Authors:
O.L. Pavlenko
Taras Shevchenko National University of Kyiv, Kyiv
https://orcid.org/0000-0001-8838-4798
O.P. Dmytrenko
Taras Shevchenko National University of Kyiv, Kyiv
https://orcid.org/0000-0002-4271-4234
M.P. Kulish
Taras Shevchenko National University of Kyiv, Kyiv
https://orcid.org/0000-0002-7409-8560
V.V. Lizunov
G. V. Kurdyumov Institute for Metal Physics, of the NAS of Ukraine, Kyiv
https://orcid.org/0000-0002-3264-0219
О. D. Kachkovsky
Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv
https://orcid.org/0000-0003-3711-5154
Reviewers:
O.D. Rud
G. V. Kurdyumov Institute for Metal Physics, of the NAS of Ukraine, Kyiv
https://orcid.org/0000-0002-0938-7884
I.Yu. Doroshenko
Taras Shevchenko National University of Kyiv, Kyiv
https://orcid.org/0000-0002-0743-2899
L.I. Malysheva
Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv
Scopus profile 7003675434
Affiliation:
Project: Scientific book
Year: 2024
Publisher: PH "Naukova Dumka"
Pages: 216
DOI:
https://doi.org/10.15407/978-966-00-1932-4
ISBN: 978-966-00-1932-4
Language: Ukrainian
How to Cite:
Abstract:
Systematical study of the structure and properties of π-conjugated molecules with different topology both in the independent state and in the complexes is presented. For linear π-conjugated molecules, on the example of neutral polymethine squarain, merocyanine dyes and their bases, it is shown that the spectra of these molecules are sensitive to the type and location of heteroatoms, donor-acceptor functional groups in the π-branched electronic system. Quantum-mechanical analysis of charge distribution in one-dimensional π-electron systems at injection of 1-5 charge carriers, both for the elongated linear and broadened polymethine chains, was performed and the formation of soliton-like waves was shown.
In the condensed state, when the dyes form the films, the shift and broadening of the absorption maxima are observed, compared to the spectra in the solutions. That is caused by the aggregation of molecules, which depends on the charge distribution in their chromophores.
The interaction of the dyes with fullerenes both in the films and solutions leads to the electronic structure rearrangement, which manifests itself in new spectral effects. Quantum mechanical analysis points on the charge transfer from dye molecules to the carbon nanostructures. That fact and also splitting of the degenerate levels of C 60 induces significant changes of the energy gap of the complexes. The main contribution to the absorption intensity is caused by HOMO (delocalized on dye chromophore) – LUMO (localized on fullerene) transition. In the complexes of squaraine dye with carbon nanoparticles (fullerenes, graphene, nanotube) the charge transfer from the dye to the carbon nanoparticles is observed. The latter leads to redistribution of charges along the surface of the nanoparticles, change in their geometry, including lowering of symmetry of the fullerene, the appearance of a dipole moment and redistribution of electronic levels. Changes in the energy gap of complexes are due to differences in the electronic structure of carbon nanoparticles. In the case of a covalent bonding between linear dye molecules and C60 fullerenes, the redistribution of the molecular orbitals of the complexes differs from similar complexes with stacking interaction. Ability of fullerene to form stable p®p- complexes with biologically active compounds, that are the derivatives of 1,3-oxazole containing donor -acceptor substituents, is considered basing on the spectral and quantum-chemical analysis.
For the solutions of antitumor agents doxorubicin, gemcitabine, containing π-conjugated fragments, complexation with albumin is observed. It is shown that the complexation is based on the p®p-stacking of aromatic aminoacids of BSA and aromatic cycles of the drugs. It is shown that the binding constants decrease under conjugation of the molecules with gold nanoparticles.
The described results are important in the bionanotechnology and nanoelectronics.
Keywords:
p-conjugated structures, spatial topology of molecules, electronic structure, p- p-complexes, carbon nanoparticles, dyes, doxorubicin, gemcitabine, albumin, gold nanoparticles
References:
- Nychyporenko O. S., Melnyk O. P., Pinchuk-Rugal T. M., Brusentsov V. A., Pavlenko E. L., Dmytrenko O.P. et al. Shape and Location of Multiple Charge Carriers in Linear π-Electron Systems. International Journal of Quantum Chemistry. 2014. V 114, Iss. 6. P. 416–428.
- Kurdiukov V. V., Tolmachev O. I., Kachkovsky O., Pavlenko E. L., Dmytrenko O. P., Kulish M. P. et al. Electron structure and nature of electron transitions of squaraine and thiosquaraine as well as their 1,2-isomers. Journal of Molecular Structure. 2014. Vol. 1076. P. 583–591.
- Kobzar P. Y., Pavlenko E. L., Brusentsov V. A., Dmytrenko O. P., Kulish N. P., Bricks J. L. et al. Comparative study of electronic structure cyanine bases versus parent cationic cyanines. Journal of Advanced Physics. Vol. 6, N 3. P. 334–345.
- Pavlenko O. L., Sendiuk V. A., Dmytrenko O. P., Kulish M. P., Sheludko E. V., Kachkovsky O. D. et al. Electron and vibration structure of fluorine-containing polyamide film under high energetic electron irradiation. Problems of Atomic Science and Technology. 2017. V 110, N 4. P. 17–20.
- Pavlenko O. L., Kulish M. P., Dmytrenko O. P., Kachkovsky O. D., Brusentsov V. A., Ilchenko О. О. et al. Irradiation-induced changes in vibration structure of films of squaraine dye. Problems of Atomic Science and Technology. 2017. V111, N 5. P. 31–34.
- Brusentsov V. A., Pavlenko O. L., Gaponov A. M., Dmitrenko O. P., Kulish M. P., Seryk M. М. et al. Aggregation of squaraine dyes in deposited films. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. V 15, Iss. 4. P. 589–597.
- Zarytska H. M., Brusentsov V. A., Pavlenko O. L., Dmytrenko O. P., Kulish M. P., Kachkovskyi O. D. et al. Electronic structure of the molecular system of the C60 fullerene with indopentamethinecyanine dye for cases of the stacking and covalent interactions. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. V 15, Iss. 3. P. 507–516.
- Iakovyshen R. S., Kurdyukov V. V., Brusentsov V. A., Pavlenko E. L., Dmytrenko O. P., Kulish M. P. et al. Spectral and quantum-chemical studies of absorption of merocyanines derivatives of cyclohexadienone. Journal of Advanced Physics. 2017. V 6, N 4. P. 514–523.
- Sendiuk V. A., Pavlenko E. L., Dmytrenko O. P., Kulish M. P., Viniychuk O. O., Prostota Y. O. et al. Interaction of solitons on 2-dimensional branched π-electron surface of graphene ribbons. International Journal of Quantum Chemistry. 2018. 118, Iss. 2. P. e25454.
- Pavlenko E. L., Kulish M. P., Dmytrenko O. P., Zarytska A. M., Sendiuk V. A., Kachkovsky O. D. Electronic structure of C60 derivatives at π-conjugation breaking in models С60Н2, С60-С2Н4, С60-С5Н7N, С60-С-(СН3)2 and C59. Problems of Atomic Science and Technology. Vol. 117, N 5. P. 29–33.
- Pavlenko E. L., Sendiuk V. A., Brusentsov V. A., Dmytrenko O. P., Kulish M. P., Obernihina N. V. et al. Quantum-chemical study of acceptor properties of fullerene and its bridge derivatives. Nanosistemi, Nanomateriali, Nanotehnologii. Vol. 16, Iss. 2. P. 389–
- Pavlenko O. L., Brusentsov V. A., Dmytrenko O. P., Kulish M. P., Sendiuk V. A., Kobzar P. Yu. et al. Spectral and quantum-chemical study of interaction between fullerenes and squaraine dyes. Nanosistemi, Nanomateriali, Nanotehnologii, 2018. V 16, Iss. 1. P. 31–40.
- Bulavin L. A., Goncharenko N. A., Dmytrenko O. P., Pavlenko O. L., Kulish M. P., Goncharova O. et al. Heteroassociation of antitumor agent doxorubicin with bovine serum albumin in the presence of gold nanoparticles. Journal of Molecular Liquids. 2019. 284. P. 633–638.
- Kachkovsky A. D., Pavlenko E. L., Shiludko E. V., Kulish N. P., Dmitrenko O. P., Sendyuk V. A. et al. Composite ‘graphene nanoplatelets–fluorine-containing polyamide’: Synthesis, properties and quantum-chemical simulation of electroconductivity. Functional Materials. 2019. Vol. 26, Iss.1. P. 100–
- Pavlenko O. L., Gaponov A. M., Lesiuk A. I., Pundyk I. P., Dmytrenko O. P., Kulish M. P. et al. Electronic structure of the cyanine dye bases within the solvents and films. Nanosistemi, Nanomateriali, Nanotehnologii. 2019. Vol. 17, Iss. 1. P. 145–
- Pavlenko O. L., Dmytrenko O. P., Kulish M. P., Sendiuk V. A., Obernikhina N. V., Prostota Ya. O. et al. Electron structure and optical properties of conjugated systems in solutions. Springer Proceedings in Physics. Modern Problems of the Physics of Liquid Systems. Selected Reviews from the 8th International Conference ‘Physics of Liquid Matter: Modern Problems’. 18–22 May, 2018, Kyiv, Ukraine. P. 225–
- Gaponov А. М., Pavlenko О. L., Dmytrenko O. P., Pinchuk-Rugal Т. М., Busko Т. О., Pundyk I. P. et al. Radiation sensitization of the idle voltage spectrum in the photoactive layers of the C60 molecules and squaraine dyes dbsq. Problems of Atomic Science and Technology. 2019. N 5 (123). P. 94–
- Goncharenko N.A., Pavlenko О. L., Dmytrenko O. P., Kulish M. P., Lopatynskyi A. M., Chegel I. Gold nanoparticles as factor of influence on ДРorubicnin-bovvine serum albumin complex. Applied Nanoscience. 2019. Vol. 9. P. 825–833.
- Goncharenko N. A., Pavlenko O. L., Dmytrenko O. P., Kulish M. P., Lopatynskyi A. M., Chegel V. I. Understanding prodrugs: complexation in aqueous solutions of doxorubicin bovine serum albumin and gold nanoparticles. Applied Nanoscience. 2020. Vol 10. P. 2941–
- Obernikhina N., Zhuravliova M., Pavlenko О. , Kulish M. P., Dmytrenko O. P. Stability of fullerene complexes with oxazoles as biologically active compounds. Applied Nanoscience. 2020. Vol. 10. P. 1345–1353.
- Obernikhina N., Pavlenko O., Kachkovsky A., Brovarets V. Quantum-Chemical and experimental estimation of Non-Bonding Level (Fermi Level) and π-Electron afinity of conjugated systems. Polycyclic Aromatic Compounds. 2020. Vol. 41, Iss. 10. P. 2110–2119.
- Goncharenko N. A., Dmytrenko O. P., Kulish M. P., Pavlenko O. L., Lesiuk А. І., Busko T. O. et al. Mechanisms of the interaction of bovine serum albumin with anticancer drug gemcitabine. Molecular Crystals and Liquid Crystals. Vol. 701, N 1. P. 59–71.
- Pavlenko O., Dmytrenko O., Kulish M., Gaponov A., Obernikhina N., Kachkovsky O. et al. Quantum Chemical Modeling of the Complexes of Squaraine Dyes with Carbon Nanoparticles: Graphene, Nanotube, Fullerene. Ukrainian Journal of Physics. 2020. V 65, N 9. P. 741–750.
- Коrnienko N. Е., Pavlenko О. L. Multiple Fermi Resonances In Liquid Benzene. Ukrainian Journal of Physics. 2020. V 65, N 6. P. 480–488.
- Goncharenko N. A., DmytrenkoP., Pavlenko O. L., Kulish M. P., Lesiuk А. І., Busko T. O. et al. Complexation peculiarities in “doxorubicin–Bovine serum albumin–gold nanoparticles” heterosystem. The fluorescence study. Ukrainian Journal of Physics. 2020. Vol. 65, N 6. P. 468–475.
- Alieksandrov M. A., Misiura A. I., Pinchuk-Rugal T. M., Grabovskii Yu. E., Onanko A. P., Dmytrenko O. P. et al. Structural features of Polymer Nanocomposite LDPE-MWСТЕ in the percolation Transition Region of Electrical Conductivity. Nanosistemi, Nanomateriali, Nanotehnologii. 2020. Vol. 18, 2. P. 229–310.
- Liu, KilbyP., Frankcombe J. T., Schmidt T. W. The electronic structure of benzene from a tiling of the correlated 126-dimensional wavefunction. Nature Communications. 2020. Vol.11, Article number 1210.
- FraindA., Gjergji S.,Chad R., Ryzhkov L. R., BrédasJ.-L., TovarJ. D.Charge Delocalization through Benzene, Naphthalene, and Anthracene Bridges in π-Conjugated Oligomers: An Experimental and Quantum Chemical Study.J. Phys. Chem. B. 2013. Vol. 117, N 20. P. 6304–6317.
- Dixit V. , Singh Y. Y. How much aromatic are naphthalene and graphene? Comput. and Theoretical Chemistry. 2019. Vol. 1162. P. 112504.
- Peters G. M., Grover G., Maust R. L., Colwell C. E., Bates H., Edgell W. A. et al. Linear and Radial Conjugation in Extended π‑Electron Systems. Am. Chem. Soc. 2020. Vol. 142, Iss. 5. P. 2293–2300.
- Kroto H. W., Heath J. R., O’Brien S. C., Curl R.F., Smalley R. E. C60: Buckminsterfullerene. Nature. Vol. 318. P. 162–163.
- Iijima S. Helical microtubules of graphitic carbon. Nature. Vol. 354. P.56–58.
- Iijima, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993. Vol. 363. P. 603–605.
- Scott L. Conjugated Belts and Nanorings with Radially Oriented p-Orbitals. Angew. Chem., Int. Ed. 2003. Vol. 42. P. 4133−4135.
- Castro H., Peres N. M. R., Novoselov K. S. The electronic properties of graphene. Rev Mod Phys. 2009. Vol. 81. P. 109–162.
- Grocka I., Latos-Grażyński L., StępieńM. Ruthenocenoporphyrinoids: Conformation Determines Macrocyclic p-Conjugation Transmitted Across a d-Electron Metallocene. Chem. Int. Ed. 2012. Vol. 52. P. 1044 –1048.
- Liu,ZhangB., Wang Y. Second-order nonlinear optical materials with a benzene-like conjugated p-system. Chem. Communications. 2020. Vol. 56. P. 13689–13701.
- Hollamby J., Nakanishi T. The power of branched chains: optimising functional molecular materials. J. Mater. Chem. C. 2013. Vol. 1. P. 6178–6183.
- Chen Z.,Li, DaiY., Xu N., Su C., Liu J., et al. Conjugated microporous polymer based on star-shaped triphenylamine-benzene structure with improved electrochemical performances as the organic cathode material of Li-ion battery.Electrochimica Acta. 2018. Vol. 286. P. 187–194.
- Kolarič A., Germe T., Hrast M., Stevenson C. E. M., Lawson D. M., Burton N. P. et al. Potent DNA gyrase inhibitors bind asymmetrically to their target using symmetrical bifurcated halogen bonds. Nature Communications. 2021. V12. Article Number 150.
- Persch E., Dumele O., Diederich F. Molecular recognition in chemical and biological systems. Angewandte Chemie. International Edition. Vol.54, Iss. 11. P. 3290–3327.
- Waters L. Aromatic Interactions.Acc. Chem. Res. 2013. Vol.46. P. 873.
- Myslinski M., DeLorbe J. E., Clements J. H., DeLorbe J. E., Martin S.F. Protein–Ligand Interactions: Thermodynamic Effects Associated with Increasing the Length of an Alkyl Chain.ACS Med. Chem. Lett. 2013. Vol. 4. P. 1048–1053.
- CarterC., Ho J. X.Structure of serum albumin.Adv.Prot.Chem. 1994. Vol.45. P. 153–203.
- McConnell J., Beveridge D.L. DNA structure: what’s in charge? J. Mol. Biol. 2000. Vol. 304. P. 803–820.
- Chen T.,Li M.,Liu J.π–π Stacking Interaction: A Nondestructive and Facile Means in Material Engineering for Bioapplications. Growth Des. 2018. Vol. 18. P. 2765–2783.
- Wang K., Gao Z., Zhang W., Yan Y., Song H. Lin X. et al. Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Science Advances. 2019. V5, Iss. 6. P. eaaw2953.
- Nair V., Mukhopadhyay R. D., Saeki A.,Ajayaghosh A.A π-gel scaffold for assembling fullerene to photoconducting supramolecular rods. Science Advances. 2016. Vol. 2, Iss. 9. P. e1600142.
- Youssef Z., Colombeau L., Yesmurzayeva N., Baros F., Vanderesse R., Hamieh T.et al. Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Pigm. 2018. Vol. 159. P. 49–71.
- Lv, SungH.-S., LiX., ZhangX., Li Z., Chen D.Effects of single layer graphene and graphene oxide modification on the properties of phthalocyanine blue pigments.Dyes. Pigm. 2020. Vol. 180. P. 108449-1–108449-11.
- Chen, Jin X.,Cao Y., Jia D., Liu A., Wu R. et al. Effects of the synthesis conditions on the photocatalytic activities of sulfide-graphene oxide composites.Dyes. Pigm. 2019. Vol. 162. P. 177–188.
- Jahantigh, Bagher GhorashiS.M., BayatA.Hybrid dye sensitized solar cell based on single layergraphene quantum dots. Dyes. Pigm. 2020. Vol. 175. P. 108118-1–108118-21.
- Khan M. W., Zuo X., Yang Q., Tang H., Rehman K. M. U., Wu M. et al. Functionalized multi-walled carbon nanotubes embedded with nanoflakes boost the short-circuit current of Ru (II) based dye-sensitized solar cells. Pigm. 2020. Vol. 181. P. 108573-1–108573-33.
- Xue, DingY., NiuJ., Xia Z., Roy A., Chen H. et al. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Science Advances. 2015. Vol. 1, Iss. 8. P. e1400198-1– e1400198-9.
- Heller D .A., Jeng E., Yeung T.-K., Martinez R. M., Moll A. E., Gastala J. B. et al. Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes.Science. Vol. 311, Iss. 5760. P. 508–511.
- Ju M. J., Jeon I.-Y., Kim H. M., Choi J. I., Jung S.-M., Seo J.-M. et al. Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells. Adv. 2016. Vol. 2, N 6. P. e1501459-1–e1501459-8.
- Kohli, Harrell C.C., Cao Z., Gasparac R., Tan W., and Martin C. R. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science. 2004. Vol. 305, N 5686. P. 984–986.
- A. Heller, E.S. Jeng, T.-K. Yeung, Martinez B. M., Moll A. E., Gastala J. B. et al. Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes.Science. 2006. Vol. 311, N 5760. P. 508–511.
- Li R.,Georgiades P., Cox H., Phanphak S., Roberts I. S., Waigh T. A. et Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) with Graphene Oxide. Sci. Rep. 2018. Vol. 8. P. 1–12.
- Kuzum, Takano H., Shim E., Reed J. C., Juul H., Richardson A.G. etal. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nature Commun. 2014. Vol.5. P. 1–10.
- Bonaccorso,Sun Z., FerrariA.C.Graphene photonics and optoelectronics. Nature Photonics. 2010. Vol.4. P. 611–622.
- Yu X., Cheng H., Zhang M., Zhao Y., Qu L., Shi Graphene-based smart materials. Nature Reviews Materials. 2017. Vol. 2 (9). P. 1–13.
- Prasad R., Jain N. K., Yadav A. S., Chauhan D. S., Devrukhkar J., Kumawat M. K. et al. Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near-infrared light mediated cancer therapy. Communications Biology. 2020. V3, N 284. P. 284.
- Hoppe, Sariciftci N. S. Organic solar cells: An overview. J. Materials Research. 2004. Vol. 19(7). P. 1924–1945.
- Yan , Zhang K., Wang H., Liu W., Zhang Z., Liu J. et al. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption. Colloids and Surfaces B: Biointerfaces. 2020. Vol. 186. P. 110700.
- Luo , Bin H., Liu T., Zhang Z.-G., Yang Y., Zhong C. et al. Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54%. Adv. Mater. 2018. Vol. 30(9). P. 1706124.
- Kan B., Zhang J., Liu F., Wan X., Li C., Ke X. et.al. Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells. Mater. 2017. Vol. 30(3). P. 1704904.
- Resch-Genger U., Grabolle M., Nitschke R., Nann T. Nanocrystals and nanoparticles versus molecular fluorescent labels as reporters for bioanalysis: a critical comparison in Advanced fluorescence reporters in chemistry and biology II: molecular constructions, polymers and nanoparticles. Berlin, 2010. P. 3–
- Luo, Zhang E., Su Y., Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011. Vol.32 (29). P. 7127–7138.
- Ikaia , Tokito S., Sakamoto Y., Suzuki T., Taga Y. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Applied Physics Letters. 2001. Vol. 79. P. 156e8.
- Have, Sutter M., Jiskoot W. Extrinsic-fluorescence dyes as tools for protein characterization. Pharm. Res. 2008. Vol. 25(7). P. 1487–1499.
- Guo, Park S., Yoon J., Shin I. Recent progress in the development of nearinfrared fluorescent probes for bioimaging applications. Chem. Society Rev. 2014. Vol. 43(1). P. 16–28.
- Hilderbrand A., Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010. Vol. 14(1). P. 71–79.
- Wang, S., Gao, R., Zhou, F., Selke, M. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. Journal of Materials Chemistry. Vol. 14 (4). P. 487–493.
- Bricks L., Kachkovskii A. D., Slominskii Y. L., Gerasov A. O., Popov S. V. Molecular design of near infrared polymethine dyes: A review. Dyes and Pigments. 2015. Vol. 121. P. 238–255.
- Bach, Daehne S. Cyanine dyes and related compounds. ROOD’S chemistry of carbon compounds. Amsterdam: Elsevier, 1997. Ch. 15. P. 383–481.
- Mishra A., Behera R. , Behera P. K., Mishra B. K., Behera G. B. Cyanines during the 1990s: A Review. Chem. Rev. 2000. Vol. 100 (6). P. 1973–2012.
- Pawlicki, M., Collins, H. A., Denning, R. G., & Anderson, H. L. Two‐photon absorption and the design of two‐photon dyes. Angewandte Chemie Intern. Edit. Vol. 48(18). P. 3244-3266.
- Marder S. Organic nonlinear optical materials: where we have been and where we are going. Chem. Commun. 2006. Vol. 2. P. 131–134.
- Tolmachev I., Slominsky Yu. L., Ishchenko A. A., Near-Infrared Dyes for High Technology Applications. New York: Kluwer Academic Publishers, 1998.
- Hales, Matichak J., Barlow S., Ohira S., Yesudas K., Brédas J.-L., et al. Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science. 2010. Vol. 327 (5972). P. 1485–1488.
- Barford W., Marcus, M. Theory of optical transitions in conjugated polymers. I. Ideal systems. Journal of Chemical P 2014. Vol. 141(16). P. 164101.
- Kuhn H. Free Electron Model for Absorption Spectra of Organic Dyes. Chem. Phys. 1948. Vol. 16. P. 840.
- Bayliss N. A ‘Metallic’ Model for the Spectra of Conjugated Polyenes’. J. Chem. Phys. 1948. Vol. 16. P. 287.
- Ruedenberg, Scherr C. W., Free‐Electron Network Model for Conjugated Systems. I. Theory. J. Chem. Phys. 1953. Vol. 21. P. 1565.
- Su W. , Schrieffer J. R., Heeger A. J. Soliton excitations in polyacetylene. Phys. Rev. 1980. Vol. 22. P. 2099.
- Tolbert L. Solitons in a box: the organic chemistry of electrically conducting polyenes. Acc. Chem. Res. 1992. Vol. 25. P. 561–568.
- Craw J. S., Reimers J. , Bacskay G. B., Wong A. T., Hush N. S. Solitons in finite- and infinite-length negative-defect trans-polyacetylene and the corresponding Brooker (polymethinecyanine) cations. I. Geometry. Chem. Phys. 1992. Vol. 167 (1–2). P. 77–99.
- Craw J. S., Reimers J. , Bacskay G. B., Wong A. T., Hush N. S. Solitons in finite- and infinite-length negative-defect trans-polyacetylene and the corresponding Brooker (polymethinecyanine) cations. II. Charge density wave. Chem. Phys. 1992. Vol. 167 (1–2). P. 101–109.
- Fisher, A. J., Hayes, W., Wallace, D. S. Polarons and solitons.Journal of Physics: Condensed Matter. Vol. 1(33). P. 5567.
- Kachkovski A. D., Tolmachev A. I., Slominski Yu. L., Kudinova M. O., Derevyanko N. O., Zhukova O. Electronic properties of polymethine systems. Soliton symmetry breaking and spectral features of dyes with a long chain. Dyes and Pigments. 2005. Vol. 64. P. 207–216.
- Daehne Color and Constitution: One Hundred Years of Research. Science. 1978. Vol. 199. P. 1163–1167.
- Piryatinski Y. P., Verbitsky A. B., Lutsyk P. M., Rozhin A. G., Kachkovskii O. D., Prostota Y. O. et al. Suppression of Kasha’s rule in higher excited states of 4-pyrilocyanines. Molecular Crystals and Liquid Crystals. 2018. Vol. 672(1). P. 33–40.
- Jachak M., Khopkar S., Mehta V., Bhise R., Shankarling G. Synthesis of A2-D2-A1-D1 type red-emitting unsymmetrical squaraine dye: Influence of additional pyridine moiety on photophysical, electrochemical, photo and thermal stability. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 20 Vol. 273. P. 121019.
- Kudinova M. A., Kachkovski A. D., Kurdyukov V. V. Nature of the absorption bands of pyrylocyanines. 2. Influence of t-Bu, Ph and Th ring substituents. Dyes Pigm., Vol. 45. P. 1–7.
- Pang Y., Moser D., Eastgate M., Schmidt M., Fandrick K., Shi Z. J. et al. Pyrylium salts: selective reagents for the activation of primary amino groups in organic synthesis. 2020. Vol. 52(04). P. 489–503.
- Maeda T., Nitta S., Nakao H., Yagi S., Nakazumi H. Squaraine dyes with pyrylium and thiopyrylium components for harvest of near infrared light in dye-sensitized solar cells. Journal of Physical Chemistry C. Vol. 118(30). P. 16618–16625.
- Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R. et al. Gaussian 03, rev. B. 05. Pittsburgh, P. 12478.
- Fabian TDDFT-calculations of Vis/NIR absorbing compounds. Dyes and Pigments. 2010. Vol. 84. P. 36–53.
- Jacquemin D., Zhao Ya., Valero R., Adamo C., Ciofini I., Truhlar D. G. Time-Dependent Density Functional Theory ‘Not Guilty’ of Large Errors for Cyanines. Chem. Theor. Comput. 2012. Vol. 8. P. 1255–1259.
- Orlandi, Zerbetto F., Zgierski M. Z. Theoretical analysis of spectra of short polyenes. Chem. Rev. 1991. Vol. 91(5). P. 867–891.
- Webster S., Peceli D., Hu H., Padilha L. A., Przhonska O. V., Masunov A. E. et.al. Near-Unity Quantum Yields for Intersystem Crossing and Singlet Oxygen Generation in Polymethine-like Molecules: Design and Experimental Realization. Phys. Chem. Lett. 2010. Vol. 1(15). P. 2354–2360.
- Tyutulkov , Fabian J., Mehlhorn A. et.al. Polymethine Dyes, Structure and Properties. Sofia: St. Kliment Ohridski University Press, 1991. P. 211–249.
- Shindy H. A. Fundamentals in the chemistry of cyanine dyes: A review. Dyes and Pigments, 2017. Vol. P. 505–513.
- Rösch U., Yao S., Wortmann R., Würthner F. Fluorescent H‐aggregates of merocyanine dyes. Angewandte Chemie. 2006118(42). P. 7184–7188.
- Reichardt C. Solvents and solvent effects. Organic Chemistry. Weinheim: Wiley-VCH, 2002.
- Marder R. Organic nonlinear optical materials: where we have been and where we are going. Chem. Commun., 2006. Vol. 14(2). P. 131–134.
- Kanis D. R., Ratner M. A., Marks T. J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Rev. 1994. Vol. 94(1). P. 195–242.
- Meyers F., Marder S. R., Perry J. W. Introducing to the nonlinear optical properties of organic materials. Chemistry of Advanced Materials. New York–Chicherster–Weinheim–Brisbane–Singapore–Toronto: Wiley-VCH, 1998. 6. P. 207–268.
- Risser S. M., Beratan D. N., Marder S. R. Structure-function relationships for .beta., the first molecular hyperpolarizability. Am. Chem. Soc. 1993. Vol. 115. P. 7719–7728.
- Meyers , Marder S. R., Pierce M., Bredas J.-L. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation. J. Am. Chem.Soc. 1994. Vol. 116(23). P. 10703–10714.
- Dekhtyar M. and Rettig Properties of Molecules-Polyenic/polymethinic relationships for donor-acceptor substituted stilbenoids: Structural, electronic and spectroscopic aspects. Phys. Chem. Chem. Phys. 2001. Vol. 3(9). P.1602–1610.
- Pilipchuk N. V., Kachkovsky G. O., Slominskii Y. L., Kachkovsky G. O. Electronic properties of polymethine systems. 11. Absorption spectra and nature of electron transitions in cationic oxystyryl and their neutral derivatives. Dyes and Pigments. Vol. 71(1). P. 1–9.
- Brooker G. S. Absorption and Resonance in Dyes. Rev. Mod. Phys. 1942. Vol. 14(2–3). P. 275–293.
- Ren P., Zhang Y., Luo Z., Song P., Li Y. Theoretical and experimental study on spectra, electronic structure and photoelectric properties of three nature dyes used for solar cells. Journal of Molecular Liquids. Vol. 247. P. 193–206.
- Jacquemin D., Perpete E. A., Ciofini I., Adamo C. Accurate simulation of optical properties in dyes. Accounts of chemical Research. Vol. 42(2). P. 326–334.
- Gruda and Bolduc F. Spectral properties and basicity of stilbazolium betaines containing bulky substituents on the quinoid ring. J. Org. Chem. 1984. Vol. 49 (18). P. 3300–3305.
- Hamer F. M. Chemistry of Heterocyclic Compounds: The Cyanine Dyes and Related Compounds”. New York: Wiley-Interscience, Vol. 18. P. 398–510.
- Ooyama Y., Harima Yu. Molecular Designs and Syntheses of Organic Dyes for Dye‐Sensitized Solar Cells. J. Org. Chem. 2009. Vol. 18. P. 2903–2934.
- Goncalves M. S. Fluorescent Labeling of Biomolecules with Organic Probes. Rev. 2009. Vol. 109(1). P. 190–212.
- Yao S. and Belfield D. Two‐Photon Fluorescent Probes for Bioimaging. Eur. J. Org. Chem. 2012. Vol. 17. P. 3199–3217.
- Shaw P. A., Forsyth E., Haseeb F., Yang S., Bradley M., Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window?.Frontiers in chemistry. Vol. 10. P. 921354.
- Park J. W., Shin D. C., Park S. H. Large-area OLED lightings and their applications. Sci. Technol. 2011. Vol. 26. P. 034002.
- Dimitriev O. P., Grytsenko K. P., Lytvyn P. M., Doroshenko T.P., Briks J. L., Tolmachev A. I. et al. Substrate-induced self-assembly of donor–acceptor type compounds with terminal thiocarbonyl groups. Thin Solid Films. 2013. V 539. P. 127–133.
- Kachkovsky A. D., Pilipchuk N. V., Kyurdyukov V. V. Electronic properties of polymethine systems. 10. Electron structure and absorption spectra of cyanine bases. Dyes and Pigments. Vol.70(3). P. 212–219.
- Nezakati, Seifalian A., TanA., Seifalian A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev. 2018. Vol. 118(14). P. 6766–6843.
- Bin, Yao J., Yang Y., Angunawela I., Sun C., Gao L et al. High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with alkylsilyl-thienyl conjugated side chains. Advanced Materials. 2018. Vol. 30(27). P. 1706361.
- Dai S., Zhao F., Zhang Q., Lau T.-K., Li T., Liu et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 2017. Vol. 139(3). P. 1336–1343.
- Hao , Liu T., Xiao Y., Ma L.-K., Zhang G., Zhong C. et al. Achieving balanced charge transport and favorable blend morphology in non-fullerene solar cells via acceptor end group modification. Chem Mater. 2019. Vol. 31(5). P. 1752–1760.
- Liu J., Liu L., Zuo C., Xiao Z., Zou Y., Jin Z. et al. 5H-dithieno[3,2-b:20,30-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci. Bull. Vol. 64. P. 1655–1657.
- Jiang, Q. Wei, JYL. Lai, et al. “Alkyl chain tuning of small molecule acceptors for efficient organic solar cells”, Joule, vol. 3(12), pp. 3020-3033, 2019.
- Zhang, B. Kan, Y. Sun, et al. “Nonfullerene tandem organic solar cells with high performance of 14.11%”, Advanced Materials, vol. 30(18), pp. 1707508, 2018.
- Zhou Y., Long G., Li A., Gray-Weale A., Chen Y., Yan T. Towards predicting the power conversion efficiencies of organic solar cells from donor and acceptor molecule structures. J. Mater. Chem. C. Vol. 6(13). P. 3276–3287.
- Hodgson J., Gilmore K., Small C., Wallace G. G., Mackenzie I. L., Aoki T. et al. Reactive Supramolecular Assemblies of Mucopolysaccharide, Polypyrrole and Protein as Controllable Biocomposites for a New Generation of ‘intelligent biomaterials’. Supramol. Sci., 1994. Vol. 1(2). P. 77−83.
- Karagkiozaki V., Karagiannidis P. G., Gioti M., Kavatzikidou P., Georgiou D., Georgaraki , et al. Bioelectronics Meets Nanomedicine for Cardiovascular Implants: PEDOT-Based Nanocoatings for Tissue Regeneration. Biochim. Biophys. Acta, Gen. Subj. 2013. Vol. 1830. P. 4294−4304.
- Povlich L. K., Cho J. C., Leach M. K., Corey J. M., Kim J., Martin D. C. Synthesis, Copolymerization and Peptide-Modification of Carboxylic Acid-Functionalized 3,4-Ethylenedioxythiophene (EDOTacid) for Neural Electrode Interfaces. Biophys. Acta, Gen. Subj. 2013. Vol. 1830(9). P. 4288−4293.
- Yang , Yao F., Hao T., Fang W., Ye L., Zhang Y. et al. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering. Adv. Healthcare Mater. 2016. Vol. 5(4). P. 474−488.
- Martins A. , Eng G., Caridade S. G., Mano J. F., Reis R. L., Vunjak-Novakovic G. Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules. 2014. Vol. 15(2). P. 635−643.
- Zhou , Chen J., Sun H., Qiu X, Mou Y., Liu Z. et al. Engineering the Heart: Evaluation of Conductive Nanomaterials for Improving Implant Integration and Cardiac Function. Sci. Rep. 2015. Vol. 4. P. 3733.
- Lakshmanan , Krishnan U., Sethuraman S., Polymeric Scaffold Aided Stem Cell Therapeutics for Cardiac Muscle Repair and Regeneration. Macromol. Biosci., 2013. Vol. 13(9). P. 1119−1134.
- Gerard , Chaubey A., Malhotra B. D. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002. Vol. 17(5). P. 345−359.
- Green R. , Baek S., Poole-Warren B. D., Martens P. J. Conducting Polymer-Hydrogels for Medical Electrode Applications. Sci. Technol. Adv. Mater., 2010. Vol. 11. P. 014107.
- Jin , Li K. The Electrically Conductive Scaffold as the Skeleton of Stem Cell Niche in Regenerative Medicine. Mater. Sci. Eng. C. 2014. Vol. 45. P. 671−681.
- Li , Qi Y., Ding Y., Zhao Q., Fei J., Zhou J. Electrochemical Sensing Platform Based on the Quaternized Cellulose Nanoparticles/acetylene Black/enzymes Composite Film. Sens. Actuators, B Chemical. 2012. Vol. 168. P. 329−335.
- Lin , Yang J., Lin R., Li Y., Gao H., Yang S. et al. In Vivo Study on the Monoamine Neurotransmitters and Their Metabolites Change in the Striatum of Parkinsonian Rats by Liquid Chromatography with an Acetylene Black Nanoparticles Modified Electrode. J. Pharm. Biomed. Anal. 2013. Vol. 72. P. 74−79.
- Yang J., Martin D. Impedance Spectroscopy and Nanoindentation of Conducting poly(3,4-Ethylenedioxythiophene) Coatings on Microfabricated Neural Prosthetic Devices. J. Materials Researsh. 2006. Vol. 21(05). P. 1124−1132.
- Luo S., Ali E. M., Tansil N. C., Yu H.-h., Gao S., Kantchev E. A. B. et al. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir. Vol. 24(15). P. 8071−8077.
- Kim D.-H., Richardson-Burns S. , Hendricks J. L., Sequera C., Martin D. C. Effect of Immobilized Nerve Growth Factor on Conductive Polymers: Electrical Properties and Cellular Response. Advanced Functional Materials. 2007. Vol. 17(1). P. 79−86.
- Gooding J. J., Wasiowych C., Barnett D., Hibbert D. B., Barisci J. N., Wallace G. G. Electrochemical Modulation of Antigen-Antibody Binding. Bioelectron. 2004. Vol. 20. P. 260−268.
- Richardson R. T., Thompson , Moulton S., Newbold C., LumM. G., Cameron A. et al. The Effect of Polypyrrole with Incorporated Neurotrophin-3 on the Promotion of Neurite Outgrowth from Auditory Neurons. Biomaterials. 2007. Vol. 28. P. 513−523.
- Давыдов А. С. Солитоны в молекулярных системах. Киев: Наукова думка, 1988.
- Sun W., Guo S., Hu C., Fan J., Peng X. Recent development of chemosensors based on cyanine platforms. Chemical reviews. 2016. Vol. 116(14). P. 7768–7817.
- Przhonska O. V., Webster S., Padilha L. A., Hu H., Kachkovski A. D., Hagan D. J. et al. Two-photon absorption in near-IR conjugated molecules: design strategy and structure–property relations. in Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design. Berlin Heidelberg: Springer-Verlag, 2010. V8. P. 105–148.
- Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene. Nature. Vol. 318. P. 162–163.
- Fagan P. , Calabrese J. C., Malone B. Metal complexes of buckminsterfullerene (C60). Acc. Chem. Res. 1992. Vol. 25(3). P. 134–142.
- Saito R., Dresselhaus G., Dresselhaus M. S. Physical Properties of Carbon Nanotube. London: Imperial College Press, 1998.
- Geim K., Novoselov K. S. The rise of graphene. Nat. Mater. 2007. Vol. 6(3). P. 183–191.
- Kuhn H. A Quantum‐Mechanical Theory of Light Absorption of Organic Dyes and Similar Compounds. Chem. Phys. 1949. Vol. 17. P. 1198–1212.
- Kachkovsky A. D. The Solitonic Nature of the Electronic Structure of the Ions of Linear Conjugated Systems. Exp. Chem. 2005. Vol. 41. P. 139–164.
- Fabian Symmetry-lowering distortion of near-infrared polymethine dyes —a study by first-principles methods. J. Mol. Struct. 2006. Vol. 766, Iss. 1. P. 49–60.
- Kachkovski D., Przhonska O. V., Ryabitzki A. B. Symmetry breaking in cationic and anionic polymethine dyes. J. Mol. Struct. 2007. Vol. 802, Iss. 1–3. P. 75–83.
- Stafström, S., & Chao, K. A. Soliton states in polyacetylene. Physical Review B. 1984. Vol. 29(4), 2255.
- Arancibia L. M., Sánchez C. G., Lobos A. M. Stability of moving solitons in trans-polyacetylene in an electric field.Physical Review B, V 2022106(24). P. 245426.
- Batail Introduction: Molecular Conductors. Chem. Rev. 2004. Vol. 104(11). P. 4887–4890.
- Cheng -J., Yang S.-H., Hsu C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009. Vol. 109(11). P. 5868–5923.
- Bredas J.-L., Beljonne D., Coropceanu V., Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Rev. 2004. Vol. 104(11). P. 4971–5004.
- Kim S., Kim B. G., Kim J. Effective variables to control the fill factor of organic photovoltaic cells. ACS Appl. Mater. Interfaces. 2009. Vol. 1(6). P. 1264–1269.
- Bredas L., Street G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 1985. Vol. 18(10). P. 309–315.
- Tolbert M. Solitons in a box: the organic chemistry of electrically conducting polyenes. Acc. Chem. Res. 1992. Vol. 25(12). P. 561–568.
- Gerasov A. O., Nayyar I. H., Masunov A. E., Przhonska O. V., Kachkovsky O. D., Melnyk D. O. et al. Solitonic waves in polyene dications and principles of charge carrier localization in π‐conjugated organic materials. J. Q. Chem. 2012. Vol. 112(14). P. 2659–2667.
- Goncalves S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 2009. Vol. 109(1). P. 190–212.
- Heeger A. J., Kivelson S., Schrieffer J. R., Su W.-P. Solitons in conducting polymers. Mod. Phys. 1988. Vol. 60. P. 781–850.
- Su W. , Schrieffer J. R., Heeger A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 1979. Vol. 42. P. 1698.
- Su W. , Schrieffer J. R., Heeger A. J. Soliton excitations in polyacetylene. Phys. Rev. 1980. Vol. 22. P. 2099–2111.
- Chen , Li M., Liu J. π-π Stacking Interaction: A Nondestructive and Facile Means in Material Engineering for Bioapplications. Crystal Growth & Design. 2018. Vol.18. P. 2765–2783.
- Sinnokrot O., Sherrill C. D. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J. Phys. Chem. A. 2006. Vol. 110. P. 10656–10668.
- Grimme , Mück-Lichtenfeld C., Antony J. Noncovalent Interactions between Graphene Sheets and in Multishell (Hyper)Fullerenes. J. Phys. Chem. C. 2007. Vol. 111. P. 11199–11207.
- Rapacioli , Calvo F., Spiegelman F. Stacked Clusters of Polycyclic Aromatic Hydrocarbon Molecules. J. Phys. Chem. A. 2005. Vol. 109. P. 2487–2497.
- Grant Hill J., Platts J. A., Werner -J. Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. Phys. Chem. Chem. Phys. 2006. Vol. 8. P. 4072–4078.
- Park Y. C., Lee J. S. Accurate ab Initio Binding Energies of the Benzene Dimer. Phys. Chem. A. 2006. Vol. 110. P. 5091–5095.
- Podeszwa , Bukowski R., Szalewicz K. Potential Energy Surface for the Benzene Dimer and Perturbational Analysis of π−π Interactions. J. Phys. Chem. A. 2006. Vol. 110 (34). P. 10345–10354.
- Tsuzuki Interactions with Aromatic Rings. Struct. Bonding. 2005. Vol. 115. P. 149–193.
- Grimme Do Special Noncovalent π–π Stacking Interactions Really Exist?. Angew. Chem. Int. Ed. 2008. Vol. 47. P. 3430–3434.
- Shan,LiY.,HuangD., Tong O., Yao W., Liu W.-T. et al. Stacking symmetry governed second harmonic generation in graphene trilayers.Sci. Adv. 2018. Vol. 4. P. eaat0074-1– eaat0074-5.
- Scheibe The first report of Scheibe on the absorption spectra of a solution of PIC iodide in water describes the formation of H-aggregates.Angew. Chem. 1937. Vol. 50. P. 212–219.
- Jelley E. Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature. 1936. Vol. 138. P. 1009–1010.
- Jelley E. Molecular, nematic and crystal states of 1,1′-diethyl-ψ-cyanine chloride. Nature. 1937. Vol. 139. P. 631–632.
- Wurthner F., Kaiser T. E., Saha-Moller C. R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Chem. Int. Ed. 2011. Vol. 50. P. 3376–3410.
- Zhang L., Cole J. M. Dye aggregation in dye-sensitized solar cells.Journal of Materials Chemistry A. 2017. Vol. 5(37). P. 19541–
- KurodaJ-aggregation and its characterization in Langmuir-Blodgett films of merocyanine dyes.Adv. Colloid Interface Sci. 2004. Vol. 111. P. 181–209.
- Chen,Lohr A.,Saha-Möller C. R. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 2009. Vol. 38. P. 564–584.
- Grimme,Antony J.,SchwabeT., Mück-Lichtenfeld C. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org. Biomol. Chem. 2007. Vol. 5. P. 741–758.
- Yagi,NakazumiH. Squarylium Dyes and Related Compounds. Top. Heterocycl. Chem. 2008. Vol. 14. P. 133–181.
- Hsu-T.,LinB.-H.,Lu L.-S., Lee M.-H., Chu M.-W., Li L.-J. et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment and valley spin.Sci. Adv. 2019. Vol. 5. P. eaax7407-1–eaax7407-6.
- Deng J.-H., Luo J., Mao Y.-L., LaiS., GongY.-N., ZhongD.-C. et al. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. Adv. 2020. Vol. 6(2). P. eaax9976-1– eaax9976-8.
- Chen,Gao F.,YangW. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations.Sci. Rep. 2016. Vol. 6. P. 29314.
- MillerL.,MannK.R. π-Dimers and π-Stacks in Solution and in Conducting Polymers.Acc. Chem. Res. 1996. Vol. 29. P. 417–423.
- HolmlinE.,Dandliker P.J.,BartonJ.K.Charge Transfer through the DNA Base Stack.Ang. Chem. Intern. Ed. Engl. 1997. Vol. 36, Iss. 24. P. 2714–2730.
- Meng, Fang Y., Yuan C., Du C., Wang K.-P., Chen S. et al. 2-Aryloxybenzo[d]oxazoles As Deep Blue Solid-State Emitters: Synthesis, Aggregation-Induced Emission Properties and Crystal structure.Dyes and Pigments. 2020. Vol. 187. P. 109127.
- Shipps , Kellyc H. R., Dahla P. J., Yi S. M., Vu D., Boyer D. et al. Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines.PNAS. 2021. Vol. 118, N 2. P. e2014139118-1–e2014139118-9.
- Stanescu, Samha H.,PerlsteinJ., Whitten D. G. Unusual Folded Structures for a Tethered Squaraine-Cholesterol Derivative in Langmuir−Blodgett Films.Langmuir. 2000. Vol. 16. P. 275–281.
- Franzen S., Folmer J. C., Glomm W. R., O’Neal R. Optical properties of dye molecules adsorbed on single gold and silver nanoparticles.The Journal of Physical Chemistry A. Vol. 106(28). P. 6533–6540.
- Zarlaida F., Adlim M. Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury (II) ions: a review.Microchimica Acta. Vol.184. P. 45–58.
- Aimukhanov A. K., Ibrayev N. Kh., Ishchenko A. A., Kulinich A. Effect Of Silver and Gold Nanoparticles On The Spectral and Luminescent Properties Of A Merocyanine Dye.Theoretical and Experimental Chemistry. 2019. Vol. 54(6). P. 369–374.
- NabiullinaD.,Starovoytov A.A., GladskikI.A. Optical properties of molecular layer of cyanine dye coated on Ag or Au island flm.Opt. Quant. El. 2020. Vol. 52. P. 43.
- Kneipp K. Chemical Contribution to SERS Enhancement: An Experimental Study on a Series of Polymethine Dyes on Silver Nanoaggregates.The Journal of Physical Chemistry C. Vol. 120 (37). P. 21076–21081.
- Sheppard E. The effects of environment and aggregation on the absorption spectra of dyes. Reviews of modern physics. 1942. Vol. 14. P. 303–410.
- Navarro A. and Sanz Dye aggregation in solution: study of C.I. direct red I. Dyes and pigments. 1999. Vol. 40 (2–3). P. 131–139.
- Al-Degs S., El-Barghouthi M. I., El-Sheikh A. H., Walker G. M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments. 2008. Vol. 77(1). P. 16–23.
- Alberghina G., Bianchini R., Fichera , Fisichella S. Dimerization of Cibacron Blue F3GA and other dyes: influence of salts and temperature. Dyes and Pigments. 2000. Vol. 46 (3). P. 129–137.
- Slavnova D., Chibisov A. K., GörnerH.Kinetics of salt-induced J-aggregation of cyanine dyes. J. Phys. Chem. A. 2005. Vol. 109(21). P. 4758–4765.
- Dakiky , Nĕmcova I. Aggregation of o, o′-dihydroxyazo dyes–1. Concentration, temperature, and solvent effect. Dyes and Pigments. 1999. Vol. 40(2–3). P. 141–150.
- Wang , Grätzel C., Zakeeruddin S. M., Grätzel M. Recent developments in reДР electrolytes for dye-sensitized solar cells. Energy Environ. Sci. 2012. Vol. 5. P. 9394–9405.
- Pandey S., Morimoto T., Fujikawa N., Hayase S. Combined theoretical and experimental approaches for development of squaraine dyes with small energy barrier for electron injection. Solar Energy Materi-als and Solar Cells. 2017. Vol.159. P. 625–632.
- Zhu , Zheng Q., Wang G., Fu N. Ultrasensitive detection of lead (II) based on the disaggregation of a polyether bridged squaraine fluorescent probe. Sensors and Actuators B: Chemical. 2016. Vol. 237(12). P. 802–809.
- Kuster , Geiger T. Coupled π-conjugated chromophores: Squaraine dye dimers as two connected pendulums. Dyes. Pigm. 2015. Vol. 113(2). P. 110–116.
- Narayanan , Karunakaran V., Paul W., Venugopal K., Sujathan K., Maiti K. K. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging. Biosensors and Bioelectronics. 2015. Vol. 70(15). P. 145–152.
- Egorov V. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates. Royal Soc. Open Sci. 2017. Vol. 4. P. 160550.
- Kaczmarek-Kedziera , Kedziera D. Molecular aspects of squaraine dyes aggregation and its influence on spectroscopic properties. Theor. Chem. Acc. 2016. Vol. 135(9). P. 214.
- Mako L., Racicot J. M., Levine M. Supramolecular Luminescent Sensors. Chem. Rev. 2019. Vol. 119(1). P. 322–477.
- Gabbutt C. D., Gibbons L. , Heron B. M., Kolla S. B. The intramolecular capture of thermally generated merocyanine dyes derived from naphthopyrans: Photochromism of 5-(diarylhydroxymethyl)-2H-naphtho[1,2-b] pyrans. Dyes Pigments. 2012. Vol. 92(3). P. 995–1004.
- Shindy H. Synthesis of Different Classes of Five / Five Membered Heterocyclic Cyanine Dyes: A Review Pape. Mini-Reviews Org. Chem. 2012. Vol. 9(2). P. 209–222.
- Sun R., Yan B.-L., Ge J.-F., Xu Q., Li N.-J., Wu X.-Z. et al. Third-order nonlinear optical properties of unsymmetric pentamethine cyanine dyes possessing benzoxazolyl and benzothiazolyl groups. Dyes Pigments. 2013. V96. P. 189–195.
- Lynch E., Chowdhury M. Z., Luu N.-L., Wane E. S., Heptinstall J., Cox M. J. Water soluble bis(indolenine)squaraine salts for use as fluorescent protein-sensitive probes. Dyes Pigments. 2013. Vol. 96. P. 116–124.
- Xiang -F., Liu Y.-X., Sun D., Zhang S.-J., Fu Y.-L., Zhang X.-H. et al. Synthesis, spectral properties of rhodanine complex merocyanine dyes as well as their effect on K562 leukemia cells. Dyes Pigments. 2012. Vol. 93(1-3). P. 1481–1487.
- Zhang X.-H., Zhan Y.-H., Chen D., Wang F., Wang L. Y. Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies. Dyes Pigments. Vol. 93(1-3). P. 1408–1415.
- Ansari S., Ali I., Haque M. W., Khan M. H., Narayan B. Synthesis & Structural Correlation with UV Absorption Maxima of Some Novel examethine Quinaldine Asycyanine Colorants. J. Appl. Chem. 2014. Vol. 2(1). P. 63–70.
- Li , Sun S., Liu F., Pang Y., Fan J., Song F. Et al. Large fluorescence enhancement of a hemicyanine by supramolecular interaction with cucurbit[6]uril and its application as resettable logic gates. Dyes Pigments. 2012. Vol. 93(1-3). P. 1401–1407.
- Panigraphe , Dash S., Patel S., Mishra B. K. Syntheses of cyanines: a review. Tetrahedron. 2012. Vol. 68(3). P. 781–805.
- Zhao -L., Lv Y., Ren H. J., Sun W., Liu Q., Fu Y.-L. et al. Synthesis, spectral properties of cyanine dyes-β-cyclodextrin and their application as the supramolecular host with spectroscopic probe. Dyes Pigments. 2013. Vol. 96(1). P. 180–188.
- Shindy A. Synthesis of different classes of six membered heterocyclic cyanine dyes. Rev. Roum. Chim. 2014. Vol. 59(2). P. 117–123.
- Solomon R. V., Jagadeesan R., Vedha S. A., Venuvanalingam P. A DFT/TDDFT modelling of bithiophene azo chromophores for optoelectronic applications. Dyes Pigment. Vol. 100. P. 261–268.
- Deligeorgiev , Vasilev A., Kaloyanova S., Vaquero J. J. Styryl dyes–synthesis and applications during the last 15 years. Color. Technol. 2010. Vol. 126(2). P. 55–80.
- Shindy A. Basics, Mechanisms and Properties in the Chemistry of Cyanine Dyes: A Review Paper. Mini-Reviews Org. Chem. 2012. Vol. 9(4). P. 352–360.
- Yu, ChengH., ZhangM. Graphene-based smart materials. Nature Rev. Mat. 2017. Vol. 2. P.17046.
- Novoselov S., Fal’koV. I., ColomboL. A roadmap for graphene. Nature. 2012. Vol.490. P. 192–200.
- Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Mater. Vol. 6, P. 183–191.
- Renikuntia B. R., Rose H. C., Eldo J., Waggoner A. S., Armitage B. A. Improved Photostability and Fluorescence Properties through Polyfluorination of a Cyanine Dye. Lett. 2004. Vol. 6(6). P. 909–912.
- Kumavat P. P., Sonar P., Dalal D. S. An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renewable and Sustainable Energy Reviews. 2017. 78. P. 1262–1287.
- Sun C., Wong J. R., Song K. et al. AA1, A Newly Synthesized Monovalent Lipophilic Cation, Expresses Potent in Vivo Antitumor Activity. Cancer Research. 1994. Vol. 54(6). P. 1465–1471.
- Zhang , Niesen B., Hack E., Jenatsch S., Wang L., Véron A. C. et al. Cyanine tandem and triple-junction solar cells. Org. Electron. 2016. Vol. 30. P. 191–199.
- Soriano , Holder C., Levitz A., Henary M. Benz[c,d]indolium-containing Monomethine Cyanine Dyes: Synthesis and Photophysical Properties. Molecules. 2016. Vol. 21(1). P. 23–37.
- Yi , Wang F., Qin W., Yang X., Yuan J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int. J. Nanomedicine. 2014. Vol. 9. P. 1347–1365.
- Shindy A., Khalafalla A. K., Goma M. M. et al. Novel Hemicyanine and Aza-Hemicyanine Dyes: Synthesis, Spectral Investigation and Antimicrobial Evaluation. Eur. J. Mol. Biotechnol. 2016. Vol. 13(3). P. 94–103.
- Rhodes , Wang X., Liang W., Cho H. J., Fang J. Templated J-Aggregate Nanotubes for the Detection of Dopamine. Material Sci. Chem. Eng. 2017. Vol. 5. P. 142–154.
- Ferreira D. P., Conceicao D. S., Prostota Y., Santos P. F., Ferreira L. F. V. Fluorescent “rhodamine-like” hemicyanines derived from the 6-(N, N-diethylamino)-1, 2, 3, 4-tetrahydroxanthylium system. Dyes Pigments. Vol. 112. P. 73–80.
- Keisar R., Finfer E. K., Ferber S., Satchi-Fainaro R., Shabat D. Synthesis and use of QCy7-derived modular probes for the detection and imaging of biologically relevant analytes. Nat. Protoc. 2014. Vol. 9(1). P. 27–36.
- Moreira G., You Y., Owczarzy R. Cy3 and Cy5 dyes attached to oligonucleotide terminus stabilize DNA duplexes: Predictive thermodynamic model. Biophys. Chem. 2015. Vol. 198. P. 36–44.
- Shindy H. Characterization, Mechanisms and Applications in the Chemistry of Cyanine Dyes: A Review. Eur. J. Mol. Biotechnol. 2016. Vol. 14(4). P. 158–170.
- Zhang , Hou L., Samor P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 2016. Vol. 7. P. 11118.
- Feng , Luo W., Feng Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application. Nanoscale. 2012. Vol. 4. P. 6118–6134.
- Dubacheva V., Liang C. K., Bassani D. M. Functional monolayers from carbon nanostructures – fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy conversion. Coord. Chem. Rev. 2012. Vol. 256(21-22). P. 2628–2639.
- Wu Q., Zhang F., Liang H. W. Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012. Vol. 41. P. 6160–6177.
- Sazonova , Yaish Y., Üstünel H., Roundy D., Arias T. A., McEuen P. L. A tunable carbon nanotube electromechanical oscillator. Nature. 2004. Vol. 431. P. 284–287.
- Kucharski T. , Ferralis N., Kolpak A. M., Zheng J. O., Nocera D. G., Grossman J. C. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat. Chem. 2014. Vol. 6(5). P. 441–447.
- Borghetti J., Derycke V., Lenfant S., Chenevier P., Filoramo A., Goffman M. et al. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. Vol. 18. P. 2535–2540.
- Park S., Ruoff S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009. Vol. 4. P. 217–224.
- Novir B., Aram M. R. A quantum study on novel azo-dyes containing a fullerene C60 unit as a smart material for optoelectronic applications. J. Molecular Modeling. 2020. Vol. 26(10). P. 258.
- Dresselhaus S., DresselhausG.,Charlier J.C., Hernández E. Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. A. 2004. Vol.362(1823). P. 2065–2098.
- EckhartE.,Holt B.D.,LaurencinM.G., Sydlik S. A. Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomaterials Science. 2019. Vol. 7. P. 3876–3885.
- Wei G., Wang S., Sun K., Thompson M. E., Forrest S. Solvent‐Annealed Crystalline Squaraine: PC70BM (1:6) Solar Cells. Adv. En. Mat. 2011. Vol. 1(2). P. 184–187.
- Huang Y.,SharmaS. K.,YinR., Agrawal T., Chiang L. Y., Hamblin M.R. Functionalized fullerenes in photodynamic therapy. J. Biomed. Nanotechnol. 2014. Vol. 10(9). P. 1918–1936.
- He H., Pham-Huy L. A., Dramouet , Xiao D., Zuo P., Pham-Huy C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed. Res. Intern. 2013. Vol. 2013. P. 1–12.
- Prassides K., Alloul H. Fullerene-based materials: structures and properties. Springer Science & Business Media, 2004.
- Pervaiz M., Faruq M., Jawaid M., Sain M. Polyamides: developments and applications towards next-generation engineered plastics. Current Organic Synthesis. Vol.14(2). P. 146–155.
- Bray , Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Ahmedin J. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Canc. J. Clin. 2018. Vol. 68(6). P. 394–424.
- Zhang , Jiang C., Longo J. P. F., Azevedo R. B., Zhang H., Muehlmann L. A. An updated overview on the development of new photosensitizers for anticanceк photodynamic therapy. Acta Pharm. Sin. B. 2018. Vol. 8(2). P. 137–146.
- Dias D., Blanco K.C., Mfouo-Tynga I.S., Inada M. N., Bagnato V. S. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy.J. Photochem. Photob. C: Photochem. Rev. 2020. Vol. 45. P. 100384.
- Chen, Fan T., Xie Z., Zeng Q., Xue P., Zheng T. et al. Advances in nanomaterials for photodynamic therapy applications: Status and challenges.Biomaterials. 2020. Vol. 237. P. 119827.
- Huang, HuangD., Li M., Yao Q., Tian R., Long S. et al. NIR aza-pentamethine dyes as photosensitizers for photodynamic therapy. Dyes and Pigments. 2020. Vol. 177. P. 108284.
- Lin C.-M., Lu T.-Y. C60 fullerene derivatized nanoparticles and their application to therapeutics. Recent Pat. Nanotechnol. Vol. 6(2). P. 105–113.
- Qingnuan L., Yan X., Xiaodong Z., RuilyL., Duqieqie, XiaoguangS. et al. Preparation of 99 mTc-C60(OH)x and its biodistribution studies. Med. Biol. 2002. Vol. 29(6). P. 707–710.
- Wang , Chen C., Li B., Yu H., Zhao Y., Sun J. et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 2006. Vol. 71(6). P. 872–881.
- Li , Zhang F.-l., Pan L.-l., Zhu X.-l., Zhang Z.-z. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemophotodynamic therapy. J. Photochem. Photobiol. B Biol. 2015. Vol. 149. P. 51–57.
- Shi , Wang B., Wang L., Lu T., Fu Y., Zhang H. et al. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J. Contr. Release. 2016. Vol. 235. P. 245–258.
- Wang , Agarwal P., Zhao S., Yu J., Lu X., He X. Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials. 2016. Vol. 97. P. 62–73.
- Li , Hong L., Li H., Liu C. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens. Bioelectron. 2017. Vol. 89(1). P. 477–482.
- Iohara , Hirayama F., Anraku M., Uekama K., Physiologically stable hydrophilic C60 nanoparticles for photodynamic therapy. ACS Appl. Nano Mater. 2019. Vol. 2. P. 716–725.
- Zhao , He Y.-Y., Chignell C. F., Yin J.-J., Andley U., Roberts J. E. Difference in phototoxicity of cyclodextrin complexed fullerene [(gamma-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells. Chem. Res. Toxicol. 2009. Vol. 22(4). P. 660–667.
- Mroz , Pawlak A., Satti M., Lee H., Wharton T., Gali H. et al. Functionalized fullerenes mediate photodynamic killing of cancer cells: type I versus Type II photochemical mechanism. Free Radic. Biol. Med. 2007. Vol. 43(5). P. 711–719.
- Lee , Mackeyev Y., Cho M., Li D., Kim J.-H., Wilson L. J. et al. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ. Sci. Technol. 2009. Vol. 43. P. 6604–6610.
- Liu , Tabata Y. Photodynamic therapy of fullerene modified with pullulan on hepatoma cells. J. Drug Target. 2010. Vol. 18. P. 602–610.
- Huang , Bhayana B., Xuan W., Sanchez R. P., McCulloch B. J., Lalwani S. et al. Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: Potentiation by potassium iodide and photochemical mechanisms. J. Photochemistry and Photobiology B: Biology. 2018. Vol. 186. P. 197–206.
- Otake , Sakuma S., Torii K., Maeda A., Ohi H., Yano S. et al. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Photochem. Photobiol. 2010. Vol. 86(6). P. 1356–1363.
- Hamblin R. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem. Photobiol. Sci. 2018. Vol. 17(4). P. 1515–1533.
- Yamakoshi Y., Umezawa N., Ryu A., Arakane K., Miyata N., Goda Y. et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J. Am. Chem. Soc. Vol. 125(42). P. 12803–12809.
- Sharma K., Chiang L. Y., Hamblin M. R. Photodynamic therapy with fullerenes in vivo: reality or a dream?. Nanomedicine. 2011. Vol. 6(10). P. 1813–1825.
- Zhou -H., Zhao X. Chemically modified fullerene derivatives as photosensitizers in photodynamic therapy: A first‐principles study. J. Computational Chem. 2012. Vol. 33(8). P. 861–867.
- Yeo J., Cha J. O., Pode R., Ahn J. S., Kim H. M., Rhee B. R. Photoluminescence of Nano-Scale Fullerene (C60) Aggregates in Solvent Mixture. J. Korean Physical Society. 2008. Vol. 53(5). P. 2677–2681.
- Alinson , Moghissi K. Photodynamic Therapy (PDT): PDT Mechanisms. Clin Endosc. Jan. 2013. Vol. 46(1). P. 24–29.
- Wilson C., Patterson M. S. The physics, biophysics, and technology of photodynamic therapy. Physics in Medicine and Biology. 2008. Vol. 53(9). P. R61–R109.
- Chen , Keltner L., Christophersen J., Zheng F., Krouse M., Singhal A. et al. New technology for deep light distribution in tissue for phototherapy. Cancer J., 2002. Vol. 8(2). P. 154–163.
- Xie -H., Bryant G. W., Jensen L. First-principles calculations of structural, electronic, vibrational, and magnetic properties of C60 and C48N12: A comparative study. J. Chem. Phys. 2003. Vol. 118(19). P. 8621–8635.
- Li , Xia T., Nel A. E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008. Vol. 44(9). P. 1689–1699.
- Jain K. The role of nanobiotechnology in drug discovery. Drug Discov. Today. 2005. Vol. 10(21). P. 1435–1442.
- Kovtun G. O., Zhila R. S., Kamenev T. M. Disruption of chains in the oxidation reaction of organic compounds with fullerene C60. Rep. Natl. Acad. Sci. Ukr., Vol. 9. P. 117–120.
- Мовчан Б. А. Электронно-лучевая нанотехнология и новые материалы в медицине — первые шаги. Вісн. фармаколог. фармац. Т. 12. C. 5–13.
- Najam-ul-Haq M., Rainer M., Szabó Z., Vallant R., Huck C. W., Bonn G. K. Role of carbon nanomaterials in the analysis of biological materials by laser desorption/ ionization-mass spectrometry. Biochem. Biophys. Methods. Vol. 70(2). P. 319–328.
- Satoh , Takayanagi I. Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. Pharmacol. Sci. 2006. Vol. 100(5). P. 513–518.
- Ixhaky , Pecht I. What else can the immune system recognize?. Proc. Natl. Acad. Sci. USA. 1998. Vol. 95(20). P. 11509–11510.
- Veetil V., Ye K. Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 2007. Vol. 23(3). P. 517–531.
- Prato , Kostarelos K., Bianco A. Functionalized carbon nantubes in drug design and discovery. Acc. Chem. Res. 2008. Vol. 41(1). P. 60–68.
- Jensen W., Wilson S. R., Schuster D. I. Biological applications of fullerenes. Bioorg. Med. Chem. 1996. Vol. 4(6). P.767–779.
- Nakamura , Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 2003. Vol. 36(11). P. 807–815.
- Harrison B. S. Atala Carbon nanotube applications for tissue engineering. Biomaterials. 2007. Vol. 28(2). P. 344–353.
- Sasse F., Steinmetz H., Schupp T., Petersen F., Memmert K., Hofmann H. et al. Argyrins, Immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physicochemical and biological properties. Antibiot. 2002. Vol. 55(6). P. 543–551.
- Lawrence S., Copper J. E., Smith C. D. Structure-activity studies of substituted quinoxalinones as multiple-drug-resistance antagonists. J. Med. Chem. 2001. Vol. 44(4). P. 594–601.
- Cameron M., Thompson J., March P. E., Dahlberg A. E. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J. Mol. Biol. 2002. Vol. 319(1). P. 27–35.
- Rodnina V., Savelsbergh A., Matassova N. B., Wintermeyer W. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA. 1999. Vol. 96(17). P. 9586–9590.
- Johnson W. Ylides and ymines of phosphores. New York: Wiley, 1993.
- Liu X., Bai L., Pan C., Song B., Zhu H. Novel 5-methyl-2-[(un) substituted phenyl]-4-{4,5-dihydro- 3-[(un)substituted phenyl]- 5-(1,2,3,4-tetrahydroisoquinoline-2-yl)pyrazol-1-yl}-oxazole derivatives: synthesis and anticancer activity. J. Chem. 2009. Vol. 27(10). P. 1957–1961.
- Chen J., Li C.-M., Wang J., Ahn S., Wang Z., Lu Y. et al. Synthesis and antiproliferative activity of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization. Med. Chem. 2011. Vol. 19(16). P. 4782–4795.
- Kachaeva V., Hodyna D. M., Semenyuta I. V., Pilyo S. G., Prokopenko V. M., Kovalishyn V. V. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem. 2018. Vol. 74. P. 294–303.
- Meervelt L., Schuerman G. S., Brovarets V. , Mishchenko N. I., Romanenko E. A., Drach B. S. Structure and properties of phosphonium ylides-betaines, derivatives of 2-phenyl- 2-oxazolin-5-one and its thio- and seleno-analogues. Tetrahedron. 1995. Vol. 51(5). P. 1471–1482.
- Parkhomenko Yu. M., Stepuro I. , Donchenko G. V. et al. Oxidized derivatives of thiamine: formation, properties, biological role. Ukr. Biochem. J. 2012. Vol. 84(6). P. 5–24.
- Edwards A., Tu-Maung N., K. Cheng, Wang B., Baeumner A. J., Craft C. E. Thiamine assaysadvances, challenges, and caveats. Chem. Open. 2017. Vol. 6(2). P. 178–191.
- Yu , Ching Y. J., Tan Y. N. A simple and fast fluorimetric method for thiamine (vitamin B1) detection by Au3+-mediated formation of thiochrome. Austin. J. Biosens. Bioelectron. 2015. Vol. 1(1). P. 1004–1006.
- Kachaeva M. V., Obernikhina N. V., Veligina E. S., Zhuravlova M. Yu., Prostota Y. O., Kachkovsky O. D. et al. Estimation of biological affinity of nitrogen-containing conjugated heterocyclic pharmacophores. Heterocycl. Compd. 2019. Vol. 55(4/5). P. 448–454.
- Kachaeva M. V., Pilyo G., Zhirnov V. V., Brovarets V. S. Synthesis, characterization, and in vitro anticancer evaluation of 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. Med. Chem. Res. 2019. Vol. 28(1). P. 71–80.
- Kachaeva M. V., Hodyna D. M., Obernikhina N. V., Pilyo S. G., Kovalenko Y. S., Prokopenko V. M. et al. Dependence of the anticancer activity of 1,3-oxazole derivatives on the donor/acceptor nature of his substitues. Heterocycl. Chem. 2019. Vol. 56(11). P. 3122–3134.
- Obernikhina N., Kachaeva M., Shchodryi V., Prostota Y., Kachkovsky O., Brovarets V. et al. Topological index of conjugated heterocyclic compounds as their donor acceptor parameter. Aromat. Compd. 2019. Vol. 40(4). P. 1196–1209.
- Zaenger Principles of nucleic acid structure. Berlin: Springer, 1984.
- Dewar M. J. S. The molecular orbital theory of organic chemistry. New York: McGraw Hill, 1969.
- Valeur B., Zander C., Keller R. A. et al. Molecular Fluorescence. Principles and applications. Single-molecule detectionin solution methods and applications. Weinheim: Wiley-VCH Verlag, 2002.
- Schulz E., Schirmer R. H. Principles of protein structure. New York: Springer Nature, 1979.
- Lackowicz R. Principles of fluorescence spectroscopy. Boston: Springer, 2006. P. 27–61.
- Krohn Book review: Anthracycline antibiotics. Angew. Chemie. 1983. Vol. 95. P. 649.
- de Sousa Cavalcante L., Monteiro Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 2014. Vol. 74. P. 8.
- Garnier-Suillerot , Marbeuf-Gueye C., Salerno M., Loetchutinat C., Fokt I., Krawczyk M. Analysis of drug transport kinetics in multidrug-resistant cells: Implications for drug action. Curr. Med. Chem. 2001. Vol. 8. P. 51.
- Turov V. V., Prylutskyy Y. I., Krupskaya T. V., Schur D. V., Evstigneev M. P., Kartel M. T. et al. Clustering of hydrochloric acid on the surface of C60/C70 fullerite and its composites with nanosilica. Werksttech. 2016. Vol. 47. P. 172.
- Monneret C. Recent developments in the field of antitumour anthracyclines. J. Med. Chem. 2001. Vol. 36. P. 483.
- Preobrazhenskaya M. N., Tevyashova A. N., Olsufyeva E. N. et al. Second generation drugs-derivatives of natural antitumor anthracycline antibiotics daunorubicin. Med. Sci. 2006. Vol. 26. P. 119.
- Najjar A., Karaman R. Successes, failures, and future prospects of prodrugs and their clinical impact. Expert opinion on drug discovery. 2019. Vol. 14(3). P. 199–
- Li X. Nano-oncology. Harvard Sci. Rev. Small Sci. 2006. Vol. 19. P. 42.
- Nie S., Xing Y., Kim G. J., Simons J. W. Nanotechnology applications in cancer. Rev. Biomed. Eng. 2007. Vol. 9. P. 257–288.
- Prinzen L., Miserus R.-J. H. M., Dirksen A., Hackeng T. M., Deckers N., Bitsch N. J. et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots. Nano Lett. 2007. Vol. 7. P. 93–100.
- Plyuto I. V., Shpak A. P., Zaporozhets A. A. et al. Nanomaterials and Nanocomposites in Medicine, Biology, and Ecology. Kyiv: Naukova Dumka, 2011.
- Orel V., Romanov A., Rykhalskyi O., Shevchenko A. Orel I., Burlaka A. et al. Antitumor effect of superparamagnetic iron oxide nanoparticles conjugated with doxorubicin during magnetic nanotherapy of Lewis Lung carcinoma. Werksttech. 2016. Vol. 47. P. 165–171.
- O’Neal P., Hirsch L. R., Halas N. J., Payne J. D., West J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004. Vol. 209. P. 171–176.
- Jain K., El-Sayed I. H., El-Sayed M. A. Au nanoparticles target cancer. Nano Today. 2007. Vol. 2. P. 18.
- Liu , Atwater M., Wang J., Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Coll. Surf. B Biointerf. 2007. Vol. 58. P. 3–7.
- Lopatynskyi V. I., Malymon Y. O., Lytvyn V. K., Mogylnyi I. V., Rachkov A. E., Soldatkin P. et al. Solid and Hollow Gold Nanostructures for Nanomedicine: Comparison of Photothermal Properties. Plasmonics. 2018. Vol.13, P. 1659–1669.
- Goodman A. , Cao Y., Urban C., Neumann O., Ayala-Orozco C., Knight M. W. et al. The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells. ACS Nano. 2014. Vol. 8. P. 3222–3231.
- Trouiller A. , Hebie S., El Bahhaj F., Napporn T. W., Bertrand P. Chemistry for oncotheranostic gold nanoparticles. Eur. J. Med. Chem. 2015. Vol. 99. P. 92–112.
- Zhu , Li W., Zhu M., Zhang W., Niu W., Liu G. Influence of the pH value a colloidal gold solution on the absorption spectra of an of LSPR-assisted sensor. AIP Adv. 2014. Vol. 4. P. 031338.
- Zeng S., Yong K.-T., Roy , Dinh X.-Q., Yu X., Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011. Vol. 6. P. 491–506.
- Carter C., Ho X. J. Structure of Serum Albumin. Advances in Protein Chemistry. 1994. Vol. 45. P. 153–203.
- Демченко А. П. Ультрафиолетовая спектрофотометрия и структура белков. Киев: Наук.думка, 1981.
- Губський Ю. І. Біоорганічна хімія. Київ: Вища школа, 1997.
- Litwack G. Human biochemistry. Academic Press, 2017.
- Kaur , Kaur S., Kaur P. Development and validation of UV-spectrophotometric methods for determination of gemcitabine hydrochloride in bulk and polymeric nanoparticles. Int. J. Appl. Parmac. 2017. Vol.9(5). P. 60–65.
- Pan J., Ye Z., Cai X., Wang L., Cao Z. Biophysical study on the interaction of ceftriaxone sodium with bovine serum albumin using spectroscopic methods. Biochem. Mol. Toxicol. 2012. Vol. 26. P. 487–492.
- Shen H., Gu Z., Jian K, Qi J. In vitro study on the binding of gemcitabine to bovine serum albumin. Pharm. Biomed. Anal. 2013. Vol. 75. P. 86–93.
- Markarian S. A., Aznauryan M. G. Study on the interaction between isoniazid and bovine serum albumin by fluorescence spectroscopy: the effect of dimethylsulfoxide. Biol. Rep. 2012. Vol. 39 (7). P. 7559.
- Agudelo D., Bourassa P., Bruneau J., Bérubé J., Asselin É.,Tajmir-Riahi H.-A. Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PLoS One. Vol. 7. P. e43814.