Turbomachinery element vibrations considering structural imperfections and energy dissipation

Authors:

O.L. Derkach

G.S. Pisarenko Institute for Problems of Strength of NAS of Ukraine, Kyiv.

ORCID: 0000-0002-6783-8516

 

K.V. Savchenko

G.S. Pisarenko Institute for Problems of Strength of NAS of Ukraine, Kyiv.

ORCID: 0000-0002-9690-9758

 

Ye.O. Onyshchenko

G.S. Pisarenko Institute for Problems of Strength of NAS of Ukraine, Kyiv.

ORCID: 0000-0001-7550-8544

 

S.M. Kabannyk

G.S. Pisarenko Institute for Problems of Strength of NAS of Ukraine, Kyiv.

ORCID: 0000-0002-6315-1987

 

Reviewers:

Andrii Elyseiovych Babenko

Doctor of Sciences in Technical Sciences, Professor at the Department of Dynamics and Strength of Machines and Strength of Materials of National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”.

Scopus: 7006520803

 

Gennady Ivanovych Lvоv

Doctor of Sciences in Technical Sciences, Professor at the Department of Mathematical Modeling and Intelligent Computing in Engineering National Technical University “Kharkiv Polytechnic Institute”.

ORCID: 0000-0003-0297-9227

 

Petro Zakharovych Lugovoi

Doctor of Sciences in Technical Sciences, Professor, Head of the Department of Building Mechanics of Thin-Walled Structures of the S.P.Timoshenko Institute of Mechanics of National Academy of Science of Ukraine.

Scopus: 7004321962

 

Affiliation:

Project: Scientific book

Year: 2024

Publisher: PH "Naukova Dumka"

Pages: 244

DOI:

https://doi.org/10.15407/978-966-00-1934-8

ISBN: 978-966-00-1934-8

Language: Ukrainian

How to Cite:

Derkach, O.L., Savchenko, K.V., Onyshchenko, Ye.O., Kabannyk, S.M. (2024) Turbomachinery element vibrations considering structural imperfections and energy dissipation. Kyiv, Naukova Dumka. 244p. [in Ukrainian].

Abstract:

The monograph summarizes the research results on the influence of structural and operational factors on the vibrational stress of turbine blades and their systems. An overview of the current state of research on methods to ensure vibration reliability is conducted, namely ways to reduce the vibrational stress of turbine structural elements and methods of vibration diagnostics for damage detection.

The influence of design factors on the vibrational stress of turbine blade assemblies is analyzed, and prospective methods for active damping their vibrations are presented. Methodologies for experimental and numerical determination of dissipative properties of structural materials are presented, including promising applications of polymer composites, as well as methods for analyzing passive, structural, and aerodynamic damping of blade vibrations and their models.

Based on developed refined models of multilayer plates, the effectiveness of active damping of non-stationary vibrations using piezoelectric pads is justified, considering energy dissipation in the material.

The theoretical basics of methods for vibration diagnostics of fatigue cracks in turbine blades and their beam models are developed. A complex of computational studies of vibrodiagnostic signs of local damages such as breathing cracks in beam structural elements of rectangular and circular cross-sections, as well as turbine blades of aviation gas turbine engine turbines, is carried out based on the analysis of the relationship of amplitudes of dominant harmonics at super- and subharmonic resonances.

The research results on the influence of the inclination angle of the contact surfaces of the blades shrouds and temperature-stress factors on their dynamic stress-strain state are presented. The influence of cyclic symmetry inhomogeneity due to design and technological factors on the vibrational stress of interblade couplings of the first stage low-pressure compressor wheel with cantilever-mounted blades and a packet of shrouded turbine blades is considered.

A methodology for determining the stability limits of blade rings to a subsonic flutter of axial compressor is described. As a result of experimental and computational studies for a straight compressor blade profile cascade in a wide range of its geometric parameters, a database of critical values of the reduced frequency of the first flexural mode vibrations of cantilever blades is formed, which allows predicting their stability to subsonic flutter at the initial stage of design.

For scientists and engineers involved in the dynamics and strength of machines. 244 pages (including 141 figures, 18 tables).

Keywords:

active damping, blade shrouded parameters, blade forced vibrations, flutter, vibrodiagnostic, breathing crack

References:

Section 1
1. Pisarenko, G. S. (1970). Kolebaniia mekhanicheskikh sistem s uchetom nesovershennoi upruhosti materiala. Kyiv: Naukova dumka.
2. Matveev, V. V. (1985). Dempfirovanie kolebanii deformiruemykh tel. Kyiv: Naukova dumka.
3. Yakovlev, A. P. (1985). Dissipativnye svoistva neodnorodnykh materialov i sistem. Kyiv: Naukova dumka.
4. Plunkett, R. (1983). Damping mechanisms in fiber reinforced laminates. Mechanics of composite materials, 14(1), 93-104.
5. Derkach, O. L., Zinkovskii, A. P., Savchenko, K. V., & Onyschenko, Y. O. (2022). Evaluation of the effective characteristics of energy dissipation in layered composites. Materials Science, 57(6), 782–791. https://doi.org/10.1007/s11003-022-00608-8
6. Khilchevskii, V. V., & Dubenets, V. H. (1977). Rasseianie enerhii pri kolebaniiakh tonkostennykh elementov konstruktsii. Kyiv: Vyshcha shkola.
7. Dubenets, V. H., & Khilchevskyi, V. V. (1995). Passivnoe dempfirovanie kompozitnykh konstruktsii. Kyiv: Vyshcha shkola.
8. Gibson, R. F., & Plunkett, R. (1976). Dynamic mechanical behavior of fiber-reinforced composites: measurement and analysis. Journal of Composite Materials, 4, 325-341. https://doi.org/10.1177/002199837601000406
9. Pisarenko, G. S., Jakowlew, A. P., & Matwiejew, W. W. (1976). Własności tłumienia drgań materiałów konstrukcyjnych: Poradnik. Warszawa: Wydawnictwo Naukowo-Techniczne.
10. Troshchenko, V. T., Matveev, V. V., & Hriaznov, B. A. (1981). Nesushchaia sposobnost rabochikh lopatok HTD pri vibratsionnykh nahruzheniiakh. Kyiv: Naukova dumka.
11. Pisarenko, H. S., & Kaminer, A. A. (1991). Aerodinamicheskoe dempfirovanie kolebanii lopatok turbomashin. Kyiv: Naukova dumka.
12. Birher, I. A., & Shorr, B. F. (1981). Dinamika aviatsionnykh hazoturbinnykh dvihatelei. Moscow: Mashinostroenie.
13. Rzhavin, L. N., Opalikhin, N. I., & Matveev, V. V. (1970). Vibration strain on aircraft engine hooped turbine blades. Strength of materials, 6(2), 107-111. https://doi.org/10.1007/BF01527270
14. Charleux, D., Gibert, C., Thouverez, F., & Dupeux, J. (2006). Numerical and experimental study of friction damping in blade attachments of rotating bladed disks. International journal of rotating machinery, 2006, 1-13. https://doi.org/10.1155/IJRM/2006/71302
15. Matveev, V. V., Tokar, I. G., Gorodetskii, S. S., & Roitman, A. B. (1978). Damping capacity of paired shrouded turbine blades in relation to shroud contact conditions. Strength of materials, 10(8), 962-966. https://doi.org/10.1007/BF01528892
16. Matveev, V. V., & Zinkovskii, A. P. (1980). Resonance vibration of a cyclically symmetrical system taking account of dynamic inhomogeneity caused by different subsystem damping properties. Strength of materials, 12(6), 761–769. https://doi.org/10.1007/BF00767639
17. Zinkovskii, A. P., Buslenko, I. N., & Matveev, V. V. (1989). Resonance vibrations of turbine rotors with an annular shroud. Report no. 1. Theoretical model. Strength of materials, 21(6), 808-813. https://doi.org/10.1007/BF01531402
18. Zinkovskii, A. P., & Kruglii, Y. D. (2012). Effect of identity violations of contact interaction between shrouds on the static and dynamic stress state characteristics of blade rings. Strength of materials, 44(2), 144-156. https://doi.org/10.1007/s11223-012-9367-4
19. Szwedowicz, J., Visser, R., Sextro, W., & Masserey, P. A. (2008). On nonlinear forced vibration of shrouded turbine blades. Journal of turbomachinery, 130(1), 11-18. https://doi.org/10.1115/1.2218889
20. Petrov, E. P., & Ewins, D. J. (2006). Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. Journal of turbomachinery, 128(2), 403-410. https://doi.org/10.1115/1.2181998
21. Levin, A. V., Borishanskii, K. N., & Konson, E. D. (1981). Prochnost i vibratsiia lopatok i diskov parovykh turbin. Moscow: Mashinostroenie.
22. Pridorozhnyi, R. P., Sheremetev, A. V., & Zinkovskii, A. P. (2006). Vliianie montazhnoho natiaha na napriazhenno-deformirovannoe sostoianie turbinnoi lopatki i poteriu natiaha po polkam v protsesse ekspluatatsii. Aviatsionno-kosmicheskaia Tekhnika y Tekhnolohiia, 34(8), 95–99.
23. Pridorozhnyi, R. P., Sheremetev, A. V., & Artiushenko, A. N. (2004). Dinamika izmeneniia napriazhennosti bandazhnykh polok v usloviiakh povyshennykh temperatur. Vestnik dvihatelestroeniia, (2), 124–127.
24. Muravchenko, F. M. (2008). Topical problems of dynamics, strength, and reliability of aircraft engines. Strength of materials, 40(5), 504-509. https://doi.org/10.1007/s11223-008-9062-7
25. Vorobev, Yu. S., Chuhai, M. A., & Romanenko, V. N. (2011). Osobennosti kolebanii lopatok turbomashini kompressorov s povrezhdeniiami. Vibratsii v tekhnike i tekhnolohiiakh, (3), 39–44.
26. Hou, J., Wicks, B. J., & Antoniou, R. A. (2002). An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. Engineering failure analysis, 9(2), 201-211. https://doi.org/10.1016/S1350-6307(01)00005-X
27. Martseniuk, E. V., Harkusha, A. I., & Chihrin, V. S. (2011). Vliianie defekta tipa “zaboina” na chastotnye kharakteristiki rabochikh lopatok kompressora. Aviatsionno-kosmicheskaia Tekhnika y Tekhnolohiia, (8), 61–65.
28. Witek, L. (2011). Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Engineering failure analysis, 18, 1223–1232. https://doi.org/10.1016/j.engfailanal.2011.03.003
29. Vorobev, Yu. S., Zhondkovskii, R., & Chuhai, M. A. (2008). Osobennosti kolebanii elementov lopatochnoho apparata s povrezhdeniiami. Aviatsionno-kosmicheskaia Tekhnika y Tekhnolohiia, (9), 98–101.
30. Kim, H. (2011). Crack evaluation of the fourth stage blade in a low–pressure steam turbine. Engineering failure analysis, 18, 907–913. https://doi.org/10.1016/j.engfailanal.2010.11.004
31. Poursaeidi, E., Babaei, A., Mohammadi Arhani, M. R., & Arablu, M. (2012). Effect of natural frequencies on failure of R1 compressor blades. Engineering failure analysis, 25, 304–315. https://doi.org/10.1016/j.engfailanal.2012.05.013
32. Zinkovskii, A. P., Tokar, I. H., Kruts, V. A., & Kruhlii, Ya. D. (2011). Vliianie rasseianiia enerhii na formirovanie kolebanii modeli sistemy lopatok s povrezhdeniem. Vibratsii v tekhnitsi ta tekhnolohiiakh, (3), 11–17.
33. Stojanovic, V., Ribeiro, P., & Stoykov, S. (2013). Non-linear vibration of Timoshenko damaged beams by a new p-version finite element method. Computers and structures, 120, 107-119. https://doi.org/10.1016/j.compstruc.2013.02.012
34. Boriskin, O. F., & Persiyanov, V. V. (1994). Modeling damages of machine parts. Report 1. Strength of materials, 26(1), 84–88. https://doi.org/10.1007/BF02208058
35. Nandi, A., & Neogy, S. (2002). Modelling of a beam with a breathing edge crack and some observations for crack detection. Journal of vibration control, 8(5), 673–693. https://doi.org/10.1177/1077546029296
36. Pandey, A. K., & Biswas, M. (1994). Damage detection in structures using changes in flexibility. Journal of sound and vibration, 169(1), 3–17. https://doi.org/10.1006/jsvi.1994.1002
37. Karthikeyan, M., & Tiwari, R. (2007). Development of a technique to locate and quantify a crack in a beam based on modal parameters. Journal of vibration and acoustics, 129(3), 390–395. https://doi.org/10.1115/1.2424981
38. Mazanoglu, K., & Sabuncu, M. (2010). Flexural vibration of non-uniform beams having double-edge breathing cracks. Journal of sound and vibration, 329(20), 4181–4191. https://doi.org/10.1016/j.jsv.2010.04.011
39. Zinkovskii, A. P., Tokar, I. G., & Kruts, V. A. (2015). Influence of the local surface damage parameters on the natural frequencies of vibration of structural elements. Strength of materials, 47(2), 221–226. https://doi.org/10.1007/s11223-015-9651-1
40. Giannini, O., Casini, P., & Vestroni, F. (2013). Nonlinear harmonic identification of breathing cracks in beams. Computers and structures, 129, 166–177. https://doi.org/10.1016/j.compstruc.2013.05.002
41. Andreaus, U. (2011). Cracked beam identification by numerically analysing the non-linear behaviour of the harmonically forced response. Journal of sound and vibration, 330(4), 721–742. https://doi.org/10.1016/j.jsv.2010.08.032
42. Chuhai, M. A. (2014). Osobennosti modelirovaniia napriazhenii v okrestnosti vershiny treshchiny pri kolebaniiakh lopatochnoho apparata turbomashin. Problemy mashinostroeniia, 17(3), 25–32.
43. Savchenko, K., Zinkovskii, A., Onyshchenko, Y., Kruts, V., & Kabannyk, S. (2021, July 11-16). On the vibration of compressor blades with a breathing crack. 27th International Congress on Sound and Vibration, 1–6. https://www.researchgate.net/profile/Kyrylo-Savchenko/publication/354220303_on_the_vibration_of_compressor_blades_with_a_breathing_crack/links/612d0bc00360302a006c4b52/on-the-vibration-of-compressor-blades-with-a-breathing-crack.pdf
44. Nazkis, Y. (1994). Identification of crack location in vibrating simply supported beams. Journal of sound and vibration, 172(4), 549–558. https://doi.org/10.1006/jsvi.1994.1195
45. Bovsunovskii, A. P. (1999). On determination of the natural frequency of transverse and longitudinal vibrations of a cracked beam. Part 2. Experimental and calculation results. Strength of materials, 31(3), 253–259. https://doi.org/10.1007/BF02511004
46. Masoud, S., Jarrah, M. A., & Al-Maamory, M. (1998). Effect of crack depth on the natural frequency of a prestressed fixed-fixed beam. Journal of sound and vibration, 214(2), 201–212. https://doi.org/10.1006/jsvi.1997.1541
47. Douka, Е., & Hadjileontiadis, L. J. (2005). Time-frequency analysis of the free vibration response of a beam with a breathing crack. NDT & E International, 38(1), 3–10. https://doi.org/10.1016/j.ndteint.2004.05.004
48. Loutridis, S., Douka, Е., & Hadjileontiadis, L. J. (2005). Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency. NDT & E International, 38(5), 411–419. https://doi.org/10.1016/j.ndteint.2004.11.004
49. Schlums, D. H., & Dual, J. (1997). High resolution crack growth measurements in vibrating beams. Fatigue & Fracture of Engineering Materials & Structures, 20(7), 1051–1058. https://doi.org/10.1111/j.1460-2695.1997.tb01547.x
50. Lee, J. (2009). Identification of multiple cracks in a beam using natural frequencies. Journal of sound and vibration, 320(3), 482–490. https://doi.org/10.1016/j.jsv.2008.10.033
51. Matveev, V. V., & Bovsunovskii, A. P. (2000). On determination of vibration characteristics of a beam with a closing crack in bending vibrations. Strength of materials, 32(3), 211–224. https://doi.org/10.1007/BF02509848
52. Zheng, D. Y., & Kessissoglou, N. J. (2004). Free vibration analysis of a cracked beam by finite element method. Journal of sound and vibration, 273(3), 457–475. https://doi.org/10.1016/S0022-460X(03)00504-2
53. Pandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage detection from changes in curvature mode shapes. Journal of sound and vibration, 145(2), 321–332. https://doi.org/10.1016/0022-460X(91)90595-B
54. Agarwallaa, D. K., & Parhi, D. R. (2013). Effect of crack on modal parameters of a cantilever beam subjected to vibration. Procedia engineering, 51, 665–669. https://doi.org/10.1016/j.proeng.2013.01.094
55. Attar, M. (2012). A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. International Journal of Mechanical Sciences, 57, 19–33. https://doi.org/10.1016/j.ijmecsci.2012.01.010
56. Ruotolo, R., & Surace, C. (1997). Damage assessment of multiple cracked beams: numerical results and experimental validation. Journal of Sound and Vibration, 206(4), 567–588. https://doi.org/10.1006/jsvi.1997.1109
57. Wang, B. S., Liang, X. B., Ni, Y. Q., & Ko, J. M. (2001, February 5-8). Comparative study of damage indices for long-span bridges. 19th IMAC Conference on Structural Dynamics, Kissimmee, Florida, United States
58. Rytter, A., Brincker, R., & Kirkegaard, P. H. (1992). An experimental study of the modal parameters of a cantilever. Fracture & Dynamics. Aalborg University.
59. Bovsunovskii, A. P., & Matveev, V. V. (1999). Sravnitelnaia eksperimentalnaia otsenka chuvstvitelnosti nekotorykh vibratsionnykh indikatorov ustalostnoho povrezhdeniia sterzhnevykh elementov. Vibratsii v tekhnike i tekhnolohiiakh, (1), 15–21.
60. Helman, L. M., & Horpinich, S. V. (1999). Vibroakusticheskii metod svobodnykh kolebanii dlia nerazrushaiushcheho kontrolia treshchin. Akustychnyi visnyk, 2(4), 13–22.
61. Matveev, V. V., Bohinich, O. E., & Yakovlev, A. P. (2010, Sentiabr 28-30). Priblizhennye metody i rezultaty opredeleniia vibrodiahnosticheskikh parametrov nalichiia treshchiny v sterzhnevykh elementakh pri super- i subharmonicheskom rezonansakh. Mezhdunarodnaia Nauchno-tekhnicheskaia Konferentsiia Posviashchennaia 100-letiiu so dnia rozhdeniia akademika NAN Ukrainy G. S. Pisarenko, Kyiv, Ukraina.
62. Bouboulas, A. S., & Anifantis, N. K. (2013). Three-dimensional finite element modeling of a vibrating beam with a breathing crack. Archives of Applied Mechanics, 83, 207–223. https://doi.org/10.1007/s00419-012-0647-z
63. Nguyen, V. K., & Olatunbosun, O. A. (2007). A proposed method for fatigue crack detection and monitoring using the breathing crack phenomenon and wavelet analysis. Journal of Mechanics of Materials and Structures, 2(3), 399–420. https://doi.org/10.2140/jomms.2007.2.399
64. Kruts, V. A., Zinkovskii, A. P., & Sinenko, E. A. (2013). Influence of a fatigue crack on the vibrations of the simplest regular elastic system. Strength of Materials, 45(3), 308–315. https://doi.org/10.1007/s11223-013-9460-3
65. avchenko, K., Zinkovskyi, A., Onyshchenko, Ye., Kruts, V., & Kabannyk, S. (2021). Diagnostics of the presence of a fatigue crack in the compressor blade using the spectrum of vibration amplitudes at the superharmonic resonance. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Dynamika ta mitsnist mashyn, 2, 50–54. https://doi.org/10.20998/2078-9130.2021.2.245504
66. Zinkovskii, A., Savchenko, K., & Onyshchenko, Y. (2021). Investigation of the nonlinearity effect of the shrouded blade assemblies on their forced vibrations. Advanced Structured Materials, 157, 159–168. https://doi.org/10.1007/978-3-030-75890-5_9
67. Asnaashari, E., & Sinha, J. K. (2014). Development of residual operational deflection shape for crack detection in structures. Mechanical Systems and Signal Processing, 43, 113–123. https://doi.org/10.1016/j.ymssp.2013.10.003
68. Shulzhenko, N. H., Zaitsev, B. F., Rudenko, E. K., & Asaenok, A. V. (2015). Otsenka vliianiia temperaturnykh napriazhenii na kolebaniia rotora s poperechnoi treshchinoi s uchetom kontaktirovaniia berehov. Visnyk Zaporizkoho natsionalnoho universytetu: Zbirnyk naukovykh statei. Fizyko-matematychni nauky, 1, 218–227.
69. Matveev, V. V., & Boginich, O. E. (2010). Approximate analytical determination of vibrodiagnostic parameters of the presence of a crack in an elastic body under superharmonic resonance. Strength of Materials, 42(4), 363–373. https://doi.org/10.1007/s11223-010-9225-1
70. Matveev, V. V., Bovsunovskii, A. P., & Tokar, I. H. (2001). Metody vibratsionnoi diahnostiki elementov konstruktsii s treshchinami. Vibratsii v tekhnike i tekhnolohiiakh, (4), 31–35.
71. Matveev, V. V. (2004). Approximate analytical determination of vibrodiagnostic parameters of non-linearity of elastic bodies due to the presence of a closing crack. Part 1. Available and proposed methods of solution. Strength of Materials, 36(4), 333–344. https://doi.org/10.1023/B:STOM.0000041534.02275.8e
72. Kruts, V., Zinkovskii, A., Savchenko, K., & Onyshchenko, Y. (2019, July 7-11). Finite element analysis of the open crack influence on the compressor blade natural frequencies. 26th International Congress on Sound and Vibration (ICSV 26), Montreal, Canada. https://www.researchgate.net/profile/Kyrylo-Savchenko/publication/334479393_finite_element_analysis_of_the_open_crack_influence_on_the_compressor_blade_natural_frequencies/links/5d2d760b92851cf44087245a/finite-element-analysis-of-the-open-crack-influence-on-the-compressor-blade-natural-frequencies.pdf
73. Ivanov, V. P. (1983). Kolebaniia rabochikh koles turbomashin. Moscow: Mashinostroenie.
74. Serdotetskii, A. S. (1978). Razbros rezonansnykh napriazhenii v lopatochnykh ventsakh turbomashin. Kuibyshev: Dep. v VINITI 27.07.78, № 2825.
75. Ivanov, V. P. (1971). Nekotorye voprosy kolebanii lopatochnykh ventsov i druhikh upruhikh tel, obladaiushchikh tsiklicheskoi simmetriei. Prochnost i dinamika aviatsionnykh dvihatelei, (6), 113–132.
76. Ewins, D. J. (1969). The effects of detuning upon the forced vibrations of bladed disks. Journal of Sound and Vibration, 9(1), 65–79. https://doi.org/10.1016/0022-460X(69)90264-8
77. Stange, W. A., & MacBain, J. C. (1983). An investigation of dual mode phenomena in a mistuned bladed disk. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 105(3), 402–407. https://doi.org/10.1115/1.3269119
78. Matveev, V. V., Zinkovskii, A. P., & Smertyuk, M. V. (1990). Limits of applicability of the model of paired forms in the investigation of the vibrations of rotationally symmetric systems. Strength of Materials, 22(5), 757–763. https://doi.org/10.1007/BF00806282
79. Troshchenko, V. T. (2005). Prochnost materialov i konstruktsii. Kyiv: Akademperiodyka.
80. Zinkovskii, A. P., & Poberezhnikov, A. V. (2001). K voprosu o kolebaniiakh rasstroennoho ventsa s razlichnymi vidami sviazi lopatok. Vibratsii v tekhnike i tekhnolohiiakh, (4), 97–101, (4), 97–101.
81. Tsymbalyuk, V. A., Zinkovskii, A. P., & Poberezhnikov, A. V. (2001). Experimental-calculation determination of dynamic stability of blade assemblies of GTE compressor rotor wheels. Strength of Materials, 33(6), 516–525. https://doi.org/10.1023/A:1014170604510
82. Poberezhnikov, A. V., & Zinkovskii, A. P. (2004). Analiz vliianiia aerodinamicheskoi i mekhanicheskoi sviazi na sobstvennye kolebaniia modelei rasstroennykh lopatochnykh ventsov metodom vozmushchenii. Problemy dynamiky i mitsnosti v hazoturbobuduvanni. Kyiv, Ukraina.
83. Bekker, E. M., Sidorkin, M. A., & Shipov, R. A. (1985). K voprosu o povyshenii ustoichivosti lopatok osevykh kompressorov k krutilnomu flatteru. Trudy TsIAM, (1127), 115–122, (1127), 115–122.
84. Zinkovskii, A. P., & Tokar, I. H. (2009). Dempfiruiushchaia sposobnost konstruktivnykh elementov s nanostrukturirovannymi pokrytiiami. Vestnik dvihatelestroeniia, (2), 36–41, (2), 36–41.
85. Ustinov, A. I., Zinkovskii, A. P., Tokar, I. H., & Skorodzievskii, V. S. (2010). Vozmozhnosti snizheniia dinamicheskoi napriazhennosti konstruktivnykh elementov mashin s pomoshchiu nanostrukturirovannykh pokrytii. Avtomaticheskaia svarka, (1), 15–21, (1), 15–21.
86. Thierry, O., De Smet, O., & Deü, J.-F. (2016). Vibration reduction of a woven composite fan blade by piezoelectric shunted devices. Journal of Physics: Conference Series, 744, 1–9. https://doi.org/10.1088/1742-6596/744/1/012164
87. Schwarzendahl, S. M., Szwedowicz, J., Neubauer, M., Panning, L., & Wallaschek, J. (2012, June 11–15). On blade damping technology using passive piezoelectric dampers. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark. 1205–1215. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2012/44731/1205/247700
88. Senechal, A., Thomas, O., & Deü, J.-F. (2010, August 15–18). Optimization of shunted piezoelectric patches for vibration reduction of complex structures – application to a turbojet fan blade. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada. 695-704. https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETC-CIE2010/44137/695/336282
89. Dyffy, K. P., Choi, B. B., Provenza, A. J., Min, J. B., & Kray, N. (2013). Active piezoelectric vibration control of subscale composite fan blades. Journal of Engineering for Gas Turbines and Power, 135, 1–7. https://doi.org/10.1115/1.4007720
90. Belz, J., May, M., Siemann, J., Seume, J. R., Voigt, C., Böhmer, H., & Grüber, B. (2013, June 3–7). Excited blade vibration for aeroelastic investigations of a rotating blisk using piezoelectric macro fiber composites. ASME Turbo Expo 2013: Turbine Technical Conference and Exposition GT2013, San Antonio, Texas, USA. 1-9. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2013/55270/V07BT33A011/249045
91. Remington, P., Sutliff, D., & Sommerfeldt, S. (2003, May 12-14). Active control of low-speed fan tonal noise using actuators mounted in stator vanes: Part 1 Control system design and implementation. 9th AIAA/CEAS Aeroacoustics Conference and Exhibition, South Carolina, USA. https://arc.aiaa.org/doi/10.2514/6.2003-3190
92. Cross, C. J., & Fleeter, S. (2002). Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations. Smart Materials and Structures, 11, 239–248. https://doi.org/10.1088/0964-1726/11/2/307
93. Hohl, A., Neubauer, M., Schwarzendahl, S. M., Panning, L., & Wallaschek, J. (2009). Active and semiactive vibration damping of turbine blades with piezoceramics. SPIE, 7288, 1–10. https://doi.org/10.1117/12.815800
94. Yu, H., & Wang, K. W. (2007). Piezoelectric networks for vibration suppression of mistuned bladed disks. Journal of Vibration and Acoustics, 129, 559–566. https://doi.org/10.1115/1.2775511
95. Zhou, B., Thouverez, F., & Lenoir, D. (2014). Vibration reduction of mistuned bladed disks by passive piezoelectric shunt damping techniques. AIAA Journal, 52(6), 1194–1206. https://doi.org/10.2514/1.J052202
96. Shorr, B. F., Seberiakov, N. N., Stadnikov, A. N., Shadrin, D. V., Rudenok, E. S., Kanachkin, A. V., & Bortnikov, A. D. (2015). Eksperimentalno-raschetnye issledovaniia effektivnosti razlichnykh sposobov dempfirovaniia kolebanii detalei hazoturbinnykh dvihatelei. Vestnik Samarskoho hosudarstvennoho aerokosmicheskoho universiteta, 14(3), 171–182.
97. Shorr, B. F., & Bortnikov, A. D. (2020). Primenenie pezoelementov dlia aktivnoho hasheniia rezonansnykh kolebanii lopatok turbomashin. Aviatsionnye dvihateli, 4(9), 33–42.
98. Tsushima, N., & Su, W. (2017). Flutter suppression for highly flexible wings using passive and active piezoelectric effects. Aerospace Science and Technology, 65, 78–89. https://doi.org/10.1016/j.ast.2017.02.013
99. Song, Z.-G., & Li, F.-M. (2012). Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate. Composite Structures, 94, 702–713. https://doi.org/10.1016/j.compstruct.2011.09.005
100. Moon, S. H., Yun, C. Y., & Kim, S. J. (2002). Passive suppression of nonlinear panel flutter using piezoelectric materials with resonant circuit. KSME International Journal, 16(1), 1–12. https://doi.org/10.1007/BF03185150
101. Watanabe, T., Kazawa, J., Uzawa, S., & Keim, B. (2008, June 9–13). Numerical and experimental study of active flutter suppression with piezoelectric device for transonic cascade. ASME Turbo Expo 2008 : Power for Land, Sea, and Air, Berlin, Germany. 849–859. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2008/43154/849/324542

Section 2
1. Pisarenko, G. S., Jakowlew, A. P., & Matwiejew, W. W. (1976). Własności tłumienia drgań materiałów konstrukcyjnych: Poradnik. Warszawa: Wydawnictwo Naukowo-Techniczne.
2. Matveev, V. V. (1970). On determining the damping properties of systems with amplitude-dependent resistance. Strength of Materials, 6(5), 407–413. https://doi.org/10.1007/BF01527235
3. Matveev, V. V. (1985). Dempfirovanie kolebanii deformiruemykh tel. Kyiv: Naukova dumka.
4. Pisarenko, H. S., Matveev, V. V., & Yakovlev, A. P. (1976). Metody opredeleniia kharakteristik dempfirovaniia kolebanii upruhikh sistem. Kyiv: Naukova dumka.
5. Yakovlev, A. P. (1985). Dissipativnye svoistva neodnorodnykh materialov i sistem. Kyiv: Naukova dumka.
6. Khilchevskii, V. V., Dubenets, V. H., & Vasilevich, D. V. (1991). Nesovershennaia upruhost materialov pri slozhnykh kolebaniiakh. Kyiv: Vyshcha shkola.
7. Matveev, V. V., Yakovlev, A. P., & Vasinyuk, I. M. (1970). On determining the damping rate of vibrations of nonlinear systems of the hysteresis type from the resonance curve. Soviet Applied Mechanics, 6(1), 81–84. https://doi.org/10.1007/BF00887908
8. Matveev, V. V., & Yakovlev, A. P. (1970). Application of the phase method for determining the vibrations decrement for hysteresis-type nonlinear systems. Soviet Applied Mechanics, 6(3), 308–310. https://doi.org/10.1007/BF00888343
9. Gibson, R. F., & Plunkett, R. (1976). Dynamic mechanical behavior of fiber-reinforced composites: Measurement and analysis. Journal of Composite Materials, 4, 325–341. https://doi.org/10.1177/002199837601000406
10. Adams, R. D. (1993). Damping in composites. Materials Science Forum, 119, 3–16. https://doi.org/10.4028/www.scientific.net/MSF.119-121.3
11. Melo, J. S. D., & Radford, D. W. (2005). Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis. Composite Structures, 70, 240–253. https://doi.org/10.1016/j.compstruct.2004.08.025
12. Khilchevskii, V. V., Sharapov, V. G., & Goldshtein, A. E. (1985). Using smoothing splines for determining the decrement of oscillations. Strength of Materials, 17(2), 262–266. https://doi.org/10.1007/BF01532378
13. Yakovlev, A. P. (1973). Damping properties of a composite with unidirectional continuous fibers. Strength of Materials, 5(2), 195–200. https://doi.org/10.1007/BF00770291
14. Derkach, O., & Kobzar, V. (2022). Doslidzhennia vplyvu pidvyshchenoi temperatury na dysypatyvni vlastyvosti odnospriamovanoho vuhleplastyku. Tekhnichni nauky ta tekhnolohii, 2022(4), 31–39. https://doi.org/10.25140/2411-5363-2022-4(30)-31-39
15. Derkach, O. L., Zinkovskii, A. P., Savchenko, K. V., & Onyschenko, Ye. O. (2022). Evaluation of the effective characteristics of energy dissipation in layered composites. Material Science, 57(6), 782–791. https://doi.org/10.1007/s11003-022-00608-8
16. Christensen, R. M. (2005). Mechanics of composite materials. New York: Dover Publications.
17. Dubenets, V. G., & Yakovenko, O. O. (2009). Determination of effective damping characteristics of fiber-reinforced viscoelastic composites. Strength of Materials, 41(4), 436–443. https://doi.org/10.1007/s11223-009-9137-0
18. Dubenets, V. H., Horbatko, O. O., & Derkach, O. L. (2012). Chyselnyi analiz efektyvnykh kharakterystyk nanokompozytnykh materialiv. Visnyk Chernihivskoho derzhavnoho tekhnolohichnoho universytetu. Seriia: Tekhnichni nauky, 2012(1), 46–58.
19. Rikards, R., Chate, A., Bledzki, A. K., & Kushnevsky, V. (1994). Numerical modelling of damping properties of laminated composites. Mechanics of Composite Materials, 30(3), 256–266. https://doi.org/10.1007/BF00616211
20. Chandra, R., Singh, S. P., & Gupta, K. (2003). A study of damping in fiber-reinforced composites. Journal of Sound and Vibration, 262, 475–496. https://doi.org/10.1016/S0022-460X(03)00107-X
21. Dubenets, V. G. (1988). Modeling of imperfectly elastic properties of composite materials. Strength of Materials, 20(12), 1641–1648. https://doi.org/10.1007/BF01528974
22. Khoroshun, L. P. (1966). Relationships between stresses and deformations in lamellar media. Soviet Applied Mechanics, 2(2), 9–11. https://doi.org/10.1007/BF00895599
23. Hanselka, H. (1992). Ein Beitrag zur Charakterisierung des Dämpfungsverhaltens polymerer Faserverbundwerkstoffe. Dissertation. Technische Universität Clausthal, Germany.
24. Wright, G. C. (1972). The dynamic properties of glass and carbon fibre reinforced plastic beams. Journal of Sound and Vibration, 21(2), 205–212. https://doi.org/10.1016/0022-460X(72)90907-8
25. Kaliske, M., & Rothert, H. (1995). Damping characterization of unidirectional fibre reinforced polymer composites. Composite Engineering, 5(5), 551–567. https://doi.org/10.1016/0961-9526(95)00028-L
26. Dubenets, V. H., & Khilchevskyi, V. V. (1995). Passivnoe dempfirovanie kompozitnykh konstruktsii. Kyiv: Vyshcha shkola.
27. Savchenko, E. V. (2006). Passivnoe dempfirovanie kolebanii kompozitnykh konstruktsii. Nezhin: Aspekt-Polihraf.
28. Boginich, O. E., Derkach, O. L., & Kobzar, V. L. (2023). Effect of low and elevated temperatures on the dissipative properties of woven carbon fiber plastics. Strength of Materials, 55(1), 58–68. https://doi.org/10.1007/s11223-023-00502-x

Section 3
1. Chatterjee, A. (2010). Identification and parameter estimation of a bilinear oscillator using Volterra series with harmonic probing. International Journal of Non-Linear Mechanics, 45, 12–20. https://doi.org/10.1016/j.ijnonlinmec.2009.08.007
2. Yan, G., De Stefano, Al., Matta, E., & Feng, R. (2013). A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics. Journal of Sound and Vibration, 332(2), 407–422. https://doi.org/10.1016/j.jsv.2012.09.008
3. Matveev, V. V., & Bovsunovskii, O. A. (2007.). Vynuzhdennye kolebaniia ostsilliatora s bilineinoi asimmetrichnoi kharakteristikoi vosstanavlivaiushchei sily v oblasti osnovnoho y subharmonicheskoho rezonansov. V V. V. Meleshko & V. N. Oliinyk (Red), Aktualni aspekty fizyko-mekhanichnykh doslidzhen. Mekhanika (194–204). Naukova dumka
4. Roitman, A. B., & Shamrovskii, A. D. (1976). Diahnostika treshchin putem analiza form vynuzhdennykh kolebanii. Novye tekhnolohicheskie protsessy i nadezhnost HTD. Tr. tsentr. in-ta aviats. motorostroeniia, 4, 41–46.
5. Matveev, V. V., Bovsunovskii, A. P., & Tokar, I. H. (2001). Metody vibratsionnoi diahnostiki elementov konstruktsii s treshchinami. Vibratsii v tekhnike y tekhnolohiiakh, 4, 31–35.
6. Roitman, A. B., Pylov, A. A., & Aleksandrova, N. B. (1999). Longitudinal vibrations of a cantilever beam with a transverse crack. Part 2. Piecewise-linear model. Strength of Materials, 31(5), 486–491. https://doi.org/10.1007/BF02511168
7. Lymarenko, Yu. A., & Shamrovskii, A. D. (2003). Matematicheskoe modelirovanie protsessa akusticheskoi emissii. Tekhnicheskaia diahnostika i nerazrushaiushchii kontrol, 1, 30–33.
8. Matveev, V. V., & Bovsunovskii, A. P. (2000). On determination of vibration characteristics of a beam with a closing crack in bending vibrations. Strength of Materials, 32(3), 211–224. https://doi.org/10.1007/BF02509848
9. Matveev, V. V., & Boginich, O. E. (2006). Vibrodiagnostic parameters of fatigue damage in rectangular plates. Part 3. Through-the-thickness and surface semi-elliptical cracks. Strength of Materials, 38(5), 466–480. https://doi.org/10.1007/s11223-006-0066-x
10. Loya, J. A., Rubio, L., & Fernández-Sáez, J. (2006). Natural frequencies for bending vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 290(3), 640–653. https://doi.org/10.1016/j.jsv.2005.04.005
11. Giannini, O., Casini, P., & Vestroni, F. (2013). Nonlinear harmonic identification of breathing cracks in beams. Computers and Structures, 129, 166–177. https://doi.org/10.1016/j.compstruc.2013.05.002
12. Bovsunovskii, A. P., & Bovsunovskii, O. A. (2010). Application of nonlinear resonances for the diagnostics of closing cracks in rodlike elements. Strength of Materials, 42(3), 331–343. https://doi.org/10.1007/s11223-010-9222-4
13. Andreaus, U., & Baragatti, P. (2011). Cracked beam identification by numerically analyzing the nonlinear behavior of the harmonically forced response. Journal of Sound and Vibration, 330(4), 721–742. https://doi.org/10.1016/j.jsv.2010.08.032
14. Bouboulas, A. S., & Anifantis, N. K. (2010). Finite element modeling of a vibrating beam with a breathing crack: Observations on crack detection. Structural Health Monitoring, 10(2), 131–145. https://doi.org/10.1177/1475921710373286
15. Bouboulas, A. S., & Anifantis, N. K. (2013). Three-dimensional finite element modeling of a vibrating beam with a breathing crack. Archives of Applied Mechanics, 83, 207–223. https://doi.org/10.1007/s00419-012-0647-z
16. Georgantzinos, S. K., & Anifantis, N. K. (2008). An insight into the breathing mechanism of a crack in a rotating shaft. Journal of Sound and Vibration, 318(1), 279–295. https://doi.org/10.1016/j.jsv.2008.04.010
17. Shulzhenko, N. H. (2013). Otsenka vibrokharakteristik rotora s poperechnoi treshchinoi na zhestkikh oporakh po trekhmernoi modeli. Problemy mashinostroeniia, 16(4), 9–15.
18. Matveev, V. V., & Boginich, O. E. (2014). The influence of inelastic resistance on vibrations of an elastic body with a closing crack under the main and subharmonic resonances. Strength of Materials, 46(1), 1–17. https://doi.org/10.1007/s11223-014-9511-4
19. Matveev, V. V., & Boginich, O. E. (2012). Approximate determination of vibrodiagnostic parameter of nonlinearity for an elastic body due to the presence of a breathing crack at a subharmonic resonance. Strength of Materials, 44(3), 250–258. https://doi.org/10.1007/s11223-012-9378-1
20. Matveev, V. V., & Boginich, O. E. (2010). Approximate analytical determination of vibrodiagnostic parameters of the presence of a crack in an elastic body under superharmonic resonance. Strength of Materials, 42(4), 363–373. https://doi.org/10.1007/s11223-010-9225-1
21. Matveev, V. V., & Onishchenko, E. A. (2016). Vibrodiagnostic parameters of the presence of a semielliptic breathing crack in circular bars under super- and subharmonic resonances. Strength of Materials, 48(2), 195–207. https://doi.org/10.1007/s11223-016-9756-1
22. Libovits, H. (1975). Razrushenie: V 7 t. T. 2. Matematicheskie osnovy teorii razrusheniia. Moscow: Mir.
23. Murakami, Y. (1987). Stress intensity factors handbook. Oxford: Pergamon.
24. Nisitani, H., & Chen, D.-H. (1984). Stress intensity factor for a semi-elliptic surface crack in a shaft under tension. Transactions of the Japan Society of Mechanical Engineers, 50(453), 1077–1082. https://doi.org/10.1299/kikaia.50.1077
25. Birher, I. A. (1956). Rukovodstvo dlia konstruktorov po raschetu na prochnost hazoturbinnoho dvihatelia. Raschet lopatok na prochnost. Moscow: Oboronhiz.
26. Boriskin, O. F., & Persiyanov, V. V. (1994). Modeling damages of machine parts. Report 1. Strength of Materials, 26(1), 84–88. https://doi.org/10.1007/BF02208058
27. Sinenko, E. A., & Zinkovskii, A. P. (2015). Influence of the exciting force application point on the amplitude spectrum of flexural vibrations in a beam with a “breathing” crack. Strength of Materials, 47(4), 553–560. https://doi.org/10.1007/s11223-015-9689-0
28. Matveev, V. V., Bohinich, O. E., & Yakovlev, A. P. (2010, Sentiabr 28-30). Priblizhennye metody i rezultaty opredeleniia vibrodiahnosticheskikh parametrov nalichiia treshchiny v sterzhnevykh elementakh pri super- i subharmonicheskom rezonansakh. Mezhdunarodnaia Nauchno-tekhnicheskaia Konferentsiia Posviashchennaia 100-letiiu so dnia rozhdeniia akademika NAN Ukrainy G. S. Pisarenko, Kyiv, Ukraina.
29. Chuhai, M. A. (2014). Osobennosti modelirovaniia napriazhenii v okrestnosti vershiny treshchiny pri kolebaniiakh lopatochnoho apparata turbomashin. Problemy mashinostroeniia, 17(3), 25–32.
30. Bovsunovskii, A. P., & Matveev, V. V. (1999). Sravnitelnaia eksperimentalnaia otsenka chuvstvitelnosti nekotorykh vibratsionnykh indikatorov ustalostnoho povrezhdeniia sterzhnevykh elementov. Vibratsii v tekhnike y tekhnolohiiakh, 1, 15–21.
31. Kruts, V. A., Zinkovskii, A. P., & Sinenko, E. A. (2013). Influence of a fatigue crack on the vibrations of the simplest regular elastic system. Strength of Materials, 45(3), 308–315. https://doi.org/10.1007/s11223-013-9460-3
32. Zinkovskii, A., Tokar, I., Kruhlii, Ya., Kruts, V., & Sinenko, E. (2013). O kharakteristikakh kolebanii rehuliarnykh sistem sterzhnevykh elementov dlia diahnostiki ikh povrezhdenii. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu, 3, 37–47.
33. Zinkovskii, A. P., Tokar, I. G., & Kruts, V. A. (2015). Influence of the local surface damage parameters on the natural frequencies of vibration of structural elements. Strength of Materials, 47(2), 221–226. https://doi.org/10.1007/s11223-015-9651-1
34. Mandelshtam, L. I. (1972). Lektsii po teorii kolebaniy. Moscow: Nauka.

Section 4
1. Ewins, D. J. (2000). Modal testing: Theory, practice and application (2nd ed.). Baldock, Hertfordshire: Research Studies Press.
2. Ivanov, V. P. (1983). Kolebaniya rabochih koles turbomashin. Moscow: Mashinostroenie.
3. Wriggers, P. (2006). Computational contact mechanics. Berlin: Springer-Verlag Berlin Heidelberg.
4. Savchenko, K. V., Zinkovskii, A. P., Tokar, I. G., & Kruglii, Ya. D. (2014). Influence of the orientation of shroud contact surfaces on the static stress state of turbine rotor blades. Strength of Materials, 46(4), 493-502. https://doi.org/10.1007/s11223-014-9574-2
5. Savchenko, K. V., Zinkovskii, A. P., & Tokar, I. H. (2017). Vliianie modelirovanyia uhla radialnoho skosa kontaktnykh poverkhnostei bandazhnykh polok lopatok na staticheskoe napriazhennoe sostoianie ikh ventsov. Vestnik Dvihatelestroeniia, (2), 103-107.
6. Charleux, D., Gibert, C., Thouverez, F., & Dupeux, J. (2006). Numerical and experimental study of friction damping in blade attachments of rotating bladed disks. International Journal of Rotating Machinery, 2006, 1-13. https://doi.org/10.1155/IJRM/2006/71302
7. Pridorozhnyi, R. P., Sheremetev, A. V., & Zinkovskii, A. P. (2007). Otsenka napriazhennoho sostoianiia zamkovykh soedinenii rabochikh lopatok turbin s uchetom vozmozhnykh otklonenii ikh razmerov. Aviatsionno-kosmicheskaia Tekhnika y Tekhnolohiia, 44(8), 81-85.
8. Zinkovskii, A. P., & Kruglii, Ya. D. (2012). Effect of identity violations of contact interaction between shrouds on the static and dynamic stress state characteristics of blade rings. Strength of Materials, 44(2), 144-156. https://doi.org/10.1007/s11223-012-9367-4
9. Savchenko, K. V., Zinkovskii, A. P., & Kruhlii, Ya. D. (2014). Vliianie orientatsii kontaktnykh poverkhnostei bezzihovykh bandazhnykh polok na rezultaty rascheta sobstvennykh chastot kolebanii lopatochnoho ventsa. Vibratsii v Tekhnike i Tekhnolohiiakh, 76(4), 80-84.
10. Zinkovskii, A., Savchenko, K., & Kruglii, Ya. (2016, July 10-14). Influence of modeling of contact interaction conditions on the spectrum of natural vibration frequencies of blade assembly. 23rd Int. Congress on Sound and Vibration (ICSV 23), Athens, Greece. 289-293. https://www.researchgate.net/profile/Kyrylo-Savchenko/publication/305391762_influence_of_modeling_of_contact_interaction_conditions_on_spectrum_of_natural_vibration_frequencies_of_blade_assembly/links/57908f8d08ae4e917d0431e5/influence-of-modeling-of-contact-interaction-conditions-on-spectrum-of-natural-vibration-frequencies-of-blade-assembly.pdf
11. Kruhlii, Ya. D. (2015). Varianty ucheta kontaktnoho vzaimodeistviia v bandazhnykh polkakh pri raschetakh sobstvennykh kolebanii lopatochnoho ventsa metodom konechnykh elementov. Visnyk Natsionalnoho Tekhnichnoho Universytetu «KhPI». Ser. «Novi Rishennia v Suchasnykh Tekhnolohiiakh», (46), 39-44.
12. Savchenko, K., Zinkovskii, A., Rzadkowski, R., Przysowa, R., & Kruts, V. (2019). An influence of shroud design parameters on the static stresses of blade assemblies. MATEC Web of Conferences, 304, 1-8. https://doi.org/10.1051/matecconf/201930403002
13. Krivoshei, V. Ya., Glushchenko, N. I., & Tripolskii, S. S. (1987). Effect of design factors on the life of shroud flanges of turbine rotors. Strength of Materials, 19(8), 1110-1115. https://doi.org/10.1007/BF01523297
14. Zienkiewicz, O. C. (1972). Finite element method in engineering science. New York: McGraw-Hill Inc.
15. Pisarenko, H. S., Matveev, V. V., & Yakovlev, A. P. (1976). Metody opredeleniia kharakteristik dempfirovaniia kolebanii upruhikh sistem. Kyiv: Naukova dumka.
16. Savchenko, K., Zinkovskii, A., & Tokar, I. (2018, July 8-12). Determination of contact interaction influence on forced vibrations of shrouded blades. 25th Int. Congress on Sound and Vibration (ICSV 25), Hiroshima, Japan. 2635-2640. https://www.researchgate.net/profile/Kyrylo-Savchenko/publication/326440940_determination_of_contact_interaction_influence_on_forced_vibrations_of_shrouded_blades/links/5b4dc19045851507a7a628d4/determination-of-contact-interaction-influence-on-forced-vibrations-of-shrouded-blades.pdf
17. Firrone, C. M., & Zucca, S. (2011). Modelling friction contacts in structural dynamics and its application to turbine bladed disks. Numerical Analysis – Theory and Application, (1), 301-334. https://doi.org/10.5772/25128

Section 5
1. Shlyannokov, V. N., Ilchenko, B. V., & Stepanov, N. V. (1992). Analysis of the stress-strain state of components of the lock joint of a compressor disk in a gas turbine engine in the three-dimensional elastic statement. Report 1. Strength of materials, 24(12), 716-721. https://doi.org/10.1007/BF00768555
2. Stepanov, N. V., Shlyannokov, V. N., Omelchenko, V. V., & Shkanov, I. N. (1988). Life of GTE disks with cracks. Strength of materials, 20(4), 550-553. https://doi.org/10.1007/BF01530872
3. Tokar, I. G., Adamenko, A. Ya., Zinkovskii, A. P., & Matveev, V. V. (1997). Evaluation of vibration-induced stresses in teeth of rotor disks of compressors of gas-turbine engines. Strength of materials, 29(6), 638-643. https://doi.org/10.1007/BF02767616
4. Babenko, O.N., & Pribora, T.I. (2018). Analiz rezultatov issledovanii chastot i form sobstvennykh kolebanii rabochei lopatki 1 stupeni KND. Vestnik dvihatelestroeniia, 2, 91-98.
5. Bohuslaev, V.A., Babenko, O.N., Pavlenko, D.V., & Korenevskii, E.Ia. (2007). Prohnozirovanie i uvelichenie resursa lopatok kompressora aviatsionnykh VRD tekhnolohicheskimi metodami. Uprochniaiushchie tekhnolohii i pokrytiia, 9, 28-33.
6. Ewins, D. J. (1969). The effects of detuning upon the forced vibrations of bladed disks. Journal of Sound and Vibration, 9(1), 65-79. https://doi.org/10.1016/0022-460X(69)90264-8
7. Ivanov, V. P. (1983). Kolebaniya rabochikh koles turbomashin. Moscow: Mashinostroenie.
8. Zinkovskii, A. P. (1997). Numerical investigation of intercoupling vibration of a mistuned turbomachinery compressor wheel. Strength of materials, 29(2), 150-158. https://doi.org/10.1007/BF02767591
9. Serdotetskiy, A. S. (1978). Razbros rezonansnykh napryazheniy v lopatochnykh venzakh turbomashin. Kuybyshev: Dep. in VINITI 27.07.78, No. 2825.
10. Zinkovskii, A. P., & Kruglii, Ya. D. (2012). Effect of identity violations of contact interaction between shrouds on the static and dynamic stress state characteristics of blade rings. Strength of materials, 44(2), 144-150. https://doi.org/10.1007/s11223-012-9367-4
11. Savchenko, K., Zinkovskii, A., Rzadkowski, R., Przysowa, R., & Kruts, V. (2019). An influence of shroud design parameters on the static stresses of blade assemblies. MATEC Web of Conferences, 304, 1-8. https://doi.org/10.1051/matecconf/201930403002
12. Zinkovskii, A. P., Vasilev, M. V., & Buslenko, I. N. (1992). Distortion of the sinusoidalness of the forms of vibrations of systems with a disturbed rotary symmetry and the mode localization phenomenon. Report 2. Strength of materials, 24(11), 678-684. https://doi.org/10.1007/BF00768169
13. Castanier, M. P., & Pierre, C. (2006). Modeling and analysis of mistuned bladed disk vibration: status and emerging directions. Journal of Propulsion and Power, 22(2), 384-396. https://doi.org/10.2514/1.16345

Section 6
1. Avhustinovich, V. H. (2005). Chislennoe modelirovanie nestatsionarnykh yavlenii v hazoturbinnykh dvihateliakh: Nauchnoe izdanie. Moscow: Mashinostroenie.
2. Grauer, J., & Boucher, M. J. (2017, January 9 – 13). Aeroelastic modeling of X-56A stiff-wing configuration flight test data. AIAA SciTech Forum, Grapevine, Texas, USA. https://ntrs.nasa.gov/api/citations/20170001227/downloads/20170001227.pdf
3. Ryan, J. J., Bosworth, J. T., Burken, J. J., & Suh, P. M. (2014, January 13 – 17). Current and future research in active control of lightweight, flexible structures using the X-56 aircraft. AIAA SciTech Forum, National Harbor, Maryland, USA. https://ntrs.nasa.gov/api/citations/20140003966/downloads/20140003966.pdf
4. Khorikov, A. A. (1976). The chances of “classical” flutter onset in the moving blades of turbines. Strength of Materials, 3(3), 279–283. https://doi.org/10.1007/BF01533901
5. Sachin, V. M., Tumanov, N. V., Lavrenteva, M. A., & Cherkasova, S. A. (2011). Kompleksnaia fraktodiahnostika flattera rabocheho kolesa ventiliatora. Vestnik SHAU, 27(3), 185–194.
6. Doi, H., & Alonso, J. (2002, June 3 – 6). Fluid/structure coupled aeroelastic computations for transonic flows in turbomachinery. ASME Turbo Expo 2002: Power for Land, Sea and Air, Amsterdam, The Netherlands. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2002/36096/787/294985
7. Petrie-Repar, P. J., McGhee, A., Jacobs, P. A., & Gollan, R. (2006, May 8 – 11). Analytical maps of aerodynamic damping as a function of operating condition for a compressor profile. ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2006/42401/1133/315462
8. Cumpsty, N. A. (2004). Compressor Aerodynamics. Florida: Krieger Pub.
9. Bendiksen, O. O. (1984). Flutter of mistuned turbomachinery rotors. Journal of Engineering for Gas Turbines and Power, 106(1), 25–33. https://doi.org/10.1115/1.3239546
10. Remizov, A. E., & Posadov, V. V. (2012). Metody prohnozirovaniia flattera rabocheho kolesa kompressora aviatsionnoho hazoturbinnoho dvihatelia. Vestnik Rybinskoho hosudarstvennoho aviatsionnoho tekhnicheskoho universiteta, 23(2), 85–91.
11. Shuvaev, N. V. (2014). Metodika chislennoho modelirovaniia aeroupruhoho vzaimodeistviia kompressornykh lopatok hazoturbinnoho dvihatelia s dozvukovym nabehaiushchim potokom vozdukha (Dissertatsiia kandidata tekhnicheskikh nauk, Perm).
12. Purushothaman, K., Jeyaraman, S. K., Parida, S., & Deshkulkarni, K. P. (2017, December 7–8). Aeroelastic flutter analysis of linear cascade blades – STC5. ASME 2017 Gas Turbine India Conference, Bangalore, India. https://nanoengineeringmedical.asmedigitalcollection.asme.org/GTINDIA/proceedings-abstract/GTINDIA2017/58509/V001T01A016/243898
13. Franson, T. H., & Vogt, D. M. (2003, April 14 – 16). A new facility for investigating flutter in axial turbomachines. 8th National Turbine Engine High Cycle Fatigue Conference, Monterey, California, USA. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A492496&dswid=3176
14. Srinivasan, A. V. (1997). Flutter and resonant vibrations characteristics of engine blades. Journal of Engineering for Gas Turbines and Power, 119(3), 742–775. https://doi.org/10.1115/1.2817053
15. Tsymbalyuk, V. A., Zinkovskii, A. P., & Poberezhnikov, A. V. (2001). Experimental-calculation determination of dynamic stability of blade assemblies of GTE compressor rotor wheels. Strength of Materials, 33(6), 516–525, https://doi.org/10.1023/A:1014170604510
16. Kabannyk, S. M., Zinkovskii, A. P., Stelmakh, A. L., & Savchenko, K. V. (2019, July 7 – 11). Method of prediction of dynamic stability of gas turbine engine blade assemblies for subsonic flutter. 26th International Congress on Sound and Vibration, Montreal, Canada
17. Zinkovskyi, A. P., & Tsymbaliuk, V. A. (2012). Eksperymentalno – rozrakhunkovyi kompleks z prohnozuvannia stiikosti do dozvukovoho flatera lopatkovykh vintsiv. Nauka ta innovatsii, 5, 38–48.
18. Bendikson, O., & Fridman, P. (1980). Sviazannyi izghibno – krutilnyi flatter v reshetkakh. Raketnaia tekhnika i kosmonavtika, 4, 84–94.
19. Salles, L., & Vahdati, M. (2016). Comparison of two numerical algorithms for computing the effects of mistuning of fan flutter. In Proc. of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition (pp. 1–11). Seoul.
20. Kabannik, S. N., & Tsimbaliuk, V. A. (2015). Aerodinamicheskoe usovershenstvovanie stenda dlia issledovaniia reshetok profilei pri bolshikh uhlakh natekaniia dozvukovoho potoka. Vestnik dvihatelestroeniia, 2, 160–164.
21. Kimura, H. (1977, June 13–17). An experimental study of unsteady aerodynamic forces on a rectangular wing oscillating in pitch at Mach numbers from 0.38 to 1.28. Memoirs of the Faculty of Engineering, Kyushu University, 37(3), 157–174.
22. Inozemtsev, A. A., Koniaev, E. A., Medvedev, V. V., Neriadko, A. V., & Riassov, A. E. (2007). Aviatsionnyi dvihatel PS – 90 A. Moscow: FIZMATLIT.
23. Kabannik, S. N., Zinkovskii, A. P., & Stelmakh, A. L. (2018). Determination of the subsonic flutter stability boundary of blade rows at large angles of attack. Strength of Materials, 50(5), 254–263. https://doi.org/10.1007/s11223-018-9966-9
24. Stelmakh, A. L., Zinkovskii, A. P., & Stelmakh, Ya. A. (2010). Experimental-numerical investigation of the dynamic stability of flexural-torsional vibrations of compressor blades under conditions of attached and separated flow. Part 3. Mutual aerodynamic couplings. Strength of Materials, 42(3), 304–312. https://doi.org/10.1007/s11223-010-9219-z
25. Stelmakh, A. L., & Kaminer, A. A. (1983). Effect of the geometrical parameters of a compressor cascade on the limit of bending self-oscillations of blades caused by cascade flutter. Strength of Materials, 15(1), 104–109. https://doi.org/10.1007/BF01523416
26. Kabannik, S. N., Stelmakh, A. L., & Zinkovskii, A. P. (2014). Alhoritm realizatsii metoda ekspress-otsenki ustoichivosti k dozvukovomu reshetochnomu flatteru lopatochnykh ventsov kompressorov. Aviatsionno-kosmicheskaia tekhnika i tekhnolohiia, 8, 131–137.
27. Kabannik, S. N. (2015). Realizatsiia metoda ekspress-otsenki ustoichivosti k dozvukovomu reshetochnomu flatteru dlia izghybnoi formy kolebanii lopatochnykh ventsov osevykh kompressorov HTD. Aviatsionno-kosmicheskaia tekhnika i tekhnolohiia, 7, 90–93.
28. Stelmakh, A. L., Stelmakh, Ya. A., & Zinkovskii, A. P. (2003). Metodika ekspress – otsenki dinamicheskoi ustoichivosti kompressornykh lopatok hazoturbinnoho dvihatelia k dozvukovomu reshetochnomu flatteru. Aviatsionno-kosmicheskaia tekhnika i tekhnolohiia, 5, 71–75.
29. Akhnazarova, S. L., & Kafarov, V. V. (1985). Metody optimizatsi eksperimenta v khimicheskoi tekhnolohii. Moscow: Vysshaia shkola.
30. Zinkovskii, A. P., Kabannik, S. N., & Stelmakh, A. L. (2019). Rapid method of predicting the subsonic flutter stability of AGTE axial-flow compressor blade cascades. Part 2. Mathematical implementation of method and its potential application. Strength of Materials, 51(5), 689–697. Https://doi.org/10.1007/s11223-019-00063-y

Section 7
1. Matveev, V. V. (1985). Dempfirovanie kolebanii deformiruemykh tel. Kyiv: Naukova dumka.
2. Dubenets, V. H., & Khilchevskyi, V. V. (1995). Passivnoe dempfirovanie kompozitnykh konstruktsii. Kyiv: Vyshcha shkola.
3. Savchenko, E. V. (2006). Passivnoe dempfirovanie kolebanii kompozitnykh konstruktsii. Nezhin: Aspekt-Polihraf.
4. Khilchevskii, V. V., & Dubenets, V. H. (1977). Rasseianie enerhii pri kolebaniiakh tonkostennykh elementov konstruktsii. Kyiv: Vyshcha shkola.
5. Shulha, M. O., & Karlash, V. L. (2008). Rezonansni elektromekhanichni kolyvannia piezo-elektrychnykh plastyn. Kyiv: Naukova dumka.
6. Kozlov, V. I., & Karnaukhova, T. V. (2002). Osnovnye sootnosheniia viazkoupruhikh sloistykh obolochek s raspredelennymi pezoelektricheskimi vkliucheniiami dlia kontrolia nestatsionarnykh kolebanii. Prikladnaia mekhanika, 38(10), 109-117. https://doi.org/10.1023/A:1022266614651
7. Karnaukhov, V. H., Kozlov, A. V., & Piatetskaia, E. V. (2002). Dempfirovanie kolebanii viazkoupruhikh plastin s pomoshchiu raspredelennykh pezoelektricheskikh vkliuchenii. Akustychnyi visnyk, 5(4), 15-32.
8. Trindade, M. A., Benjeddou, A., & Ohayon, R. (2000). Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping. Journal of Vibration and Acoustics, 122, 169-174. https://doi.org/10.1115/1.568429
9. Boudaoud, H., Daya, E. M., Belouettar, S., Duigou, L., & Potier-Ferry, M. (2009). Damping analysis of beams submitted to passive and active control. Engineering Structures, 31, 322-331. https://doi.org/10.1016/j.engstruct.2008.08.009
10. Crandall, S. H. (1970). The role of damping in vibration theory. Journal of Sound and Vibration, 11(1), 3-18. https://doi.org/10.1016/S0022-460X(70)80105-5
11. Dubenets, V. G., Savchenko, E. V., & Ignatenko, A. S. (2010). Nonstationary vibrations of structures made of composite materials. Strength of Materials, 42(2), 205-210. https://doi.org/10.1007/s11223-010-9208-2
12. Dubenets, V. H., & Savchenko, O. V. (2013). Optimization of multilayered electro-viscoelastic plates. Visnyk Chernihivskoho derzhavnoho tekhnolohichnoho universytetu. Seriia: Tekhnichni nauky, 63(4), 59-68.
13. Dubenets, V. G. (1983). Energy dissipation during oscillations of multilayer shells. Strength of Materials, 15(4), 564-573. https://doi.org/10.1007/BF01522443
14. Wang, S. Y. (2004). A finite element model for the static and dynamic analysis of piezoelectric bimorph. International Journal of Solids and Structures, 41, 4075-4096. https://doi.org/10.1016/j.ijsolstr.2004.02.058
15. Cupial, P., & Niziol, J. (1995). Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer. Journal of Sound and Vibration, 183(1), 99-114. https://doi.org/10.1006/jsvi.1995.0241
16. Johnson, C. D., & Kienholz, D. A. (1982). Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal, 20(9), 1284-1290. https://doi.org/10.2514/3.51190
17. Lin, D. X., Ni, R. G., & Adams, R. D. (1984). Prediction and measurement of the vibration damping parameters of carbon fibre-reinforced plastics plates. Journal of Composite Materials, 18, 132-152. https://doi.org/10.1177/00219983840180020
18. Li, J. Y., & Dunn, M. L. (2001). Viscoelastic behavior of heterogeneous piezoelectric solids. Journal of Applied Physics, 89(5), 2893-2903. https://doi.org/10.1063/1.1337595
19. Bolkisev, A. M. (1987). Dissipatsiia enerhii pri harmonicheskom nahruzhenii viazkoupruhoho pezokeramicheskoho materiala. Prikladnaia mekhanika, 23(3), 48-53. https://doi.org/10.1007/BF00886600
20. Librescu, L., & Nosier, A. (1990). Response of laminated composite flat panels to sonic boom and explosive blast loadings. AIAA Journal, 28(2), 345-352. https://doi.org/10.2514/3.10395
21. Sirohi, J., & Chopra, I. (2000). Fundamental behavior of piezoceramic sheet actuators. Journal of Intelligent Material Systems and Structures, 11, 47-61. https://doi.org/10.1106/WV49-QP37-4Q1M-P425
22. Kapuria, S., & Yasin, M. Y. (2010). Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model. Journal of Sound and Vibration, 329, 3247-3265. https://doi.org/10.1016/j.jsv.2010.02.019
23. Araújo, A. L., Mota Soares, C. M., & Mota Soares, C. A. (2010). A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures. Applied Composite Materials, 17, 529–542. https://doi.org/10.1007/s10443-010-9141-3
24. Galucio, A.C., Deü, J.-F., & Ohayon, R. (2005). A fractional derivative viscoelastic model for hybrid active-passive damping treatments in the time domain – Application to sandwich beams. Journal of Intelligent Materials and Structures, 16, 33–45. https://doi.org/10.1177/1045389X05046685
25. Trindade, M.A., & Benjeddou, A. (2002). Hybrid active-passive damping treatments using viscoelastic and piezoelectric materials: Review and assessment. Journal of Vibration and Control, 8, 699–745. https://doi.org/10.1177/1077546029186
26. Bagley, R.L., & Torvik, P.J. (1983). Fractional calculus – A different approach to the analysis of viscoelastically damped structures. AIAA Journal, 21(5), 741–748. https://doi.org/10.2514/3.8142
27. Yershov, R.D., Savchenko, O.V., Zinkovskii, A.P., & Derkach, O.L. (2020, April 22 – 24). Electronic system for calculation-experimental determination of the modal and damping characteristics. IEEE 40th International Conference on Electronics and Nanotechnology, ELNANO 2020, Kyiv, Ukraine. https://ieeexplore.ieee.org/abstract/document/9088927

Схожі записи

Почніть набирати текст зверху та натисніть "Enter" для пошуку. Натисніть ESC для відміни.

Повернутись вверх