI). Journal of Cleaner Production. 2017. Vol. 172. Р.2033–2044.
201. Zou Y., Wang P., Yao W. et al. Synergistic immobilization of UO22+ by novel graphitic carbon nitride@layered double hydroxide nanocomposites from wastewater. Chemical Engineering Journal. 2017. Vol. 330. Р. 573–584.
202. Kameda T., Shinmyou T., Yoshioka T. Uptake of Nd3+ and Sr2+ by LiAl layered double hydroxides intercalated with ethylenediaminetetraacetate. Materials Chemistry and Physics. 2016. Vol. 177. P. 8–11.
203. Kameda T., Shinmyou T., Yoshioka T. Uptake of Nd3+ and Sr2+ by Li-Al layered double hydroxide intercalated with triethylenetetramine-hexaacetic acid: kinetic and equilibrium studies. RSC Advances. 2015. Vol. 5. P. 79447–79455.
204. Tomohito K., Tetsu S., Toshiaki Y. Capture of cationic metal ions from aqueous solutions by layered double hydroxides intercalated with organic acid anions. Non-linear Systems. Nanotechnology. 2015. Vol. 978. Р. 41–46.
205. Tian Q., Sasaki K. A novel composite of layered double hydroxide/geopolymer for co-immobilization of Cs+ and SeO42- from aqueous solution. Science of the Total Environment. 2019. Vol. 695. Rezhim dostupu: https://www.sciencedirect.com/science/ article/pii/S0048969719337404.
206. Koilraj P., Kamura Y., Sasaki K. Carbon-dot-decorated layered double hydroxide nanocomposites as a multifunctional environmental material for co-immobilization of SeO42- and Sr2+ from aqueous solutions. ACS Sustainable Chemistry & Engineering. 2017. Vol. 5. P. 9053–9064.
207. Guo B., Kamura Y., Koilraj P., Sasaki K. Co-sorption of Sr2+ and SeO42- as the surrogate of radionuclide by alginate-encapsulated graphene oxide-layered double hydroxide beads. Environmental Research. 2020. Vol. 187. Rezhim dostupu: https://www.sciencedirect.com/science/article/abs/pii/ S0013935120306058.
208. Kameda T., Takeuchi H., Yoshioka T. Uptake of heavy metal ions from aqueous solution using Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate. Separation and Purification Technology. 2008. Vol. 62. Р. 330–336.
209. Kameda T., Takeuchi H. , Yoshioka T. Kinetics of uptake of Cu2+ and Cd2+ by Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate. Colloids Surfасе A. 2010. Vol. 355. P. 172–177.
210. Kameda T., Takeuchi H. , Yoshioka T. Ni–Al layered double hydroxides modified with citrate, malate, and tartrate: Preparation by coprecipitation and uptake of Cu2+ from aqueous solution. Journal of Physics and Chemistry of Solids. 2011. Vol. 72, N 6. Р. 846–851.
211. Mohsen S. Mostafa, Al-Sayed Bakr A., Ahmed M.A. El Naggar, El-Sayed A. Sultan. Water decontamination via the removal of Pb(II) using a new generation of highly energetic surface nano-material: Co2+ Mo6+ LDH. Journal of Colloid and Interface Science. 2016. Vol. 461. Р. 261–272.
212. Ma S., Chen Q., Li H. et al. Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. Journal of Materials Chemistry A. 2014. Vol. 2, N 26. Р. 10280–10289.
213. Rojas R. Effect of particle size on copper removal by layered double hydroxides. Chemical Engineering Journal. 2016. Vol. 303. P.331–337.
214. Zhou H., Jiang Z., Wei S. A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Applied Clay Science. 2018. Vol. 153. P. 29–37.
215. Zhou H., Jiang Z., Liang J., Wei S. Adsorption of Cd(II) from aqueous solutions by a novel layered double hydroxide FeMnMg-LDH. Water, Air, & Soil Pollutionis. 2018. Vol. 228. P. 1–16.
216. González M.A., Pavlovic I., Barriga C. Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors. Chemical Engineering Journal. 2015. Vol. 269. P. 221–228.
217. Kameda T., Saito S., Umetsu Y. Mg-Al layered double hydroxide intercalated with ethylene-diaminetetraacetate anion: synthesis and application to the uptake of heavy metal ions from an aqueous solution. Separation and Purification Technology. 2005. Vol. 47. Р. 20–26.
218. Pérez M.R., Pavlovic I., Barriga C. et al. Uptake of Cu2+, Cd2+ and Pb2+ on Zn-Al layered double hydroxide intercalated with edta. Applied Clay Science. 2006. Vol. 32. P. 245–251.
219. Rojas R., Perez M.R., Erro E.M. et al. EDTA modified LDHs as Cu2+ scavengers: Removal kinetics and sorbent stability. Journal of Colloid and Interface Science. 2009. Vol. 331, N 2. P. 425–431.
220. Goncharuk V.V., Puzyrnaya L.N., Pshinko G.N. i dr. Udalenie Cu(II), Ni(II) i Co(II) iz vodnykh rastvorov sloistym dvoynym gidroksidom, interkallirovannym EDTA. Khimiya i tekhnologiya vody. 2011. T. 33, № 5. S. 488–495.
221. Pavlovic I., Pérez M.R., Barriga C., Ulibarri M.A. Adsorption of Cu2+, Cd2+ and Pb2+ ions by layered double hydroxides intercalated with chelating agents diethylenetriaminepentaacetate and meso-2,3-dimetcaptosuccinate. Applied Clay Science. 2009. Vol. 43. P. 125–129.
222. Liang X.F., Hou W.G., Xu Y.M. et al. Sorption of lead ion by layered double hydroxide intercalated with diethylene-triaminepentaacetic acid. Colloids Surfасе, A. 2010. Vol. 366. Р. 50–57.
223. González M.A., Pavlovic I., Rojas-Delgado R., Barriga C. Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide-humate hybrid. Sorbate and sorbent comparative studies. Chemical Engineering Journal. 2014. Vol. 254. P. 605–611.
224. Tran H.N., Lin C.C., Chao H.P. Amino acids-intercalated Mg/Al layered double hydroxides as dual-electronic adsorbent for effective removal of cationic and oxyanionic metal ions. Separation and Purification Technology. 2018. Vol. 192. Р. 36–45.
225. Koilraj P., Kalusulingam R., Sasaki K. Arginine and lysine-functionalized layered double hydroxides as efficient sorbents for radioactive Co2+ removal by chelate-facilitated immobilization. Chemical Engineering Journal. 2019. Vol. 374. P. 359–369.
226. Huang G., Wang D., Ma S. et al. A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). Journal of Colloid and Interface Science. 2015. Vol. 445. P. 294–302.
227. Yanming S., Dongbin L., Shifeng L. et al. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide. Arabian Journal of Chemistry. 2017. Vol. 10, N 2. P. S2295–S2301.
228. L. Ma, Q. Wang, S.M. Islam et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion. Journal of the American Chemical Society. 2016. Vol. 138. Р. 2858–2866.
229. Liu J., Wu P., Li S. et al. Synergistic deep removal of As(III) and Cd(II) by a calcined multifunctional MgZnFe-CO3 layered double hydroxide: Photooxidation, precipitation and adsorption. Chemosphere. 2019. Vol. 225. P. 115–125.
230. Lyu F., Yu H., Hou T. et al. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. Journal of Colloid and Interface Science. 2019. Vol. 539. P. 184 – 193.
231. Shou J., Jiang C., Wang F. et al. Fabrication of Fe3O4/MgAl-layered double hydroxide magnetic composites for the effective decontamination of Co(II) from synthetic wastewater. Journal of Molecular Liquids. 2015. Vol. 207. P. 216–223.
232. Xie Y., Yuan X., Wu Z. et al. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II). Journal of Colloid and Interface Science. 2018. Vol. 532. P. 474– 484.
233. Ling L.-L., Liu W.-J., Zhang S., Jiang H. Achieving high-efficiency and ultrafast removal of Pb(II) by one-pot incorporation of N-doped carbon hydrogel into FeMg layer double hydroxides. Journal of Materials Chemistry A. 2016. Vol. 4, N 26. P.10336−10344.
234. Zubair M., Daud M., McKay G. et al. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science. 2017. Vol. 143. Р.279–292.
235. Parker L.M., Milestone N.B., Newman R.H. The use of hydrotalcite as an anion absorbent. Industrial & Engineering Chemistry Research. 1995. Vol. 34. P. 1196–1202.
236. Goswamee R.L., Sengupta P., Bhattacharyya K.G., Dutta D.K. Adsorption of Cr(VI) in layered double hydroxide. Applied Clay Science. 1998. Vol. 13. P. 21–34.
237. Álvarez-Ayuso E., Nugteren H.W. Purification of chromium (VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite. Water Research. 2005. Vol. 39. P. 2535–2542.
238. Xiao L., Ma W., Han M., Cheng Z. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution. Journal of Hazardous Materials. 2011. Vol. 186. P. 690–698.
239. Kaneko S., Ogawa M. Effective concentration of dichromate anions using layered double hydroxides from acidic solutions. Applied Clay Science. 2013. Vol. 75–76. P. 109–113.
240. Randarevich L.S., Zhuravlev I.Z., Strelko V.V. et al. Synthesis, anion-exchange properties, and hydrolytic stability of Mg-Fe(III) layered double hydroxides. Journal of Water Chemistry and Technology. 2009. Vol. 31, N 2. P. 110–114.
241. Lv L., Sun P., Wang Y. et al. Phosphate Removal and Recovery with Calcined Layered Double Hydroxides as an Adsorbent. Phosphorus, Sulfur, and Silicon and the Related Elements. 2008. Vol. 183, N 2–3. P. 519–526.
242. Cheng X., Huang X., Wang X. et al. Phosphate adsorption from sewage sludge filtrate using zinc-aluminum layered double hydroxides. Journal of Hazardous Materials. 2009. Vol. 169. P. 958–964.
243. Cheng X., Huang X., Wang X., Sun D. Influence of calcination on the adsorptive removal of phosphate by Zn–Al layered double hydroxides from excess sludge liquor. Journal of Hazardous Materials. 2010. Vol. 177. P. 516–523.
244. He H., Kang H., Ma S. et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate. Journal of Colloid and Interface Science. 2010. Vol. 343. P. 225–231.
245. Triantafyllidis K.S., Peleka E.N., Komvokis V.G.,. Mavros P.P. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. Journal of Colloid and Interface Science. 2010. Vol. 342. P. 427–436.
246. Cai P., Zheng H., Wang C. et al. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxides. Journal of Hazardous Materials. 2012. Vol. 213–214. P. 100–108.
247. Wang W., Zhou J., Achari G. et al. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids Surfасе, A. 2014. Vol. 457. P. 33–40.
248. Kameda T., Kondo E., Yoshioka T. Kinetics of Cr(VI) removal by Mg-Al layered double hydroxide doped with Fe2+. Journal of Water Process Engineering. 2014. Vol. 4. P. 134–136.
249. Lu Y., Jiang B., Fang L. et al. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere. 2016. Vol. 152. P. 415–422.
250. Zhang F., Du N., Li H. et al. Sorption of Cr(VI) on Mg-Al-Fe layered double hydroxides synthesized by a mechanochemical method. RSC Advances. 2014. Vol. 4, N 87. P. 46823–46830.
251. Kameda T., Kondo E., Yoshioka T. Treatment of Cr(VI) in aqueous solution by Ni-Al and Co-Al layered double hydroxides: Equilibrium and kinetic studies. Journal of Water Process Engineering. 2015. Vol. 8. P. 75–80.
252. Yue X., Liu W., Chen Z., Lin Z. Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight. Journal of Environmental Sciences. 2017. Vol. 53. P. 16–26.
253. Ookubo A., Ooi K., Hayashi H. Preparation and Phosphate Ion-Exchange Properties of a Hydrotalcite-like Compound. Langmuir. 1993. Vol. 9, N 5. P. 1418–1422.
254. Seida Y., Nakano Y. Removal of phosphate by layered double hydroxides containing iron. Water Research. 2002. Vol. 36. P. 1306–1312.
255. Tezuka S., Chitrakar R. , Sakane K. et al. The Synthesis and Phosphate Adsorptive Properties of Mg(II)–Mn(III) Layered Double Hydroxides and Their Heat-Treated Materials. The Bulletin of the Chemical Society of Japan. 2004. Vol. 77, N 11. Р. 2101–2107.
256. Kuzawa K., Jung Y.J., Kiso Y. et al. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere. 2006. Vol. 62. Р. 45–52.
257. Peng S., Lu L., Wang J. et al. Study on the adsorption kinetics of orthophosphate anions on layer double hydroxide. Chinese Journal of Geochemistry. 2009. Vol. 28. P. 184–187.
258. Shimamura A., Kurashina M., Kanezaki E. Thermal behavior of phosphate intercalated Mg/Al-layered double hydroxides. International Journal of Modern Physics B. 2010. Vol. 24. P. 3226–3229.
259. Koilraj P., Kannan S. Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation. Journal of Colloid and Interface Science. 2010. Vol. 341. Р. 289–297.
260. Zhou J., Xu Z.P., Qiao S. Enhanced removal of triphosphate by MgCaFe-Cl-LDH: synergism of precipitation with intercalation and surface uptake. Journal of Hazardous Materials. 2011. Vol. 189. P. 586–594.
261. Novillo C. Guaya D., Avendano A.A.P. et al. Evaluation of phosphate removal capacity of Mg/Al layered double hydroxides from aqueous solutions. Fuel. 2014. Vol. 138. P. 72–79.
262. Ashekuzzaman S.M., Jiang J.-Q. Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Engineering Journal. 2014. Vol. 246 Р. 97–105.
263. Ashekuzzaman S.M., Jiang J.-Q. Strategic phosphate removal/recovery by a re-usable Mg-Fe-Cl layered double hydroxide. Process Safety and Environmental Protection. 2017. Vol. 107. P. 454–462.
264. Everaert M., Slenders K., Dox K. et al. The isotopic exchangeability of phosphate in Mg-Al layered double hydroxides. Journal of Colloid and Interface Science. 2018. Vol. 520. P. 25–32.
265. Chitrakar R., Tezuka S., Hosokawa J. et al. Uptake properties of phosphate on a novel Zr–modified MgFe–LDH(CO3). Journal of Colloid and Interface Science. 2010. Vol. 349. P. 314–320.
266. Deng L., Shi Z., Peng X. Adsorption of Cr(VI) onto a magnetic CoFe2O4/MgAl-LDH composite and mechanism study. RSC Advances. 2015. Vol. 5. P. 49791–49801.
267. Deng L., Shi Z., Wang L., Zhou S. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution. Journal of Physics and Chemistry of Solids. 2017. Vol. 104. P. 79–-90.
268. Zhang B., Luan L., Gao R. et al. Rapid and effective removal of Cr(VI) from aqueous solution using exfoliated LDH nanosheets. Colloids Surfасе, A. 2017. Vol. 520. P. 399–408.
269. Zhang H., Huang F., Liu D., Shi P. Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide. Chinese Chemical Letters. 2015. Vol. 26, N 9. P. 1137–1143.
270. Tian W., Kong X., Jiang M. et al. Hierarchical layered double hydroxide epitaxially grown on vermiculite for Cr(VI) removal. Materials Letters. 2016. Vol. 175. P. 110–113.
271. Yuan X., Wang Y., Wang J. et al. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chemical Engineering Journal. 2013. Vol. 221, N 2. P. 204–213.
272. Liu Y., Luo C., Cui G.J., Yan S.Q. Synthesis of manganese dioxide/iron oxide/graphene oxide magnetic nanocomposites for hexavalent chromium removal. RSC Advances. 2015. Vol. 5. P. 54156–54164.
273. Gore C.T., Omwoma S., Chen W., Song Y.F. Interweaved LDH/PAN nanocomposite films: application in the design of effective hexavalent chromium adsorption technology. Chemical Engineering Journal. 2016. Vol. 284. P. 794–801.
274. Yang K., Yan L., Yang Y. et al. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Separation and Purification Technology. 2014. Vol. 124. P. 36–42.
275. Seftel E.M., Ciocarlan R.G., Michielsen B. et al. Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides. Applied Clay Science. 2018. Vol. 165. P. 234–246.
276. Yu Q., Zheng Y., Wang Y. et al. Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: assembling hydrogen bond acceptor sites. Chemical Engineering Journal. 2015. Vol. 260. P. 809–817.
277. Li R., Wang J.J., Zhou B. et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment. 2016. Vol. 559. Р. 121–129.
278. Yan L.-G., Yang K., Shan R.-R. et al. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance. Journal of Colloid and Interface Science. 2015. Vol. 448. P. 508–516.
279. Bernardo M.P., Moreira F.K.V., Ribeiro C. Synthesis and characterization of eco-friendly Ca-Al-LDH loaded with phosphate for agricultural applications. Applied Clay Science. 2017. Vol. 137. P. 143–150.
280. Koilraj P., Antonyraj C.A., Gupta V. et al. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer. Applied Clay Science. 2013. Vol. 86. Р. 111–118.
281. Benício L.P.F., Constantino V.R.L. , Pinto F.G. et al. Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chemistry & Engineering. 2017. Vol. 5. Р. 399–409.
282. Everaert M., Degryse F., McLaughlin M.J. et al. Agronomic effectiveness of granulated and powdered P-exchanged Mg-Al LDH relative to struvite and MAP. Journal of Agricultural and Food Chemistry. 2017. Vol. 65. Р. 6736–6744.
283. Hatami H., Fotovat A., Halajnia A. Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution. Applied Clay Science. 2018. Vol. 152. P. 333–341.
284. Tananaev I.V., Seyfer G.B., Kharitonov Yu.Ya. i dr. Khimiya ferrotsianidov. Moskva: Nauka, 1971. 320 s.
285. Ayers J.B., Waggoner W.H. Synthesis and properties of two series of heavy metal hexacyanoferrates. Journal of Inorganic and Nuclear Chemistry. 1971. Vol. 33, N 3. P. 721–733.
286. Pekárek V., Veselý V. Synthetic inorganic ion exchangers-II. Salts of heteropolyacids, insoluble ferrocyanides, synthetic aluminosilicates and miscellaneous exchangers. Talanta. 1972. Vol. 19, N 11. P. 1245–1283.
287. Vlasselaer S., D’Olieslager W., D’Hont M. Caesium ion exchange equilibrium on potassium-zinc-hexacyanoferrate(II) K2Zn3(Fe(CN)6)2. Journal of Inorganic and Nuclear Chemistry. 1976. Vol. 38, N 2. Р. 327–330.
288. Lehto J., Haukka S., Harjula R., Blomberg M. Mechanism of cesium ion-exchange on potassium cobalt hexacyanoferrates(II). Journal of the Chemical Society, Dalton Transactions. 1990. Vol. 3. Р. 1007–1011.
289. Nilchi A., Malek B., Ghanadi M., Khanchi A. Exchange properties of cyanide complex. Part I. Ion exchange of cesium on ferrocyanides. Journal of Radioanalytical and Nuclear Chemistry. 2002. Vol. 258, N 3. P. 457–462.
290. Milyutin V.V., Gelis V.M., Klindukhov V.G., Obruchikov A.V. Coprecipitation of microamounts of Cs with ferrocyanides of various metals. Radiochemistry. 2004. 46, N 5. P. 479–480.
291. Han F., Zhang G.H., Gu P. Adsorption kinetics end eguilibrium modeling of cesium on copper ferrocyanide. Journal of Radioanalytical and Nuclear Chemistry. 2013. Vol. 295. P. 369–377.
292. Zhang C.-P., Gu P., Zhao J. et al. Research on the treatment of liquid waste containing cesium by an adsorption–microfiltration process with potassium zinc hexacyanoferrate. Journal of Hazardous Materials. 2009. Vol. 167. Р. 1057–1062.
293. Haas P.A. A Review of information on ferrocyanide solids for removal of cesium from solutions. Separation Science and Technology. 1993. Vol. 28, N 17–18. P. 2479–2506.
294. Bing Li, Jiali Liao, Jiaojiao Wu et al. Removal of radioactive cesium from solutions by zinc ferrocyanide. Nuclear Science and Techniques. 2008. Vol. 19, N 2. P. 88–92.
295. Faustino P.J., Yang Y., Progar J.J. et al. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. Journal of Pharmaceutical and Biomedical Analysis. 2008. Vol. 47. Р. 114–125.
296. Kulyukhin S.A., Konovalova N.A., Gorbacheva M.P., Rumer I.A. Removal of 60Co and 137Cs from simulated NPP bottom residues on the solid phase of K+, Ni2+, and Fe3+ ferrocyanides. Radiochemistry. 2014. Vol. 56, N 4. P. 404–409.
297. Huang Ching-Tsven, Wu Garry. Improvement of Cs leaching resistance of solidified radwastes with copper ferrocyanide (CFC)-vermiculite. Waste Management. 1999. Vol. 19, N 4. P. 263–268.
298. Ivanets A.I., Shashkova I.L., Drozdova N.V. i dr. Izvlechenie ionov tseziya iz vodnykh rastvorov kompozitsionnymi sorbentami na osnove trepela i ferrotsianidov medi (ІІ) i nikelya (ІІ). Radiokhimiya. 2014. T. 56, № 5. S.446–449.
299. Hitoshi Mimura, Masanori Kimura, Kenichi Akiba, Yoshio Onodera. Separation of cesium and strontium by potassium nickel hexacyanoferrate(II)-loaded zeolite a. Journal of Nuclear Science and Technology. 1999. Vol. 36. P. 307–310.
300. Watari K., Izawa M. Separation of radiocesium by copper ferrocyanide-anion exchange resin. Journal of Nuclear Science and Technology. 1965. Vol. 2. Р. 321–322.
301. Watari K., Imai K., Izawa M. Radiochemical application of iron ferrocyanide-anion exchange resin. Journal of Nuclear Science and Technology. 1968. Vol. 5. Р. 309–312.
302. Rao S.V.S., Lekshmi R., Mani A.G.S., Sinha P.K. Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam. Journal of Radioanalytical and Nuclear Chemistry. 2010. Vol. 283. P. 379–384.
303. Valsala T.P., Roy S.C., Shah J.G. et al. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. Journal of Hazardous Materials. 2009. Vol. 166. P. 1148–1153.
304. Won H.J., Moon J.K., Jung C.H., Chung W.Y. Evaluation of ferrocyanide anion exchanger resin regarding the uptake of Cs+ ions and their regeneration. Nuclear Engineering and Technology. 2008. Vol. 40. P. 489–496.
305. Nilchi A., Saberi R., Moradi M. et al. Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chemical Engineering Journal. 2011. Vol. 172. Р. 572– 580.
306. Taj S., Muhammad D., Chaudhry M.A., Mazhar M. Lithium, rubidium and cesium ion removal using potassium iron(III) hexacyanoferrate (II) supported on polymethylmethacrylate. Journal of Radioanalytical and Nuclear Chemistry. 2010. Vol. 288. P. 79–88.
307. Avramenko V., Bratskaya S., Zheleznov V. et al. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides. Journal of Hazardous Materials. 2011. Vol. 186. Р. 1343–1350.
308. Semenishchev V.S. Ferrotsianidnye sorbenty na osnove gidratirovannogo dioksida titana dlya kontsentrirovaniya radionuklidov i pererabotki zhidkikh radioaktivnykh otkhodov: Avtoref. dis… kand. khim. nauk: spets.: 05.17.02. Yekaterinburg, 2013. 24 s.
309. Yang H., Sun L., Zhai J. et al. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. Journal of Materials Chemistry. A. 2014. Vol. 2. P. 326–332.
310. Yang H.-M., Jang S.-C., Hong S. B. et al. Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water. Journal of Alloys and Compounds. 2016. Vol. 657. Р. 387–393.
311. Jang J., Lee D.S. Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution. Industrial & Engineering Chemistry Research. 2016. Vol. 55. P. 3852–3860.
312. Zhang H., Zhao X., Wei J., Li F. Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials. Nuclear Engineering and Design. 2014. Vol. 275. Р. 322–328.
313. Ambashta R.D., Wattal P.K., Singh S., Bahadur D. Nano-aggregates of hexacyanoferrate (II)-loaded magnetite for removal of cesium from radioactive wastes. Journal of Magnetism and Magnetic Materials. 2003. Vol. 267. P. 335–340.
314. Mobtaker H.G., Pakzad S.M., Yousefi T. Magnetic CuHCNPAN nanocomposite as an efficient adsorbent for strontium uptake. Journal of Nuclear Materials. 2018. Vol. 504. Р. 55–60.
315. Sheha R.R. Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. Journal of Colloid and Interface Science. 2012. Vol. 388. P. 21−30.
316. Darder M., Gonzalez-Alfaro Y., Arandaa P., Ruiz-Hitzky E. Silicate-based multifunctional nanostructured materials with magnetite and prussian blue: application to cesium uptake. RSC Advances. 2014. Vol. 4. Р. 35415−35421.
317. Galysh V.V., Кartel M.T., Milyutin V.V., Pakhlov E.M. Composite cellulose-inorganic sorbents for 137Cs recovery. Journal of Radioanalytical and Nuclear Chemistry. 2014. Vol. 301, N 2. P. 315–321.
318. Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 2017. Vol. 12, N 1. P. 37-44.
319. Kitajima A., Tanaka H., Minami N. et al. Efficient cesium adsorbent using Prussian blue nanoparticles immobilized on cotton matrices. Chemistry Letters. 2012. Vol. 41. Р. 1473–1474.
320. Okamura Y., Fujiwara K., Ishihara R. et al. Cesium removal in freshwater using potassium cobalt hexacyanoferrate-impregnated fibers. Radiation Physics and Chemistry. 2014. Vol. 94. Р. 119–122.
321. Qian J., Cai S., Yang S., Hua D. A thermo-sensitive polymer network crosslinked by Prussian blue nanocrystals for cesium adsorption from aqueous solution with large capacity. Journal of Materials Chemistry A. 2017. Vol. 5. P. 22380 – 22388.
322. Mimura H., Kimura M., Akiba K., Onodera Y. Selective removal of cesium from highly concentrated sodium nitrate neutral solutions by potassium nickel hexacyanoferrate(II)-loaded silica gels. Solvent Extraction and Ion Exchange. 1999. Vol. 17. Р. 403–417.
323. Park Y., Kim C., Choi S.J. Selective removal of Cs using copper ferrocyanide incorporated on organically functionalized silica supports. Journal of Radioanalytical and Nuclear Chemistry. 2015. Vol. 303. P. 199–208,
324. Attallah M.F., Abd-Elhamid A.I., Ahmed I.M., Aly H.F. Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. Journal of Molecular Liquids. 2018. Vol. 261. P. 379–386.
325. Sangvanich T., Sukwarotwat V., Wiacek R.J. et al. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of Hazardous Materials. 2010. Vol. 182. P. 225–231.
326. Buser B.J., Schwarzenbach D., Petter W., Ludi A. The crystal structure of prussian blue: Fe4[Fe(CN)6]3∙xH2O. Inorganic Chemistry. 1977. Vol. 16. P. 2704−2710.
327. Chen G.R., Chang Y.R., Liu X. et al. Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Separation and Purification Technology. 2015. Vol. 143. P. 146−151.
328. Torad N. L., Hu M., Imura M. et al. Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. Journal of Materials Chemistry. 2012. Vol. 22. P. 18261–18267.
329. Namgung H., Gwon Y.J., Kim J. et al. Synthesis of Prussian blue-embedded porous polymer for detection and removal of Cs ions. Polymer. 2018. Vol. 158. P. 320–326.
330. Jang J., Lee D.S. Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresource Technology. 2016. Vol. 218. P. 294–300.

Do rozdilu 2

1. Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays: preparation, properties, and applications. Catalysis Today. 1991. Vol. 11. P. 173–301.
2. Handbook of Layered Materials; еdited by S.M. Auerbach, K.A. Carrado, P.K. Dutta. New York: Marcel Dekker Inc., 2004. 650 p.
3. Bennur T.H., Ramani A., Bal R. et al. Palladium(II) containing hydrotalcite as an efficient heterogeneous catalyst for Heck reaction. Catalysis Communications. 2002. Vol. 3, N 10. Р. 493– 496.
4. Butenko E.O., Kravchenko V.S., Gromilov S.A. i dr. Struktura prirodnykh i sinteticheskikh anionnykh glin i ikh sorbtsionnaya sposobnost. Visnyk Pryazovsjkogho derzhavnogho tekhnichnogho universytetu. 2009. № 19. S. 301–306.
5. Carlino S. The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ionics. 1997. N 98. P. 73–84.
6. Kameda T., Takeuchi H., Yoshioka T. Hybrid inorganic/organic composites of Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate prepared by co-precipitation. Materials Research Bulletin. 2009. N 44. P. 840–845.
7. Meyn M., Beneke K., Lagaly G. Anion-exchange reactions of layered double Hydroxides. Inorganic Chemistry. 1990. N 29 (26). P. 5201–5207.
8. Perez M.R., Pavlovic I., Barriga C. et al. Uptake of Cu2+, Cd2+ and Pb2+ on Zn–Al layered double hydroxide intercalated with edta. Applied Clay Science. 2006. V. 32. P. 245–251.
9. Pshinko G.N., Kosorukov A.A., Puzyrnaya L.N., Goncharuk V.V. Layered double hydroxides intercalated with EDTA as effective sorbents for U(VI) recovery from wastewater. Radiochemistry. 2011. Vol. 53, N 3. P.303–307.
10. Kaplan L.A. Comparison of high-temperature and persulfate oxidation methods for determination of dissolved organic carbon in fresh waters. Limnology and Oceanography. 1992. Vol.5, N 37. P. 1119–1125.
11. Djatlova N.M., Temkina V.Ja., Popov K.Y. Kompleksony i kompleksonaty metallov. Moskva: Khymyja, 1988. 544 s.
12. Pshinko G.N., Kosorukov A.A., Puzyrnaya L.N., Kobets S.A. Recovery of U(VI) from aqueous media with layered double hydroxides of Zn and Al, intercalated with complexones. Radiochemistry. 2013. Vol. 55, N 6. P. 601–604.
13. Apelblat A. Citric acid. Cham, Heidelberg, New York, Dordrecht, London: Springer, 2014. 357 p.
14. Zhang J., Zhang F., Ren L. et al. Synthesis of layerd double hydroxide anionic clays intercalated by carboxylate anions. Materials Chemistry and Physics. 2004. Vol. 85, N 1. P. 207 – 214.
15. Tronto J., Crepaldi E.L., Pavan P.C. et al. Organic anions of pharmaceutical interest intercalated in magnesium aluminum ldhs by two different methods. Molecular Crystals and Liquid Crystals. 2001. Vol. 356. P. 227 – 237.
16. Reichle W.T., Kang S.Y., Everhardt D.S. The natural of the thermal decomposition of a catalytically active anionic clay mineral. Journal of Catalysis. 1986. Vol. 101. P. 352 – 359.
17. Boclair J.W., Braterman P.S., Brister B.D. et al. Physical and chemical interactions between Mg:Al layered double hydroxide and hexacyanoferrate. Journal of Solid State Chemistry. 2001. Vol. 161. P. 249–258.
18. Holgado M.J., Rives V., Sanromán M.S., Malet P. Hexacyanoferrate-interlayered hydrotalcite. Solid State Ionics. 1996. Vol. 92. Р. 273– 283.
19. Mao G., Tsuji M., Tamaura Yu. Synthesis and CO2 adsorption features of a hydrotalcite-like compound of the Mg2+-Al3+-Fe(CN)64- system with high layer-charge density. Clays and Clay Minerals. 1993. Vol. 41. P. 731–737.
20. Béres A., Pálinkó I., Kiricsi I. et al. Layered double hydroxides and their pillared derivatives – materials for solid base catalysis; synthesis and characterization. Applied Catalysis A: General. 1999. Vol. 182, N 2. P. 237– 247.
21. Pshinko G.N., Puzyrnaya L.N., Kobets S.A. et al. Layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions, as a sorbent for removing cesium radionuclides from aqueous solutions. Radiochemistry. 2015. Vol. 57, N 3. P.259–265.
22. Puzyrnaya L.N., Yatsik B.P., Pshinko G.N. i dr. Udalenie Cu(II), Co(II) i Pb(II) iz vodnykh rastvorov Zn/Al-sloistym dvoynym gidroksidom, interkalirovannym geksatsianoferrat(ІІ)-ionami. Khimiya i tekhnologiya vody. 2016. T. 38, № 4. S. 366–377.
23. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. i dr. Izvlechenie ionov tyazhelykh metallov iz vodnykh rastvorov Zn/Al-cloistym dvoynym gidroksidom, interkalirovannym [Fe(CN)6]4–ionami. Ukrainskiy khimicheskiy zhurnal. 2016. T. 82, № 2. S. 100 – 106.
24. Tananaev I.V., Seyfer G.B., Kharitonov Yu.Ya. i dr. Khimiya ferrotsianidov. Moskva: Nauka, 1971. 320 s.
25. Marey A.N.,Zykova N.N. Metodologicheskie rekomendatsii po sanitarnomu kontrolyu za soderzhaniem radioaktivnykh veshchestv v obektakh okruzhayushchey sredy. Moskva: Izd-vo MZ SSSR, 1980. 337 s.
26. НРБУ – 97. Державні гігієнічні нормативи. Норми радіаційної безпеки України. Київ: 1997. 131 с.
27. Radiokhimicheskiy analiz i radiokhimicheskie tekhnologii; pod red. L.N. Moskvina. Sankt-Peterbúrg: VVM, 2013. 752 s.
28. Nemodruk A.A., Glukhova L.P. Vzaimodeystvie shestivalentnogo urana s arsenazo III v silnokislykh rastvorakh. Zhurnal analiticheskoy khimii. 1963. T. 18, № 1. C.93–98.
29. Marchenko 3., Baltsezhak M. Metody spektrofotometrii v UF i vidimoy oblastyakh v neorganicheskom analize. Moskva: BINOM. Laboratoriya znaniy, 2007. 711 s.
30. Nabyvanecj B.J., Osadchyj V.I., Osadcha N.M., Nabyvanecj Ju.B. Analitychna khimija poverkhnevykh vod. Kyjiv: Naukova dumka, 2007. 456 s.
31. Upor E., Mokhai M., Novak D. Fotometricheskie metody opredeleniya sledov neorganicheskikh soedineniy. Moskva: Mir, 1985. 360 s.
32. Puigdomenech I., Zagorodni A., Wang M., Muhummed M. Program Medusa (Make equilibrium diagrams using sophisticated algoritms. Royal institute of technology, inorganic and materials chemistry, Sweden, 1999. (en linea). http://www.kemi.kth.se/medusa Acceso: octubre 11 de (2007).
33. Linnik P.N., Nabivanets B.I. Formy migratsii metallov v presnykh poverkhnostnykh vodakh. Leningrad: Gidrometeoizdat, 1986. 269 s.
34. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. 1918. Vol. 40. P. 1361-1403.
35. Freundlich H. M. F. Over the adsorption in solution. Journal of Physical Chemistry. 1906. Vol. 57. P. 385–471.
36. Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research. 2000. Vol. 34, N 3. P. 735–742.
37. Ho Y.S. Review of second-order models for adsorption systems. Journal of Hazardous Materials. 2006. Vol. 136. Р. 681–689.
38. Benson S. Osnovy khimicheskoy kinetiki. Moskva: Mir, 1964. 605 s.
39. Shmid R., Capunov V.N. Neformalnaya kinetika. Moskva: Mir, 1985. 263 s.
40. Altomare A., Campi A. , Cuocci C. et al. Advances in powder diffractionpatten indexing: N-Treor09. Journal of Applied Crystallography. 2009. Vol. 42. P. 763–775.
41. Altomare A., Cuocci C., Giacovazzo C. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. Journal of Applied Crystallography. Computer programs. 2013. Vol. 46. P. 1–5.
42. Das J., Patra B.S., Baliarsingh N., Parida K.M. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science. 2006. Vol. 32. P. 252–260.
43. Li R., Wang J.J., Zhou B. et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment. 2016. Vol. 559. Р. 121–129.
44. Park J. Regalbuto J.R. A simple, accurate determination of oxide PZC and the strong buffer effect of oxide surfaces and incipient wetness. Journal of Colloid and Interface Science. 1995. Vol. 175. P. 239–252.
45. Khan M.N., Sarwar A. Determination of points of zero charge of natural and treated adsorbents. Surface Review and Letters. 2007. Vol. 14, N 3. P. 461–469.
46. Svetozarov V.V. Osnovy statisticheskoy obrabotki rezultatov izmereniy. Uchebnoe posobie. Moskva: MIFI, 2005. 40 s.

Do rozdilu 3

1. Handbook of layered materials; еdit. by S.M. Auerbach, K.A. Carrado, P.K. Dutta. New York: Marcel Dekker Inc., 2004. 650 p.
2. Kosorukov A.A., Pshinko G.N., Puzyrnaya L.N., Kobets S.A. Izvlechenie U(VI) iz vodnykh sred sloistymi dvoynymi gidroksidami, interkalirovannymi kompleksonami. Khimiya i tekhnologiya vody. 2013. T. 35, № 3. S. 188 – 202.
3. Pshinko G.N., Kosorukov A.A., Puzyrnaya L.N., Kobets S.A. Izvlechenie U(VI) iz vodnykh sred sloistymi dvoynymi gidroksidami Zn i Al, interkalirovannymi kompleksonami. Radiokhimiya. 2013. T. 35, № 6. S. 512 – 513.
4. Kalinichenko I.Ye., Pshinko G.N., Puzyrnaya L.N., Kobets S.A. Modelirovanie protsessov sorbtsii U(VI) na osnove zakonomernostey kinetiki reaktsiy v rastvorakh. Khimiya i tekhnologiya vody. 2015. T. 37, № 2. S. 130 – 137.
5. Pshinko G.N., Puzyrnaya L.N., Kobets S.A. i dr. Sloistyy dvoynoy gidroksid Zn i Al, interkalirovannyy geksatsianoferrat(II)-ionami – sorbent dlya izvlecheniya radionuklidov tseziya iz vodnykh sred. Radiokhimiya. 2015. T. 57, № 3 . – S. 221 – 226.
6. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. Izvlechenie U(VI) iz vodnykh sred sloistym dvoynym gidroksidom Zn i Al, interkalirovannym geksatsianoferrat(II)-ionami. Radiokhimiya. 2015. T. 57, № 6. S. 526 – 530.
7. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. i dr. Izvlechenie ionov tyazhelykh metallov iz vodnykh rastvorov Zn/Al-cloistym dvoynym gidroksidom, interkalirovannym [Fe(CN)6]4–ionami. Ukrainskiy khimicheskiy zhurnal. 2016. T. 82, № 2. S. 100 – 106.
8. Puzyrnaya L.N., Yatsik B.P., Pshinko G.N. i dr. Udalenie Cu(II), Co(II) i Pb(II) iz vodnykh rastvorov Zn/Al-sloistym dvoynym gidroksidom, interkalirovannym geksatsianoferrat (ІІ)-ionami. Khimiya i tekhnologiya vody. 2016. T. 38, № 4. S. 366 – 377.
9. Puzyrnaya L.N., Kosorukov A.A., Pshinko G.N., Demchenko V.Ya. Udalenie toksichnykh metallov iz vodnykh rastvorov sloistymi dvoynymi gidroksidami. Khimiya i tekhnologiya vody. 2014. T. 36, № 2. S. 116–128.
10. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N. i dr. Neorganicheskie sorbenty dlya izvlecheniya medi (ІІ) iz vodnykh sred. Ukrainskiy khimicheskiy zhurnal. 2016. T.82, № 9. S. 34 – 42.
11. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S. i dr. Izvlechenie radiotseziya iz vodnykh sred sloistym dvoynym gidroksidom tsinka i alyuminiya, interkalirovannym geksatsianoferratom medi (II). Radiokhimiya. 2018. T. 60, № 4. S. 340 – 343.
12. Pshinko G.M., Puzirna L.M., Yatsik B.P. Sorbtsіynі materіali dlya ochishchennya vodnikh seredovyshch vіd uranu (VI). Yaderna energetyka ta dovkіllya. 2016. № 1. S. 65 – 71.
13. Fedorova V.M., Kobets S.O., Puzirna L.M., Kosorukov O.O., Pshinko G.M. Pat. na korisnu model 98200 Ukraїna, MPK (2008) S02F 1/28. Sposіb ochistki vodi vіd radіonuklіdіv tsezіyu; zayavnik Іnstitut koloїdnoї khіmії ta khіmії vodi іm. A.V. Dumanskogo NAN Ukraїni. № u201410248; zayavl. 18.09.2014; opubl. 27.04.2015, Byul. № 8.
14. Puzyrnaya L.N., Pshinko G.N., Yatsik B.P. i dr. Izvlechenie U(VI) iz vodnykh sred Zn,Al i Mg,Al sloistymi dvoynymi gidroksidami, interkalirovannymi tsitrat-ionami, i ikh magnitnymi nanokompozitami. Radiokhimiya. 2020. T. 62, № 1. S. 38–50.
15. Puzyrnaya L.N. Polifunktsionalnye materialy – effektivnye sorbenty dlya ochistki zhidkikh radioaktivnykh otkhodov. Khimiya i tekhnologiya vody. 2019. T. 41, № 4. S. 445–455.
16. Kobets S.A., Puzyrnaya L.N., Pshinko G.N., Kosorukov A.A. Sloistyy dvoynoy gidroksid, interkalirovannyy GMDTA – kompleksoobrazuyushchiy sorbent dlya izvlecheniya U(VI) iz vodnykh sred. 9-aya Mezhdunarodnaya konferentsiya WasteECo-2012 «Sotrudnichestvo dlya resheniya problemy otkhodov»: sborn. mater. Kharkov, 2012. Rezhim dostupu: http://waste.ua/cooperation/2012/kobets.html
17. Puzyrnaya L.N., Dikhtyarchuk O.S., Krotenko V.V. Sorbtsionnye materialy na osnove sloistykh dvoynykh gidroksidov dlya izvlecheniya toksichnykh metallov iz vodnykh rastvorov. XII Mezhdunarodnaya studencheskaya nauchno-prakticheskaya konferentsiya «Khimiya i zhizn»: sborn. mater. Novosibirsk, 2013. S. 172 – 174.
18. Pshynko Gh.M., Kosorukov O.O., Puzyrna L.M. Rozrobka efektyvnykh sorbentiv dlja ochyshhennja stichnykh vod vid uranu (VI) ta inshykh toksychnykh metaliv. Naukovo-praktychna konferencija v ramkakh mizhnarodnogho forumu «Dovkillja Ukrajiny» «Radioekologhija-2013. Chornobylj-Fukusima. Naslidky»: zbirn. mater. Kyjiv, 2013. S. 209–210.
19. Puzyrna L.M., Jacyk B.P. Sorbcijne vyluchennja uranu (VI) z vodnykh seredovyshh sharuvatym podvijnym ghidroksydom cynku ta aljuminiju, interkaljovanym gheksacianoferat(II)-ionom. VI Mizhnarodna naukovo-praktychna konferencija «Aktualjni problemy doslidzhennja dovkillja»: zbirn. mater. Sumy, 2015. S. 140 – 142.
20. Karmanova I.S., Puzyrna L.M. , Demenjuk O.M. Zastosuvannja sharuvatykh podvijnykh ghidroksydiv cynku ta aljuminiju dlja ochyshhennja stichnykh vod vid uranu(VI). VII Vseukrajinsjka naukovo-praktychna konferencija molodykh uchenykh, aspirantiv i studentiv «Voda v kharchovij promyslovosti»: tez.dopov. Odesa, 2016. S. 125 – 127.
21. Puzyrna L.M., Jacyk B.P., Pshynko Gh.M. Maghnitni cytratni formy sharuvatykh podvijnykh ghidroksydiv dlja sorbcijnogho koncentruvannja U(VI) z vodnykh seredovyshh. Kyjivsjka konferencija z analitychnoji khimiji «Suchasni tendenciji – 2018»: tezy dopov. Kyjiv, 2018. S. 15.Puzyrnaya L.N., Yatsyk B.P., Pshinko G.N. Composites based on layered double hydroxides – sorbents for the recovery uranium (VI). Ukrainian conference with international participation «Chemistry, physics and technology of surface» and Workshop «Metal-based biocompatible nanoparticles: synthesis and applications»: mater.of report. Kyiv, 2019. P.150.
22. Puzyrna L.M. Sharuvatyj podvijnyj ghidroksyd maghniju ta aljuminiju, interkaljovanyj cytrat-ionamy – sorbent dlja ochyshhennja vod vid radionuklidiv. «VinSmartEco»: I Mizhnarodna naukovo-praktychna konferencija: zbirn. mater. Vinnycja, Ukrajina, 2019. S. 339–340.
23. Perez M.R., Pavlovic I., Barriga C. et al. Uptake of Cu2+, Cd2+ and Pb2+ on Zn–Al layered double hydroxide intercalated with edta. Applied Clay Science. 2006. Vol. 32. P. 245–251.
24. Brindley G.W., Brown G. Crystal structures of clay minerals and their X-ray identification. London: Mineralogical Society, 1980. 495 p.
25. Crespo I., Barriga C., Rives V., Ulibarri M.A. Intercalation of iron hexacyano complexes in Zn,Al-hydrotalcite. Solid State Ionics. 1997. Vol. 101–103. P. 729-735.
26. Kameda T., Takeuchi H., Yoshioka T. Hybrid inorganic/organic composites of Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate prepared by co-precipitation. Materials Research Bulletin. 2009. Vol. 44. P. 840–845.
27. Reichle W.T., Kang S.Y., Everhardt D.S. The Natural of the Thermal Decomposition of a Catalytically Active Anionic Clay Mineral. Journal of Catalysis. 1986. Vol. 101. P. 352 – 359.
28. Shou J., Jiang С., Wanga F. et al. Fabrication of Fe3O4/MgAl-layered double hydroxide magnetic composites for the effective decontamination of Co(II) from synthetic wastewater. Journal of Molecular Liquids. 2015. Vol. 207. P. 216–223.
29. Park J., Regalbuto J.R. A simple, accurate determination of oxide PZC and the strong buffer effect of oxide surfaces and incipient wetness. Journal of Colloid and Interface Science. 1995. Vol. 175. P. 239–252.
30. Khan M.N., Sarwar A. Determination of points of zero charge of natural and treated adsorbents. Surface Review and Letters. 2007. Vol. 14, N 3. P. 461–469.
31. Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta. 1978. Vol. 42. P. 547–569.
32. Kobets S.A., Pshinko G.N., Puzyrnaya L.N. Uran (VI) v prirodnykh vodakh: issledovanie form nakhozhdeniya. Khimiya i tekhnologiya vody. 2012. T. 34, № 6. S. 469–480.
33. Kulyukhin S.A., Krasavina E.P., Rumer I.A. Sorption of 137Cs from aqueous solutions onto layered double hydroxides containing the Fe(CN)64- ion in the interlayer space. Radiochemistry. 2015. Vol. 57, N 1. P. 69–72.
34. Kulyukhin S.A., Krasavina Ye.P., Gredina I.V., Mizina L.V. Sorbtsiya U(VI) na sloistykh dvoynykh gidroksidakh Mg, Al i Nd iz vodnykh rastvorov. Radiokhimiya. 2010. T. 52, № 6. S. 553–560.
35. Zhang X., Wang J., Li R. et al. Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Industrial & Engineering Chemistry Research. 2013. Vol. 52. P. 10152−10159.
36. Berto S., Crea F., Daniele P.G. et al. Potentiometric and spectrophotometric characterization of the UO22+-citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes. Radiochimіса Acta. 2012. Vol. 100. Р. 13–28.
37. Dyatlova N.F., Temkina V.Ya., Popov K.I. Kompleksony i kompleksonaty metallov. Moskva: Khimiya, 1988. 544 s.
38. Rudenko V.M., Tarasevich Yu.I., Ivanova Z.G. Kinetika i dinamika adsorbtsii anionnykh krasiteley na ugolno-mineralnom sorbente. Khimiya i tekhnologiya vody. 1993. T. 15, № 11/12. S. 715–718.
39. Walker G.M., Hansen L., Hanna J.-A., Allen S.J. Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Research. 2003. Vol. 37, N 9. P. 2081–2089.
40. Benson S. Osnovy khimicheskoy kinetiki. Moskva: Mir, 1964. 605 s.
41. Shmid R., Capunov V.N. Neformalnaya kinetika. Moskva: Mir, 1985. 263 s.
42. Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochemistry. 1999. Vol. 34. P. 451–465.
43. Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research. 2000. 34, N 3. P. 735–742.
44. Grenthe I. Chemical thermodynamics of uranium. Paris: OECD publications, 2003. 715 p.
45. Pshinko G.N. Impact of humic matter on sorption of radionuclides by montmorrilonite. Journal of Water Chemistry and Technology. 2009. Vol. 31, N 3. P.163–171.
46. Pshinko G.N., Kosorukov A.A., Puzyrnaya L.N., Goncharuk V.V. Layered double hydroxides intercalated with EDTA as effective sorbents for U(VI) recovery from wastewater. Radiochemistry. 2011. Vol. 53, N 3. P. 303–307.
47. Pshinko G.N., Puzyrnaya L.N., Kosorukov A.A., Goncharuk V.V. Montmorillonit, modifitsirovannyy polietileniminami – sorbent dlya izvlecheniya U(VI) iz stochnykh vod. Radiokhimiya. 2010. T. 52, № 3. S. 247–253
48. Han F., Zhang G.H., Gu P. Adsorption kinetics end eguilibrium modeling of cesium on copper ferrocyanide. Journal of Radioanalytical and Nuclear Chemistry. 2013. Vol. 295. P. 369–377.
49. Tananaev I.V., Seyfer G.B., Kharitonov Yu.Ya. i dr. Khimiya ferrotsianidov. Moskva: Nauka, 1971. 320 s.
50. Pekárek V., Veselý V. Synthetic inorganic ion exchangers-II. Salts of heteropolyacids, insoluble ferrocyanides, synthetic aluminosilicates and miscellaneous exchangers. Talanta. 1972. Vol. 19, N 11. P. 1245–1283.
51. Milyutin V.V., Panasyugin A.S., Golikova N.B., Strukova O.V. Issledovanie soosazhdeniya mikrokolichestv Cs s ferrotsianidami razlichnykh metallov. Radiokhimiya. 2004. T. 46, № 5. S. 444–445.
52. Ivanov V.M., Semenenko K.A., Prokhorova G.V., Simonov Ye.F. Natriy. Moskva: Nauka, 1986. 255 s.
53. Environmental remediation and restoration of contaminated nuclear and norm sites; еd. by L. van Velzen. Cambridge: Woodhead Publishing, 2015. 276 p.
54. DSanPiN 2.2.4-171–2010. Ghighijenichni vymoghy do vody pytnoji, pryznachenoji dlja spozhyvannja ljudynoju. Oficijnyj visnyk Ukrajiny. 2010. N 51. S. 99.
55. Intsedi Ya. Primenenie kompleksov v analiticheskoy khimii. Moskva: Mir, 1979. 376 s.
56. Kratkiy spravochnik fiziko-khimicheskikh velichin; pod red. K.P. Mishchenko, A.A. Ravdelya. Leningrad: Khimiya, 1974. 200 s.
57. Liang X., Hou W., Xu Y. et al. Sorption of lead ion by layered double hydroxide intercalated with diethylenetriaminepentaacetic acid. Colloids and Surfaces, A. 2010. Vol. 366, N 1/3. P. 50 – 57.
58. DSTU 4808:2007. Dzherela centralizovanogho pytnogho vodopostachannja. Ghighijenichni ta ekologhichni vymoghy shhodo jakosti vody i pravyla vybyrannja. Kyjiv: Derzhspozhyvstandart Ukrajiny, 2007. 36 s.
59. DSTU 7525:2014. Voda pytna. Vymoghy ta metody kontroljuvannja jakosti. Kyjiv: Minekonomrozvytku Ukrajiny, 2014. 36 s.
60. Linnik P.N., Nabivanets B.I. Formy migratsii metallov v presnykh poverkhnostnykh vodakh. Leningrad: Gidrometeoizdat, 1986. 269 s.
61. Komarneni S., Kozai N., Roy R. Novel function for anionic clays: selective transition metal cation uptake by diadochy. Journal of Materials Chemistry. 1998. Vol. 8. P. 1329–1331.
62. González M.A., Pavlovic I., Barriga C. Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors. Chemical Engineering Journal. 2015. Vol. 269. P. 221–228.
63. González M.A. , Pavlovic I., Rojas-Delgado R., Barriga C. Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide-humate hybrid. Sorbate and sorbent comparative studies. Chemical Engineering Journal. 2014. Vol. 254. P. 605–611.
64. Lure Yu.Yu. Spravochnik po analiticheskoy khimii. Moskva: Khimiya, 1971. 456 s.
65. Shunkov V.S. Efektyvni ta selektyvni sorbcijni materialy dlja vyluchennja z vodnykh seredovyshh ekologhichno nebezpechnykh ioniv: dys. … kand. khim. nauk: spec. 21.06.01. Kyjiv, 2018. 182 s.
66. Ho Y.S. Review of second-order models for adsorption systems. Journal of Hazardous Materials. 2006. Vol. 136. Р. 681–689.
67. Puzyrnaya L.N., Pshinko G.N., Yatsik B.Р., Zub V.Ya., Kosorukov A.A. Extraction of U(VI) from aqueous media with layered Zn,Al and Mg,Al double hydroxides intercalated with citrate ions and with their magnetic nanocomposites. Radiochemistry.2020. Vol. 62, No. 2, Р. 50–61.
68. Fan F.L., Qin Z., Bai J. et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. Journal of Environmental Radioactivity. 2012. Vol. 106. P. 40–46.
69. Zhang X., Ji L., Wang J. et al. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: Kinetic and thermodynamic investigation. Colloids and Surfaces A. 2012. 414. P.220–227.
70. Zhang X., Wang J., Li R. et al. Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Industrial & Engineering Chemistry Research. 2013. 52. P. 10152−10159.
71. Odnovolova A.M., Sofronov D.S., Bryleva Ye.Yu. i dr. Izvlechenie kobalta, evropiya, tseriya, strontsiya i medi chastitsami Fe2O3 i Fe3O4 iz vodnykh rastvorov. Sorbtsionnye i khromatograficheskie protsessy. 2015. T. 15, №. 4. C. 523–531.
72. Strelko V.V., Milyutin V.V., Psareva T.S. i dr. Sorbtsionno-koagulyatsionnaya ochistka zhidkikh radioaktivnykh otkhodov ot urana i transuranovykh elementov. Problemi bezpeki atomnikh elektrostantsіy і Chornobilya. 2016. № 26. S. 96–102.
73. Veleshko I.Ye., Veleshko A.N., Rumyantseva Ye.V. i dr. Sorbtsiya radionuklidov khitin-melanin glyukanovym kompleksom mikoton. Khimiya rastitelnogo syrya. 2011. №4. S.39–48.
74. Zakutevskii O.I., Psareva T.S., Strelko V.V. Sorption of U(VI) ions on sol-gel-synthesized amorphous spherically granulated titanium phosphates. Russian Journal of Applied Chemistry. 2012. Vol. 85, N 9. Р. 1366−1370.
75. Strelko V.V., Milyutin V. V., Gelis V. M. i dr. Sorbtsiya radionuklidov tseziya na polukristallicheskikh silikotitanatakh shchelochnykh metallov. Radiokhimiya. 2015. T. 57, № 1. S. 64–68.
76. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N., Kosorukov A.A. Magnetic sorbents for removing u(vi) from aqueous media. Radiochemistry. 2018. Vol. 60, N 3. P. 281–286.
77. Shou J., Jiang С., Wanga F. et al. Fabrication of Fe3O4/MgAl-layered double hydroxide magnetic composites for the effective decontamination of Co(II) from synthetic wastewater. Journal of Environmental Chemical Engineering. 2015. Vol. 207. P. 216–223.
78. Koilraj P., Sasaki K. Fe3O4/MgAl-NO3 layered double hydroxide as a magnetically separable sorbent for the remediation of aqueous phosphate. Journal of Environmental Chemical Engineering. 2016. Vol. 4, № 1. P.984–991.
79. Zhang X., Wang J., Li R., Dai Q., Gao R., Liu Q., Zhang M. Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Industrial & Engineering Chemistry Research. 2013. Vol. 52. P. 10152−10159.
80. Zhang X., Ji L., Wang J. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: Kinetic and thermodynamic investigation. Colloids Surfaces, A. 2012. Vol. 414. P.220–227.
81. Mahmoud M. R., Someda H. H. Mg–Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry. 2012. Vol. 292. Р. 1391–1400.
82. Kosorukov A.A., Pshinko G.N., Puzyrnaya L.N., Kobets S.A. Extraction of U(VI) from aqueous media by layer double hydroxides intercalated by chelating agents. Journal of Water Chemistry and Technology. 2013. Vol.35, N 3. Р.104–111.
83. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New Jersey: John Wiley and Sons, 2009. 432 p.
84. Kornilovich B.Yu., Masko A.N., Pshinko G.N., Spasenova L.N. Vliyanie fulvokislot na sorbtsiyu Eu(III) mineralnymi komponentami pochv. Radiokhimiya. 1997. T.39, № 4. S. 370-374.
85. Pshinko G., Spasenova L., Kornilovich B. Complexation and Sorption of Europium(III) ions onto clay minerals in the presence of fulvic acids. Adsorption Science and Technology. 2004. Vol.22, N 8. P. 629–638.
86. Pshinko G.N., Puzyrnaya L.N., Kosorukov A.A., Yatsik B.P., Shunkov V.S. Sorbtsiya Eu(III) iz vodnykh rastvorov Zn,Al- i Mg,Al-sloistymi dvoynymi gidroksidami, interkalirovannymi tsitrat-ionami, i ikh magnitnymi formami. Khimiya i tekhnologiya vody. 2020. T. 42, № 2. S. 113–125.
87. Pshinko G.N., Puzyrnaya L.N., Kosorukov A.A. i dr. Izvlechenie Eu(III) iz vodnykh sred Zn,Al sloistym dvoynym gidroksidom, interkalirovannym ionami EDTA, i ego magnitnym kompozitom. Radiokhimiya. 2021. T. 63, № 3. S. 259-267.

Do rozdilu 4

1. Handbook of Layered Materials; еdit. by S.M. Auerbach, K.A. Carrado, P.K. Dutta. New York: Marcel Dekker Inc., 2004. 650 p.
2. Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays: preparation, properties, and applications. Catalysis Today. 1991. Vol. 11. P. 173–301.
3. Butenko E.O., Kravchenko V.S., Ghromylov S.A. i dr. Struktura pryrodnykh i syntetycheskykh anyonnykh ghlyn i ikh sorbcyonnaja sposobnostj. Visnyk Pryazovsjkogho derzhavnogho tekhnichnogho universytetu. 2009. N 19. S. 301–306.
4. Gastuche M.C., Brown G., Mortland M.M. Mixed magnesium-aluminium hydroxides. Clays and Clay Minerals. 1967. Vol. 7, N 2. P. 177–192.
5. Ferreira O.P., Alves O.L., Gouveia D.X. et al. Thermal decomposition and structural reconstruction effect on Mg-Fe based hydrotalcite compounds. Journal of Solid State Chemistry. 2004. Vol. 177. P. 3058–3069.
6. Kooli F., Ennaquadi A., De Roy A., Besse J.P. Rehydration of Zn-Al layred double hydroxides. Clays and Clay Minerals. 1997. Vol. 45, N 1. P. 92–98.
7. Wang H., Chen J., Cai Y. et al. Defluoridation of drinking water by Mg/Al hydrotalcite-like compounds and their calcined products. Applied clay science. 2007. Vol. 35, N 1–2. P. 59–66.
8. Châtelet L., Bottero J.Y., Yvon J., Bouchelaghem A. Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Colloids Surfасе, A. 1996. Vol. 111. P. 167–175.
9. Lazaridis N.K., Asouhidou D.D. Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Resources. 2003. Vol. 37, N 12. Р. 2875–2882.
10. Randarevich L.S., Zhuravlev I.Z., Strelko V.V. et al. Synthesis, anion-exchange properties, and hydrolytic stability of Mg-Fe(III) layered double hydroxides. Journal of Water Chemistry and Technology. 2009. Vol. 31, N 2. P. 110–114.
11. Bernardo M.P., Moreira F.K.V., Ribeiro C. Synthesis and characterization of eco-friendly Ca-Al-LDH loaded with phosphate for agricultural applications. Applied Clay Science. 2017. Vol. 137. P. 143–150.
12. Ma J., Duan P., Ren D., Zhou W. Effects of layered double hydroxides incorporation on carbonation resistance of cementitious materials. Journal of Materials Research and Technology. 2019. Vol. 8, N 1. P. 292–298.
13. Li B., Zhang S., Li Q., Li N. Uptake of heavy metal ions in layered double hydroxides and applications in cementitious materials: Experimental evidence and first-principle study. Construction and Building Materials. 2019. Vol. 222. P. 96–107.
14. Fernández J.M., Ulibarri M.A., Labajos F.M., Rives V. The effect of iron on the crystalline phases formed upon thermal decomposition of Mg–Al–Fe hydrotalcites. Journal of Materials Chemistry. 1998. Vol. 8, N 11. Р. 2507–2514.
15. ISO 10545-1:2014. Ceramic tiles. Part 1: Sampling and basis for acceptance.: Rezhim dostupu https://www.iso.org/standard/60974.html.
16. Puzyrnaya L.N. Polifunktsionalnye materialy – effektivnye sorbenty dlya ochistki zhidkikh radioaktivnykh otkhodov. Khimiya i tekhnologiya vody. 2019. T. 41, № 4. S. 445–455.
17. Pshinko G.N., Puzyrnaya L.N., Kosorukov A.A., Yatsik B.P. Izvlechenie U(VI) iz vodnykh sred sloistymi dvoynymi gidroksidami magniya i zheleza. Khimiya i tekhnologiya vody. 2017. T. 39, № 3. S. 252 – 260.
18. Puzyrna L.M., Jacyk B.P., Shunkov V.S., Posokhova V.V. Sorbcijne vyluchennja Co(II) z vodnykh seredovyshh Mg/Fe-sharuvatymy podvijnymy ghidroksydamy. II Vseukrajinsjka konferencija studentiv ta molodykh uchenykh «Teoretychni ta prykladni aspekty doslidzhenj z biologhiji, gheoghrafiji ta khimiji»: tez. dopov. Sumy, 2018. C. 94–97.
19. Puzyrnaya L.N., Pshinko G.N., Zub V.Ya., Zuy O.V. Removal of Cu(II), Co(II), and Cd(II) from water solutions by layered double hydroxides with different [Mg(II)]/[Fe(III)] molar ratio. Bulletin of Materials Science. 2020. N 43 (3). P. 1 – 6.
20. Puzyrnaya L.N., Shunkov V.S., Demutskaya L.N. i dr. Izvlechenie fosfat-ionov iz vodnykh rastvorov Zn/Al- i Mg/Fe-sloistymi dvoynymi gidroksidami. Khimiya i tekhnologiya vody. 2017. T. 39, № 5. S. 479 – 490.
21. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N. i dr. Vliyanie sootnosheniya Mg(II)/Fe(III) v sostave sloistykh dvoynykh gidroksidov na izvlechenie fosfat-ionov iz vodnykh sred. Khimiya i tekhnologiya vody. 2018. T. 40, № 4. S. 365–375.
22. Shunkov V., Puzyrna L., Pshynko Gh. Kaljcynovanyj sharuvatyj podvijnyj ghidroksyd maghniju ta zaliza(III) – efektyvnyj sorbent dlja ochyshhennja vodnykh seredovyshh vid fosfat-ioniv. Mizhnarodna naukovo-praktychna konferencija “Khimichna tekhnologhija ta inzhenerija”: tez. dopov. Ljviv, 2017. S. 320–321.
23. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. i dr. Izvlechenie Cr(VI) iz vodnykh rastvorov kaltsinirovannymi Zn/Al– i Mg/Fe–gidrotalkitami. Khimiya i tekhnologiya vody. 2014. T. 36, № 6. S. 479–490.
24. Puzyrnaya L.N., Yatsik B.P., Pshinko G.N., Kosorukov A.A. Protsessy sorbtsii-desorbtsii v sisteme Cr(VI)–kaltsinirovannyy Zn/Al-gidrotalkit. Khimiya i tekhnologiya vody. 2016. T. 38, № 1 (249). S. 3–13.
25. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. Kaltsinirovannaya forma gidrotalkita dlya kontsentrirovaniya Sr(VI) pri ego opredelenii v vodnykh sredakh. ІKh Vseukrainskaya konferentsiya po analiticheskoy khimii: tez. dokl. Donetsk, 2013. S. 165.
26. Puzyrnaya L.N., Pshinko G.N., Yatsik B.P. Kaltsinirovannyy Zn/Al-gidrotalkit – sorbent dlya udaleniya khroma (VI) iz vodnykh rastvorov. IX mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Aktualnye problemy ekologii – 2013»: sborn. mater. Grodno, 2013. S. 112–114.
27. Jacyk B.P., Puzyrna L.M. Sorbcijne vyluchennja khromu (VI) z vodnykh rozchyniv kaljcynovanymy formamy ghidrotaljkitiv. Konferencija molodykh vchenykh «Kolojidno-khimichni problemy okhorony dovkillja ta kontrolj jakosti vody»: zbirn. mater. Kyjiv, 2013. S. 75–77.
28. Puzyrnaya L.N., Yatsik B.P., Dikhtyarchuk O.S. Decorbtsiya Cr(VI) c kaltsinirovannogo tsink-alyuminievogo gidrotalkita. XIII Mezhdunarodnaya studencheskaya nauchno-prakticheskaya konferentsiya «Khimiya i zhizn»: sborn. mater. Novosibirsk, 2014. S. 100 – 103.
29. Linnik P.N., Nabivanets B.I. Formy migratsii metallov v presnykh poverkhnostnykh vodakh. Leningrad: Gidrometeoizdat, 1986. 269 s.
30. Lavrukhina A.N., Yukina L.V. Analiticheskaya khimiya khroma. Moskva: Nauka, 1979. 218 s.
31. Fedorov A.A., Chernyakhovskaya F.V., Vernidub A.S. i dr. Analiticheskaya khimiya fosfora. Moskva: Nauka, 1974. 220 s.
32. Nabyvanecj B.J., Osadchyj V.I., Osadcha N.M., Nabyvanecj Ju.B. Analitychna khimija poverkhnevykh vod. Kyjiv: Naukova dumka, 2007. 456 s.
33. Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals. 1980. Vol. 28, N 1. P. 50–56.
34. Gastuche M.C., Brown G. Mixed magnesium-aluminium hydroxides. Clay Minerals. 1967. Vol. 7, N 2. P. 177–192.
35. Pausch I., Lohse H.H., Schúrmann K., Allmann R. Sinteses of disordered and Al-rich hydrotalcite-like compounds. Clays and Clay Minerals. 1986. Vol. 34, N 5. P. 507–510.
36. Misra C., Perrotta J. Composition and properties of synthetic hydrotalcites. Clays and Clay Minerals. 1992. Vol. 40, N 2. P.145–150.
37. Pshinko G.N., Kosorukov A.A., Puzyrnaya L.N. , Goncharuk V.V. Layered double hydroxides intercalated with EDTA as effective sorbents for U(VI) recovery from wastewater. Radiochemistry. 2011. Vol. 53, N 3. P. 303–307.
38. Tymoshenko T.Gh. Fizyko-khimichni metody zakhystu vodnykh seredovyshh vid ekologhichno nebezpechnykh ioniv U(VI), 90Sr, F-: dys. … kand. khim. nauk: spec. 21.06.01. Kyjiv:, 2010. 190 s.
39. Vucelic M., Jones W., Moggridge G.D. Cation ordering in synthetic layered double hydroxides. Clays and Clay Minerals. 1997. Vol. 45, N 6. P. 803– 813.
40. Khan M.N., Sarwar A. Determination of points of zero charge of natural and treated adsorbents. Surface Review and Letters. 2007. Vol. 14, N 3. P. 461–469.
41. Kaneyoshi M., Jones W. Layered double hydroxide intercalate of metalchelate complex – a novel precursor for the formation of a mixed metal oxide. Molecular Crystals and Liquid Crystals. 2001. Vol. 365. P. 459–468.
42. González M.A., Pavlovic I., Rojas-Delgado R., Barriga C. Removal of Cu2+ , Pb2+ and Cd2+ by layered double hydroxide-humate hybrid. Sorbate and sorbent comparative studies. Chemical Engineering Journal. 2014. Vol. 254. P. 605–611.
43. Intsedi Ya. Primenenie kompleksov v analiticheskoy khimii. Moskva: Mir, 1979. 376 s.
44. González M.A., Pavlovic I., Barriga C. Cu(II), Pb(II) and Cd(II) sorption on different layered double hydroxides. A kinetic and thermodynamic study and competing factors. Chemical Engineering Journal. 2015. Vol. 269. P. 221–228.
45. Komarneni S., Kozai N., Roy R. Novel function for anionic clays: selective transition metal cation uptake by diadochy. Journal of Materials Chemistry. 1998. Vol. 8. P. 1329–1331.
46. Konstanty neorganicheskikh veshchestv: spravochnik; pod red. P.A. Lidina. Moskva: Drofa, 2006. 685 s.
47. Goncharuk V.V., Puzyrnaya L.N., Pshinko G.N. i dr. Udalenie Cu(II), Ni(II) i Co(II) iz vodnykh rastvorov sloistym dvoynym gidroksidom, interkalirovannym EDTA. Khimiya i tekhnologiya vody. 2011. T. 33, № 5. S. 488–495.
48. Lure Yu.Yu. Spravochnik po analiticheskoy khimii. Moskva: Khimiya, 1971.
49. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. 1918. Vol. 40. P. 1361 – 1403.
50. Freundlich H. Concerning adsorption in solutions. Zeitschrift für Physikalische Chemie. 1906. Vol. 57. P. 385 – 470.
51. Hongguang Zhou, Zhenmao Jiang, Shiqiang Wei. A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Applied Clay Science. 2018. Vol. 153. Р. 29–37.
52. Xianyang Yue, Weizhen Liu, Zuliang Chen, Zhang Lin. Simultaneous removal of Cu(II) and Cr(VI) by Mg–Al–Cl layered double hydroxide and mechanism insight. Journal of Environmental Sciences. 2016. Vol. 53. Р. 16–26.
53. Anikin V.Yu. , Basargin N.N., Kosolapova N.I. i dr. Opredelenie khroma (VI) i khroma (III) v pochvakh, pitevykh, prirodnykh i stochnykh vodakh posle predvaritelnogo kontsentrirovaniya sorbentom. Zavodskaya laboratoriya. 2008. T. 74, № 6. S. 15–19.
54. Yang K., Yan L., Yang Y. et al. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Separation and Purification Technology. 2014. Vol. 124. P. 36–42.
55. Oxtoby D.W., Gillis H.P., Campion A. Princeples of Modern Chemistry. Belmont: Thomson, 2008. 1104 p.
56. Puigdomenech I., Zagorodni A., Wang M., Muhummed M. Program Medusa (Make Equilibrium Diagrams Using Sophisticated Algoritms. Royal Institute of Technology, Inorganic and Materials Chemistry, Sweden, 1999. (en linea). http://www.kemi.kth.se/medusa Acceso: octubre 11 de (2007).
57. Li R., Wang J.J., Zhou B. et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment. 2016. Vol.559. Р. 121–129.
58. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S. i dr. Sorbtsionnoe kontsentrirovanie fosfat-ionov iz prirodnykh vod na kaltsinirovannom sloistom dvoynom gidrokside magniya i zheleza (III). Metody i obekty khimicheskogo analiza. 2017. T. 12, № 2. S. 84 – 90.
59. Chitrakar R., Tezuka S., Hosokawa J., Makita Y. et al. Uptake properties of phosphate on a novel Zr–modified MgFe–LDH(CO3). Journal of Colloid and Interface Science. 2010. Vol. 349. P. 314–320.
60. Yan L., Yang K., Shan R. et al. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance. Journal of Colloid and Interface Science. 2015. Vol. 448. P. 508–516.
61. Ashekuzzaman S.M., Jiang Jia-Qian. Strategic phosphate removal/recovery by a re-usable Mg-Fe-Cl layered double hydroxide. Process Safety and Environmental Protection. 2017. Vol. 107. P. 454–462.
62. Goh K.-H., Lim T.-T., Dong Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Resources. 2008. Vol. 42. P. 1343–1368.
63. Das J., Patra B.S., Baliarsingh N., Parida K.M. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science. 2006. Vol. 32. P. 252–260.
64. Upor E., Mokhai M., Novak D. Fotometricheskie metody opredeleniya sledov neorganicheskikh soedineniy. Moskva: Mir, 1985. 3

Do rozdilu 5

1. Tananaev I.V., Seyfer G.B., Kharitonov Yu.Ya. i dr. Khimiya ferrotsianidov. Moskva: Nauka, 1971. 320 s.
2. Abdel Rahman R.O., Ibrahium H.A., Hung Y.-T. Liquid radioactive wastes treatment: a review. Water. 2011. N 3. Р. 551–565.
3. Kuznetsov Yu.V., Shchebetkovskiy V.N., Trusov A.G. Osnovy ochistki vody ot radioaktivnykh zagryazneniy. Moskva: Atomizdat, 1974. 360 s.
4. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S. i dr. Izvlechenie radionuklidov tseziya i strontsiya iz vodnykh sred magnitnym kaliytsinkovym geksatsianoferratom(II). Radiokhimiya. 2016. T. 58, № 5. S. 424 – 429.
5. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N. i dr. Neorganicheskie sorbenty dlya izvlecheniya medi (ІІ) iz vodnykh sred. Ukrainskiy khimicheskiy zhurnal. 2016. T.82, № 9. S. 34 – 42.
6. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N. i dr. Ispolzovanie magnitnogo kaliytsinkovogo geksatsianoferrata(II) dlya sorbtsionnogo kontsentrirovaniya radiotseziya. Khimiya i tekhnologiya vody. 2017. T. 39, № 2. S. 137 – 147.
7. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N. i dr. Magnitnye sorbenty dlya udaleniya U(VI) iz vodnykh sred. Radiokhimiya. 2018. T. 60, № 3. S. 245 – 249.
8. Shunkov V.S., Puzyrnaya L.N., Pshinko G.N. i dr. Izvlechenie Co(II), Ni(II) i Cd(II) iz vodnykh rastvorov magnitnymi sorbentami. Khimiya i tekhnologiya vody. 2018. T. 40, № 5. S. 523 –532.
9. Puzyrnaya L.N. Polifunktsionalnye materialy – effektivnye sorbenty dlya ochistki zhidkikh radioaktivnykh otkhodov. Khimiya i tekhnologiya vody. 2019. T. 41, № 4. S. 445–455.
10. Puzyrna L.M., Shunkov V.S. Sorbcijni vlastyvosti maghnitnogho kalijcynkovogho gheksacianoferatu(II) po vidnoshennju do radioaktyvnogho ceziju. IV Vseukrajinsjka naukovo-praktychna konferencija molodykh vchenykh ta studentiv «Fizyka i khimija tverdogho tila: stan, dosjaghnennja i perspektyvy»: zbirn. mater. Lucjk, 2016. S. 57–58.
11. Shunkov V.S., Puzyrna L.M., Pshynko Gh.M. Maghnitnyj kalijcynkovyj gheksacianoferat(II) dlja koncentruvannja radionuklidu ceziju pry jogho vyznachenni u vodnykh seredovyshhakh. Kyjivsjka konferencija z analitychnoji khimiji «Suchasni tendenciji – 2016»: tezy dop. Kyjiv, 2016. S. 103.
12. Puzyrna L.M., Shunkov V.S. Sorbenty z maghnitnymy vlastyvostjamy dlja vyluchennja vazhkykh metaliv z vodnykh seredovyshh. VII Mizhnarodna naukova konferencija «Aktualjni problemy doslidzhennja dovkillja»: tezy dop. Sumy, 2017. S. 235–237.Gravereau P.P., Garnier E., Hardy A. Les Hexacyanoferrates Zeolithiques: Structure de K2Zn3[Fe(CN)6]2·xH2O. Acta Crystallographica. 1979. Vol. B35. Р. 2843–2848.
13. Cornell R.M., Schwertmann U. The iron oxides: structure, properties, reactions, occurrence and uses. Wiley VCH: Weinheim, 2003. 703 p.
14. Goncharuk V.V., Pshinko G.N., Kobets S.A. i dr. Vliyanie prirody kislorodsoderzhashchikh mineralov na ikh sorbtsionnuyu sposobnost po otnosheniyu k uranu (VI). Radiokhimiya. 2010. T. 52, № 3, P. 241–246.
15. Kovalchuk I.A. Ochistka prirodnykh i stochnykh vod ot soedineniy urana (VI) i toriya (IV): dis. … kand. khim. nauk: spets. 21.06.01. Kiev, 2001. 134 s.
16. Pshynko Gh.M., Puzyrna L.M., Jacyk B.P. Sorbcijni materialy dlja ochyshhennja vodnykh seredovyshh vid uranu (VI). Jaderna energhetyka ta dovkillja. 2016. # 1. S. 65 – 71.
17. Camacho L.M., Deng S., Parra R.R. Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration. Journal of Hazardous Materials. 2010. Vol. 175. P. 393–398.
18. Kobets S.A., Pshinko G.N., Puzyrnaya L.N. Uranium (VI) in natural waters: Study of occurrence forms. Journal of Water Chemistry and Technology. 2012. Vol. 34, N 6. P. 277–283.
19. Sherman D.M., Peacock C.L., Hubbard C.G. Surface complexation of U(VI) on goethite (α-FeOOH). Geochimica et Cosmochimica Acta. 2008. Vol. 72, N 2. С. 298–310.
20. Wazne M., Korfiatis G.P., Meng X. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environmental Science and Technology. 2003. Vol. 37, N 16. P. 3619–3624.
21. Ghoncharuk V.V., Radovenchyk V.M., Ghomelja M.D. Otrymannja ta vykorystannja vysokodyspersnykh sorbentiv z maghnitnymy vlastyvostjamy. Kyjiv: Shepetivsjka mizhrajonna drukarnja, 2003. 263 s.
22. Das D., Sureshkumar M.K., Koley S. et al. Sorption of uranium on magnetite nanoparticles. Journal of Radioanalytical and Nuclear Chemistry. 2010. Vol. 285, N 3. P. 447–454.
23. O’Loughlin E.J., Kelly S.D., Cook R.E. et al. Reduction of uranium(vi) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environmental Science and Technology. 2003. Vol. 37, N 4. P. 721–727.
24. Xie L., Zhong Y., Xiang R. et al. Sono-assisted preparation of Fe(II)-Al(III) layered double hydroxides and their application for removing uranium (VI). Chemical Engineering Journal. 2017. V. 328. P. 574.–584.
25. Analiticheskaya khimiya urana; pod red. D.I. Ryabchikova, M.M. Senyavina. Moskva: Izdatelstvo akademii nauk SSSR, 1962. 433 s.
26. Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research. 2000. Vol. 34, N 3. P. 735–742.
27. Ho Y.S. Review of second-order models for adsorption systems. Journal of Hazardous Materials. 2006. Vol. 136. Р. 681–689.
28. Sheha R.R. Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. Journal of Colloid and Interface Science. 2012. N 388. Р. 21–30.
29. Maltseva T.V. Analiz vozmozhnostey primeneniya effektivnykh sorbtsionnykh materialov dlya pererabotki zhidkikh otkhodov AES. Voda i vodoochysni tekhnologhiji. 2015. № 2. S. 50–61.
30. DSanPiN 2.2.4-171–2010. Ghighijenichni vymoghy do vody pytnoji, pryznachenoji dlja spozhyvannja ljudynoju. Oficijnyj visnyk Ukrajiny. 2010. № 51. S. 99.
31. Linnik P.N., Nabivanets B.I. Formy migratsii metallov v presnykh poverkhnostnykh vodakh. Leningrad: Gidrometeoizdat, 1986. 269 s.
32. Nazarenko V.A., Antonovich V.P., Nevskaya Ye.M. Gidroliz ionov metallov v razbavlennykh rastvorakh. Moskva: Atomizdat, 1979. 192 s.
33. Ivanenko O.I. Ochyshhennja stichnykh vod vid ioniv vazhkykh metaliv ta radioizotopiv ferytnym metodom: dys… kand. tekh. nauk: spec. 21.06.01. Kyjiv, 2003. 166 s.
34. Lubentsova K.I. Poluchenie i issledovanie fiziko-khimicheskikh svoystv kompozitnykh sorbentov na osnove polistirolnykh matrits s nanodispersnymi oksidami zheleza: dis… kand. khim. nauk: spets. 02.00.06. Moskva, 2016. 166 s.

Do rozdilu 6

1. Gong J., Wang L., Song D. et al. Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosensors and Bioelectronics. 2009. Vol. 25. P. 493–496.
2. Saraji M., Ghani M. Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices. Journal of Chromatography. 2014. N A1366. P. 24–30.
3. Abolghasemi M.M., Yousefi V., Piryaei M. Synthesis of carbon nanotube/layered double hydroxide nanocomposite as a novel fiber coating for the headspace olid-phase microextraction of phenols from water samples. Journal of Separation Science. 2015. N 38. P. 1344–1350.
4. Abdolmohammad-Zadeh H., Rezvani Z., Sadeghi G.H., Zorufi E. Layered double hydroxides: a novel nano-sorbent for solid-phase extraction. Analytica Chimica Acta. 2011. N 685. P. 212–219.
5. Matin A.A., Biparva P., Amanzadeh H., Farhadi K. Zinc/Aluminum layered double hydroxide-titanium dioxide composite nanosheet film as novel solid phase microextraction fiber for the gas chromatographic determination of valproic acid. Talanta. 2013. N 103. P. 207–213.
6. Sajid M. Basheer C. Layered double hydroxides: emerging sorbent materials for analytical extractions. Trends in Analytical Chemistry. 2016. N 75. P. 174–182.
7. Abdolmohammad-Zadeh H., Falaghi S., Rahimpour E. An innovative nano-sorbent for selective solid-phase extraction and spectrophotometric determination of p-amino benzoic acid in cosmetic products. International Journal of Cosmetic Science. 2014. N 36. P. 140–147.
8. Abdolmohammad-Zadeh H., Kohansal S., Sadeghi G.H. Nickel-aluminum layered double hydroxide as a nanosorbent for selective solid-phase extraction and spectrofluorometric determination of salicylic acid in pharmaceutical and biological samples. Talanta. 2011. Vol. 84. P.368–373.
9. Abdolmohammad-Zadeh H., Jouyban A., Amini R., Sadeghi G. Nickel-aluminum layered double hydroxide as a nano-sorbent for the solid phase extraction of selenium, and its determination by continuous flow HG-AAS. Microchimica Acta. 2013. N 180. P. 619–626.
10. Abdolmohammad-Zadeh H., Talleb Z. Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg-Al layered double hydroxide nano-hybrid followed by chemiluminescence detection. Talanta. 2014. N 128. P. 147–155.
11. Tang S., Yao Y., Chen T. et al. Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Analytica Chimica Acta. 2020. Vol. 1103. P. 32–48.
12. Puzyrnaya L.N., Shunkov V.S., Pshinko G.N. i dr. Ispolzovanie magnitnogo kaliytsinkovogo geksatsianoferrata (II) dlya sorbtsionnogo kontsentrirovaniya radiotseziya. Khimiya i tekhnologiya vody. 2017. T. 39, № 2. S. 137–147.
13. Puzyrna L.M., Shunkov V.S. Sorbcijni vlastyvosti maghnitnogho kalijcynkovogho gheksacianoferatu (II) po vidnoshennju do radioaktyvnogho ceziju. IV Vseukrajinsjka naukovo-praktychna konferencija molodykh vchenykh ta studentiv «Fizyka i khimija tverdogho tila: stan, dosjaghnennja i perspektyvy»: zbirn. mater. Lucjk, 2016. S. 57–58.
14. Shunkov V.S., Puzyrna L.M., Pshynko Gh.M. Maghnitnyj kalijcynkovyj gheksacianoferat (II) dlja koncentruvannja radionuklidu ceziju pry jogho vyznachenni u vodnykh seredovyshhakh. Kyjivsjka konferencija z analitychnoji khimiji «Suchasni tendenciji – 2016»: zbirn. tez, Kyjiv, 2016. S. 103.
15. Puzyrnaya L.N., Yatsik B.P., Pshinko G.N., Kosorukov A.A. Protsessy sorbtsii-desorbtsii v sisteme Cr(VI)–kaltsinirovannyy Zn/Al-gidrotalkit. Khimiya i tekhnologiya vody. 2016. T. 38, № 1. S. 3 – 13.
16. Puzyrna L.M. Polifunkcionaljni vysokoselektyvni sorbcijni materialy dlja ochyshhennja vod vid radionuklidiv ta inshykh neorghanichnykh ekotoksykantiv: dys. … dokt. khim. nauk: spec. 21.06.01. Kyjiv, 2020. 337 s.
17. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. Kaltsinirovannaya forma gidrotalkita dlya kontsentrirovaniya Sr(VI) pri ego opredelenii v vodnykh sredakh. ІKh Vseukrainskaya konferentsiya s analiticheskoy khimii: tez. dokl. Donetsk, 2013. S. 165.
18. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S. i dr. Sorbtsionnoe kontsentrirovanie fosfat-ionov iz prirodnykh vod na kaltsinirovannom sloistom dvoynom gidrokside magniya i zheleza (III). Metody i obekty khimicheskogo analiza. 2017. T. 12, № 2. S. 84 – 90.
19. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S., Yatsik B.P. Kontsentrirovanie Eu(III) iz vodnykh sred karbonatnoy formoy Mg,Al-Sloistykh dvoynykh gidroksidov. Khіmіya і tekhnologіya vodi. 2020. T. 42, №5. S. 499-510.
20. Panasyugin A.S., Golikova N.B., Strukova O.V. Ispolzovanie selektivnykh sorbentov dlya kontsentrirovaniya radioaktivnogo tseziya. Radiokhimiya. 2003. T. 45, № 3. S. 265–267.
21. Milyutin V.V., Gelis V.M., Klindukhov V.G., Obruchikov A.V. Issledovanie soosazhdeniya mikrokolichestv Cs s ferrotsianidami razlichnykh metallov. Radiokhimiya. 2004. T. 46, № 5. S. 444–445.
22. 22. Myasoedova G.V. Sorbtsionnoe kontsentrirovanie i razdelenie radionuklidov s ispolzovaniem kompleksoobrazuyushchikh sorbentov. Rossiyskiy Khimicheskiy Zhurnal. 2005. Vol. 49, № 2. S. 72–75.
23. Raut D.R., Mohapatra P.K., Choudhary M.K., Nayak S.K. Evaluation of two calix-crown-6 ligands for the recovery of radio cesium from nuclear waste solutions: Solvent extraction and liquid membrane studies. Journal of Membrane Science. 2013. Vol. 429. P. 197–205.
24. Pshinko G.N., Puzyrnaya L.N., Shunkov V.S. i dr. Izvlechenie radionuklidov tseziya i strontsiya iz vodnykh sred magnitnym kaliytsinkovym geksatsianoferratom (II). Radiokhimiya. 2016. T. 58, № 5. S. 424 – 429.
25. Pshinko G.N., Puzyrnaya L.N., Kobets S.A. i dr. Sloistyy dvoynoy gidroksid Zn i Al, interkalirovannyy geksatsianoferrat(II)-ionami – sorbent dlya izvlecheniya tseziya iz vodnykh sred. Radiokhimiya. 2015. T. 57, № 3. S. 221–226.
26. Tananaev I.V., Seyfer G.B., Kharitonov Yu.Ya. i dr. Khimiya ferrotsianidov. Moskva: Nauka, 1971. 320 s.
27. Pilipenko A.T., Terletskaya A.V., Bogoslovskaya T.A. i dr. Khemilyuminestsentnoe opredelenie serebra v mineralizovannoy vode. Zhurnal analiticheskoy khimii. 1983. T. 38, № 5. S. 807–810.
28. ISO 17294-2:2003. Water quality – Application of inductively coupled plasms mass-spectrometry (ICP-MS). Part 2: Determination of 62 elements.
29. Medvetskiy A.V., Tikhomirova T.I., Sorokina N.M., Tsizin G.I. Kontsentrirovanie fosfat- i silikat-ionov na tsellyuloznykh filtrakh v vide gidrofobnykh ionnykh assotsiatov geteropolikislot s tri-n-oktilaminom. Vestnik Moskovskogo Universiteta. Khimiya. 2004. T. 45. C. 250–254.
30. Marchenko 3., Baltsezhak M. Metody spektrofotometrii v UF i vidimoy oblastyakh v neorganicheskom analize. Moskva: BINOM. Laboratoriya znaniy, 2007. 711 s.
31. Nabyvanecj B.J., Osadchyj V.I., Osadcha N.M., Nabyvanecj Ju.B. Analitychna khimija poverkhnevykh vod. Kyjiv: Naukova dumka, 2007. 456 s.
32. GOST 18309-2014. Voda. Metody opredeleniya fosforsoderzhashchikh veshchestv. Moskva: Standartinform, 2015. 22 c.
33. Basova Ye.M., Ivanova V.M. Spektrofotometricheskoe opredelenie ortofosfat-ionov v plastovykh vodakh dlya provedeniya indikatornykh issledovaniy. Vestnik Moskovskogo Universiteta. Khimiya. 2012. T. 53(3). C. 165–180.
34. Zui O.V., Birks J.W. Trace analysis of phosphorus in water by sorption preconcentration and luminol chemiluminescencе. Analytical Chemistry. 2000. Vol. 72. P. 1699–1703.
35. Kaneko S., Ogawa M. Effective concentration of dichromate anions using layered double hydroxides from acidic solutions. Applied Clay Science. 2013. Vol. 75–76. P. 109–113.
36. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P. i dr. Izvlechenie Cr(VI) iz vodnykh rastvorov kaltsinirovannymi Zn/Al- i Mg/Fe-gidrotalkitami. Khimiya i tekhnologiya vody. 2014. T. 36, № 6. S. 479–490.
37. Puzyrnaya L.N., Shunkov V.S., Demutskaya L.N. i dr. Izvlechenie fosfat-ionov iz vodnykh rastvorov Zn/Al- i Mg/Fe-sloistymi dvoynymi gidroksidami. Khimiya i tekhnologiya vody. 2017. T. 39, № 5. S. 479 – 490.
38. Meshkova S.B., Topilova Z.M., Gerasimenko G.I. Polimetilmetakrilat – sorbent dlya effektivnogo izvlecheniya lantanidov iz rastvorov i vysokochuvstvitelnogo lyuminestsentnogo opredeleniya evropiya i terbiya v vodakh. Zhurnal analiticheskoy khimii. 1993. 48, № 1. S. 65–69.
39. Dyuldya S.V., Bratchenko M.I., Skorobogatov M.A. Radionuklidy evropiya kak istochniki izlucheniya dlya gamma-radiatsionnykh tekhnologiy: modelirovanie raspredeleniy pogloshchennoy dozy v gomogennykh sredakh. Voprosy atomnoy nauki i tekhniki. Seriya: Fizika radiatsionnykh povrezhdeniy i radiatsionnoe materialovedenie. 2004. № 3 (85). S. 128–140.
40. Zakharov I.S., Kontrosh L.V., Khramov A.V., Shumilov O.I. K voprosu ob ekologicheskoy opasnosti redkozemelnykh metallov. Izvestiya SPbGETU «LETI». 2018. № 8. S. 91–97.
41. Solovykh G.N., Golinskaya L.V., Kanunikova Ye.A. Redkozemelnye metally kak odin iz faktorov mutagennosti. Gigiena i sanitariya. 2012. № 3. S.23–25.
42. Rukovodstvo po obespecheniyu kachestva pitevoy vody: 4-e izd. [Guidelines for drinking-water quality, 4th ed.]. Zheneva: Vsemirnaya organizatsiya zdravookhraneniya. 2017. 628 s.
43. Stoyanov A.O., Stoyanova I.V., Chivireva N.A., Antonovich V.P. Metody opredeleniya raznovalentnykh form tseriya i evropiya (Obzor). Metody i obekty khimicheskogo analiza. 2013. 8, № 3. S. 104–118.
44. Ghajduk O.V., Ghudzenko L.V., YvkovaT.Y., Pantaler R.P., Blank A.B. Kontrolj soderzhanyja aktyvyrujushhykh dobavok ceryja, neodyma y evropyja v scyntylljacyonnыkh materyalakh spektrofotometrycheskym metodom. Visnyk Kharkivsjkogho nacionaljnogho universytetu. Khimija. 2008. # 820. Vyp. 16 (39). S. 15–21.
45. Vasylechko V., Ghryshhuk Gh., Nyzhnyk O., Kalychak Ja. Kyslotno modyfikovanyj zakarpatsjkyj klynoptylolit jak sorbent dlja vyluchennja slidovykh kiljkostej jevropiju (III). Visnyk Ljvivsjkogho universytetu. Serija khimichna. 2015. Vyp. 56. Ch. 1. S. 192–202.
46. Lukashova M.S., Kharchenko S.G., Belikov K.N. i dr. Corbtsionnoe izvlechenie ionov Eu(III) iz rastvorov CsI silikagelem, impregnirovannym 5,11,17,23-tetrakis-(diizo-propoksifosforilmetil)-25,26,27,28-tetragidroksitia-kaliks [4] arenom. Metody i obekty khimicheskogo analiza. 2015.Vol. 10, № 3. Р.143–149.
47. Mamdoh R. Mahmoud, Hanan H. Someda. Mg–Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry. 2012. N 292. Р. 1391–1400.
48. Upor E., Mokhai M., Novak D. Fotometricheskie metody opredeleniya sledov neorganicheskikh soedineniy. Moskva: Mir, 1985. 360 s.
49. Spahiu K., Bruno J. Technical report. A selected thermodynamic database for REE to be used in HLNW performance assessment exercises. MBT Tecnologia Ambiental, Cerdanyola. 1995. 91 p.
50. Runde W. Chemical interactions of actinides in the environment. Los Alamos Science. 2000. № 26. P. 392–411.
51. Khimiya i tekhnologiya redkikh i rasseyanykh elementov; pod red. K.A. Bolshakova. Moskva: Vysshaya shkola. 1979. 360 s.
52. Pshinko G.N., Puzyrnaya L.N., Kosorukov A.A. i dr. Izvlechenie Eu(III) iz vodnykh sred Zn,Al sloistym dvoynym gidroksidom, interkalirovannym ionami EDTA, i ego magnitnym kompozitom. Radiokhimiya. 2021. T. 63, № 3. S. 259-267.
53. Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research. 2000. Vol. 34, N 3. P. 735–742.
54. Stumpf T., Curtius H., Walther C., Dardenne K., Ufer K., Fanghänel T. Incorporation of Eu(III) into Hydrotalcite: A TRLFS and EXAFS Study. Environmental Science and Technology. 2007. № 41. P. 3186–3191.
55. Brown G., Gastache M.C. Mixed magnesium-aluminium hydroxides. Clay Minerals. 1967. Vol. 7, N 2. P. 193–201.

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top