Contactless de-orbiting of space debris by the ion beam. Dynamics and Control

Alpatov A.P.

Khoroshylov S.V.

Maslova A.I.

Affiliation:

Project: Ukrainian scientific book in a foreign language

Year: 2019

Publisher: PH “Akademperiodyka”

Pages: 170

DOI:

http://doi.org/10.15407/akademperiodyka.383.170

ISBN: 978-966-360-383-4

Language: English

How to Cite:

Abstract:

The book is devoted to a promising technology for contactless removal of space debris, dubbed “ion beam shepherd”. Dynamic models to simulate and study the motion of the “shepherd” and the space debris object during its contactless de-orbiting are presented. Simplified analytical models have been developed to calculate the ion beam impact. Algorithms and results of numerical calculations of the forces and torques transmitted by the ion beam to the upper stages of the “Cyclone-3” and “Cyclone-4” launch vehicles are given. The evolution of the space debris orbit was analyzed taking into account the necessity to switch-off the ion thrusters in the shaded areas of the orbit. The book may be of interest for research and engineering staff working in the field of rocket and space technology, as well as for undergraduate and graduate students studying in the relevant areas.

Keywords:

References:

1. Alpatov A.P., Beletskii V.V., Dranovskii V.I., Zakrzhevskii A.E., Pirozhenko A.V., Troger G., Khoroshylov V.S. Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniyami. [Dynamics of space systems with cable and hinged connections]. Izhevsk: Regulyarnaya i khaoticheskaya dinamika, Publ., 2007. 558 p. [In Russian].

2. Alpatov A.P., Belonozhko P.P., Tarasov S.V., Fokov A.A., Khramov D.A. Perspektivy kosmicheskoi robototekhniki. Informatsionnye tekhnologii v metallurgii i mashinostroenii [Information technologies in metallurgy and machine building]. Materialy nauchno-tekhnicheskoy konferentsii ITMM-2014 [Materials of the scientific and technical conference]. Dnepropetrovsk, 2014. pp. 5-6. [In Russian].

3. Alpatov A.P., Bombardelli K., Khoroshylov S.V. Kontseptsiya aktivnogo udaleniya kosmicheskogo musora [The concept of active debris removal] Kosmicheskaya nauka i tekhnologiya, 2015. Vol. 21, No. 6, pp. 60-65. [In Russian]. https://doi.org/10.15407/knit2015.06.056

4. Alpatov A.P., Gorbulin V.P. Kosmicheskie platformy dlya orbital’nykh promyshlennykh kompleksov: problemy i perspektivy [Space platforms for orbital industrial complexes: problems and prospects]. Visn. Nat. Acad. Ukr. [Herald of the National Academy of Sciences of Ukraine], 2013. No. 12, pp. 26-38. [In Russian]. https://doi.org/10.15407/visn2013.12.026

5. Alpatov A.P., Zakrzhevskii A.E., Merino M., Fokov A.A., Chichokki F., Khoroshylov S.V. Raschet vozdeistviya fakela elektroreaktivnogo dvigatelya na ob’ekt kosmicheskogo musora [Calculation of the impact of electric propulsion engine torch on an object of space debris]. Materialy 5-i Mezhdunarodnoy konferentsii “Kosmicheskiye tekhnologii: nastoyashcheye i budushcheye” [Materials 5th Int. Conf. “Space Technologies: Present and Future”]. Dnepropetrovsk, 2015, p. 84. [In Russian].

6. Alpatov A.P., Zakrzhevskii A.E., Merino M., Fokov A.A., Chichokki F., Khoroshylov S.V. Opredelenie sily vozdeistviya fakela elektroreaktivnogo dvigatelya na orbital’nyi ob’ekt [Determination of the force of the torch impact of an electric propulsion engine on an orbital object]. Kosmicheskaya nauka i tekhnologiya, 2016, Vol. 22, No. 1, pp. 52-63. [In Russian].

7. Alpatov A.P., Zakrzhevskii A.E., Fokov A.A., Khoroshylov S.V. Raschet optimal’nogo polozheniya “Pastukha s ionnym luchom” otnositel’no ob’ekta kosmicheskogo musora [Calculation of the optimal position of “Shepherd with ion beam” relative to the object of space debris] Materialy “15-i Ukrainskoi konferentsii po kosmicheskim issledovaniyam” [Materials 15th Uk rai nian Conference on Space Research]. Odessa, 2015, p. 126. [In Russian].

8. Alpatov A.P., Zakrzhevskii A.E., Fokov A.A., Khoroshylov S.V. Ispol’zovanie fotosnimkov misheni pri beskontaktnom udalenii kosmicheskogo musora [Usage of images of the target for contactless removal of space debris], Materialy XXII Mіzhnarodnoi konferentsіi z avtomatichnogo upravlіnnya “Avtomatika-2015” [Materials 12th Int. Conference on Automatic Control]. Odesa, 2015. pp.131-132. [In Russian]

9. Alpatov A.P., Makarov A.L., Melanchenko A.G., Khoroshylov V.S., Khoroshylov S.V. Gelioelektrostantsii kosmicheskogo bazirovaniya: problemy upravleniya orientatsiei i konfiguratsiei [Space-based solar power stations: problems of orientation and configuration management]. Perspektivy kosmicheskikh issledovanii Ukrainy. Kiev, 2011. pp. 195-201. [In Russian].

10. Alpatov A.P., Palii A.S., Skorik A.D. Aerodinamicheskie sistemy uvoda kosmicheskikh ob’ektov [Aerodynamic systems of space objects removal]. Tekhnicheskaya mekhanika. 2015. Vol. 4, pp. 126-138. [In Russian].

11. Alpatov A.P., Savchuk A.P., Fokov A.A., Khoroshylov S.V. Ispol’zovanie informatsii o konture ob’ekta kosmicheskogo musora (KM) v upravlenii otnositel’nym dvizheniem sistemy “Pas – tukh – ob’ekt KM” [The use of information about the contour of the space debris object in the relative motion control of the “Shepherd – SD”] Materialy 5-i Mezhdunarodnoy konferentsii “Kosmicheskiye tekhnologii: nastoyashcheye i budushcheye” [Materials 5th Int. Conf. “Space Technologies: Present and Future”]. Dnepropetrovsk, 2015. p. 83. [In Russian].

12. Alpatov A.P., Khoroshylov S.V. Analiz sposobov upravleniya orientatsiei kosmicheskoi solnechnoi elektrostantsii [Analysis of ways of the attitude control of the space solar station]. Tekhnicheskaya mekhanika, 2005. vol. 4, pp. 3-12. [In Russian].

13. Beletskii V.V., Levin E.M. Dinamika kosmicheskikh trosovykh system [Dynamics of space cable systems]. Moscow, Nauka Publ., 1990. 329 p. [In Russian].

14. Beletskii V.V. Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass [The motion of an artificial satellite relative to the center of mass]. Moscow, Nauka Publ., 1965. 416 p. [In Russian].

15. Beletskii V.V. Ocherki o dvizhenii kosmicheskikh tel [Essays on the motion of cosmic bodies]. Moscow, Nauka Publ., 1977. 430 p. [In Russian].

16. Bombardelli K., Alpatov A.P., Pirozhenko A.V., Baranov E.Yu., Osinovyi G.G., Zakrzhevs – kii A.E. Proekt “kosmicheskogo pastukha” s ionnym puchkom. Idei i zadachi. [Project “space shepherd” with an ion beam. Ideas and tasks]. Kosmіchna nauka і tekhnologіya. 2014. vol. 20, No. 2, pp. 55-66. [In Russian]. https://doi.org/10.15407/knit2014.02.055

17. Vlasov M.N. Antropogennoe vozdeistvie na blizhnii kosmos [Anthropogenic impact on near space]. Priroda Publ., 1998. No. 11, pp. 88-98. [In Russian].

18. Vlasov M.N., Krichevskii S.V. Ekologicheskaya opasnost’ kosmicheskoi deyatel’nosti: Analit. obzor [Ecological danger of space activities: Analit. review]. Moscow, Nauka Publ., 1999. 238 p. [In Russian].

19. Voloshchuk Yu.V., Zasukha S.A., Konovalenko A.A., Litvinenko L.N., Negoda A.A. Issledovanie kosmicheskogo musora radiotekhnicheskimi sredstvami Ukrainy [Exploration of space debris via radio engineering means of Ukraine] Aerokosmicheskii vestnik. 2002. No. 6, p. 26. [In Russian].

20. Golovko M.G., Bezuglyi V.A., Bondarenko S.G. Analiz sostoyaniya tekhnogennogo zasoreniya okolozemnogo kosmicheskogo prostranstva i sposoby ego umen’sheniya [Analysis of technogenic pollution of near-Earth space and ways to reduce it]. Ekologіya ta noosferologіya. 2011. Vol. 22, No. 1-2, pp. 147-152. [In Russian].

21. Grigal P.V., Zamyshlyaev B.V., Lyubimov A.G. i dr. O vliyanii zagryazneniya okolozemnogo kosmicheskogo prostranstva na bezopasnost’ dlitel’nogo funktsionirovaniya kosmicheskikh apparatov [The influence of pollution of near-Earth space on the safety of long-term spacecraft operation] Transport: Nauka, tekhnika, upravlenie, 1996, No. 11, pp. 14-19. [In Russian].

22. Grinberg E.I. Zagryaznenie kosmosa i kosmicheskie polity [T he pollution of space and space flights] Priroda, 1998. No. 8, pp. 12-31. [In Russian].

23. NASAOrbital Debris Engineering Model ORDEM 2000-v 1.0. NASA, JSC, October, 2000. [In Russian].

24. Kessler D. Prognoz zasoreniya kosmicheskogo prostranstva [Forecast of outer space pollution]. Aerokosmicheskaya tekhnika, 1989. No. 1, pp. 897-907. [In Russian].

25. Kil’chevskii N.A. Kurs teoreticheskoi mekhaniki [Course of Theoretical Mechanics]. Moscow, Nauka Publ. vol. 1, 1972. 456 p. [In Russian].

26. Raikunov. G.G. Kosmicheskii musor. V 2 knigakh Kn. 1. Metody nablyudeniya i modeli kosmicheskogomusora [Space debris. In 2 books. Book. 1. Observation methods and models of space debris]. Moscow, Fizmatlit Publ., 2014. 245 p. [In Russian].

27. Raikunov. G.G. Kosmicheskii musor. V 2 knigakh Kn. 2. Preduprezhdenie obrazovaniya kosmicheskogo musora [Space debris. In 2 books. Book. 2. Prevention of space debris formation]. Moscow, Fizmatlit Publ., 2014. 188 p. [In Russian].

28. Lur’e A.I. Analiticheskaya mekhanika [Analytic Mechanics]. Moscow, Fizmatgiz Publ., 1961. 824 p. [In Russian].

29. Makarov A.L., Khoroshylov S.V. Upravlenie orientatsiei solnechnoi batarei i peredayushcheiantenny elektrostantsii kosmicheskogo bazirovaniya [Orientation control of the solar battery and the transmitting antenna of a space-based power station]. Kosmicheskaya nauka i tekhnologiya. 2012. Vol. 18, No. 3, pp. 3 9. [In Russian]. https://doi.org/10.15407/knit2012.03.003

30. Maslova A.I., Pirozhenko A.V. Izmenenie orbity pod deistviem malogo postoyannogo tormozheniya [The changes in the orbit under the impact of small constant braking]. Kosmicheskaya nauka i tekhnologiya. 2016. Vol. 22, No. 6, pp. 20-24. [In Russian]. https://doi.org/10.15407/knit2016.06.020

31. Technical Report on Space Debris / Scientific and Technical Subcommittee of the UN Committee on the Peaceful Uses of Outer Space. New York, 1999. P. 50. [In Russian].

32. Murtazov A.K. Fizicheskie osnovy ekologii okolozemnogo prostranstva: Uchebnoe posobie [Physical foundations of the ecology of near-Earth space: Textbook]. Ryazan’, 2008. 272 p. [In Russian]

33. Murtazov A.K. Ekologiya okolozemnogo kosmicheskogo prostranstva [Ecology of near-Earth space]. Moscow, Fizmatlit Publ., 2004. 304 p. [In Russian].

34. Pil’kevich I.A. Matematicheskoe modelirovanie zagryazneniya okolozemnogo prostranstva [Mathematical modeling of pollution of near-Earth space]. Problemy upravleniya i informatsii. 2006. No. 5, pp. 138-147. [In Russian].

35. Pil’kevich I.A. Modelirovanie oblakov tekhnogennogo proiskhozhdeniya v okolozemnom kosmicheskom prostranstve [Modeling of clouds of technogenic origin in near-earth space]. Kiev, Nauk. Dumka Publ., 2006. 112 p. [In Russian].

36. Polyakhova E.N. Kosmicheskii polet solnechnym parusom: problemy i perspektivy [Space flight by solar sail: problems and prospects]. Moscow, Nauka Publ., 1986. 304 p. [In Russian].

37. Rakety i kosmicheskie apparaty Konstruktorskogo byuro “Yuzhnoe” [The rockets and spacecraft of the Yuzhnoye Design Bureau], Dnepropetrovsk: GKB “Yuzhnoe” im. M.K. Yangelya, 2000. 239 p. [In Russian].

38. Raushenbakh B. V., Tokar’ E. N. Upravlenie orientatsiei kosmicheskikh apparatov [Control of the orientation of space vehicles]. Moscow, Nauka Publ, 1974. 600 p. [In Russian].

39. Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer / UNITED NATIONS Vienna, 2010. 13 p.

 40. Rykhlova L.V., Bakanas E.S. Okolozemnoe kosmicheskoe prostranstvo: musor iskusstvennyi I musor estestvennyi [Near-Earth space: artificial and natural debris:] Available at www.pdmpsu. ru/uploads/ (аccessed 23.06.2018). [In Russian].

41. Alpatov A.P. Tekhnogennoe zasorenie okolozemnogo kosmicheskogo prostranstva [Technogenic pollution of near-Earth space]. Dnepropetrovsk, Porogi Publ., 2012, 378 p. [In Russian].

43. Savchuk A.P., Fokov A.A., Khoroshylov S.V. Raschet beskontaktnogo vozdeistviya na ob’ekt kosmicheskogo musora po ego izvestnomu konturu [Calculation of non-contact impact on the space debris object in its known contour]. Tekhnicheskaya mekhanika. 2016. No. 1, pp. 26-37. [In Russian].

44. Duboshin G.N. Spravochnoe rukovodstvo po nebesnoi mekhanike i astrodinamike [Reference Manual on Celestial Mechanics and Astrodynamics]. Moscow, Nauka Publ., 1976. 864 p. [In Russian].

45. Reshetnev M.F. et al. Upravlenie i navigatsiya iskusstvennykh sputnikov Zemli na okolokrugovykh orbitakh [Management and navigation of artificial satellites on the ocolliruble orbits]. Moskow, Mashinostroenie Publ., 1988. 336 p. [In Russian].

46. Fokov A.A., Khoroshylov S.V. Validatsiya uproshchennogo metoda rascheta sily vozdeistviya fakela elektroreaktivnogo dvigatelya na orbital’nyi ob’ekt [Validation of the simplified method for calculation of the impact power of the torch of an electric propulsion engine to an orbital object]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2016. No. 2/129, pp. 55-66. [In Russian].

47. Khoroshylov S.V. Analiz robastnosti sistemy upravlenija otnositel’nym dvizheniem “pastuha s ionnym luchom” [An analysis of the robustness of the control system of the relative motion of a shepherd with an ion beam]. Tehnicheskaja mehanika. 2018. No. 1. [In Russian].

48. Khoroshylov S.V. Modelirovanie dvizhenija kosmicheskoj jelektrostancii s dvumja solnechnymi otrazhateljami [Simulation of the motion of a space power station with two solar reflectors]. Tehnicheskaja mehanika. 2012. No. 3, pp. 85-97. [In Russian].

49. Khoroshylov S.V. Ob algoritmicheskom obespechenii upravlenija orientaciej solnechnyh kosmicheskih jelektrostancij. Chast’ 1 [On algorithmic control of the orientation of solar spacepower plants. Part 1]. Dnepropetrovsk, Sistemnye tehnologii. 2009. No. 2 (61), pp. 153-167. [In Russian].

50. Khoroshylov S.V. Ob algoritmicheskom obespechenii upravlenija orientaciej solnechnyh kosmicheskih jelektrostancij. Chast’ 2 [On algorithmic control of the orientation of solar space power plants. Part 2]. Dnepropetrovsk, Sistemnye tehnologii. 2009. No. 2 (61), pp. 12-24. [In Russian].

51. Khoroshylov S.V. Sintez robastnogo reguljatora sistemy upravlenija “pastuha s ionnym luchom” [Synthesis of the robust controller of the control system of a shepherd with an ion beam]. Tehnicheskaj mehanika. 2017. No. 1, pp. 26-39. [In Russian]. https://doi.org/10.15407/itm2017.01.026

52. Khoroshylov S.V. Upravlenie orientaciej solnechnoj jelektrostancii kosmicheskogo bazirovanija s ispol’zovaniem nabljudatelja dlja rasshirennogo vektora sostojanija [Orientation control of the space-based solar power station using the observer for the extended state vector]. Tehnicheskaja mehanika. 2011. No. 3, pp. 117-125. [In Russian].

53. Khoroshylov S.V. Upravlenie polozheniem pastuha s ionnym luchom otnositel’no obekta kosmicheskogo musora [Shepherd with an ion beam relative position control to the object of space debris Materialy “16-i Ukrainskoi konferentsii po kosmicheskim issledovaniyam” [Materials 16th Ukrainian Conference on Space Research]. Odessa, 2016, p. 155. [In Russian].

54. Khoroshylov S.V. Upravlenie pastuhom s ionnym luchom v rezhime uvoda ob#ekta kosmicheskogomusora [Shepherd with an ion beam control in the mode of a space debris object removal]. Materialy 6-i Mezhdunarodnoy konferentsii “Kosmicheskiye tekhnologii: nastoyashcheye I budushcheye” [Materials 6th Int. Conf. “Space Technologies: Present and Future”]. Dnepropetrovsk, 2017. p. 53. [In Russian].

55. Alpatov A. P., Beletsky V. V., Dranovskii V. I., Khoroshylov V. S., Pirozhenko A. V., Troger H., Zakrzhevskii A. E. Dynamics of Tethered Space Systems. Boca Raton, London, New York:CRC Press, 2010. 223 p.

56. Alpatov А., Cichocki F., Fokov A., Khoroshylov S., Merino M. Algorithm for Determination of Force Transmitted by Plume of Ion Thruster to Orbital Object Using Photo Camera. Proceeding of the 66th International Astronautical Congress (Jerusalem, Israel, 2015. IAC-15-A6.5. 5-27732). Jerusalem, 2015.

57. Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M. Determination of the forcetransmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica. 2016. No. 119. pp. 241-251. https://doi.org/10.1016/j.actaastro.2015.11.020

58. Alpatov A.P., Fokov A.A., Savchuk A.P., Khoroshylov S.V. Error Analysis щщщf Method for Calculation of Non-Contact Impact on Space Debris from Ion Thruster. Mechanics, Materials Science & Engineering, July 2016.

59. Ankersen F. Thruster Modulation Techniques: Application to Eureca Attitude and Orbit Control System. ESA working paper. 1989 p. EWP 1528.

60. Aslanov V.S., Ledkov A.S. Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam. Mathematical Problems in Engineering, vol. 2017, Art. ID 1986374, 7 pages, 2017. https://doi.org/10.1155/2017/1986374

61. Bendisch J. et al. The MASTER-2001 model. Advances in Space Research. 2004. Vol. 34, Iss. 5. pp. 959-968. https://doi.org/10.1016/j.asr.2003.02.02

62. Bendisch J. et al. Final Report Upgrade of ESA’S Master Model. 2002.

63. Bleser G., Pastarmov Y., Stricker D., Real-time 3d camera tracking for industrial augmented reality applications. Journal of WSCG. 2005. pp. 47-54.

 64. Bonnal C., Ruault J.-M., and Desjean M.-C. Active debris removal: Recent progress and current trends. Acta Astronautica. 2013. Vol. 85, pp. 51-60. https://doi.org/10.1016/j.actaastro.2012.11.009

65. Bondarenko S., Lyagushin S., Shifrin G., Prospects of Using Lasers and Military Space Technology for Space Debris Removal, 2nd European Conference on Space Debris, 1997.

66. Bombardelli C., Herrera J., Iturri A., Pelaez J. Space debris removal with bare electrodynamic tethers. Proceedings of the 20th AAS: AIAA Spaceflight Mechanics Meeting, San Diego, CA, 2010.

67. Bombardelli C., Merino M., Ahedo E., Peláez J., Urrutxua H., Iturri-Torreay A., HerreraMontojoy J. Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal, Technical report, 2011.

68. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal. Journal of guidance, control and dynamics. 2011. Vol. 34, No. 3. pp. 916-920. https://doi.org/10.2514/1.51832

69. Bombardelli C., Pelaez J. Ion beam shepherd for asteroid deflection. Journal of Guidance, Control, and Dynamics. 2011. Vol. 34, No. 4, pp. 1270-1272. https://doi.org/10.2514/1.51640

70. Bombardelli C., Urrutxua H., Merino M., Ahedo E., and Peláez J. Relative dynamics and control of an ion beam shepherd satellite. Spaceflight mechanics. 2002. Vol. 143, pp. 2145-2158.

71. Bombardelli C., Zanutto D., Lorenzini E., Deorbiting Performance of Bare Electrodynamic Tethers in Inclined Orbits. Journal of Guidance, Control, and Dynamics, 2013. Vol. 36, No. 5, pp. 1550-1556. https://doi.org/10.2514/1.58428

72. Cichocki F., Merino M., Ahedo E. Modeling and Simulation of EP Plasma Plume Expansion into Vacuum, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014. https://doi.org/10.2514/6.2014-3828

73. Cichocki F., Merino M., Ahedo E., Hu Y., Wang J. Fluid vs PIC Modeling of a Plasma Plume Expansion. 2015, Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan July.

74. Clohessy W.H., Wiltshire R.S. Terminal Guidance System for Satellite Rendezvous. Journal of Guidance, Control, and Dynamics. 1960. Vol. 27, No. 9. pp. 653-658. https://doi.org/10.2514/8.8704

75. De Berg M., Van Kreveld M., Overmars M., Schwarzkopf O., Computational Geometry: Algorithms and Applications, NY : Springer, 2000. https://doi.org/10.1007/978-3-662-04245-8

76. Drummond T., Cipolla R. Real-time visual tracking of complex structures, IEEE Trans. on Pattern Analysis and Machine Intelligence. 2002. 24(7), pp. 932-946 https://doi.org/10.1109/TPAMI.2002.1017620

77. Duckham M., Kulik L., Worboys M., Galton A. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition. 2008. Vol. 41, Iss. 10, pp. 2965-3270. https://doi.org/10.1016/j.patcog.2008.03.02

78. Frey P.J., George P.L. Mesh Generation Application to Finite Elements. HERMES Science Europe Ltd. 2000. 814 p.

79. Fujii H.A. & others Sounding rocket experiment of bare electrodynamic tether system. Acta Astronautica. 2009. Vol. 64, No. 2-3. pp. 313-324. https://doi.org/10.1016/j.actaastro.2008.07.006

80. Hill G.W. Researches in the Lunar Theory. American Journal of Mathematic. 1878. Vol. 23, No. 1. pp. 5-26. https://doi.org/10.2307/2369430

81. Hooke R., Jeeves T. A. “Direct search” solution of numerical and statistical problems. Journal of the Association for Computing Machinery (ACM). 1961. No. 8 (2), pp. 212-229. https://doi.org/10.1145/321062.321069

82. Hormann K., Agathos A. The point in polygon problem for arbitrary polygons. Comput. Geom. Theory Appl. 2001. 20, pp. 131-144.https://doi.org/10.1016/S0925-7721(01)00012-8

83. Horst R., Pardalos P.M., Thoaiv N.V. Introduction to Global Optimization, Second Edition, Kluwer Academic Publishers, 2000.

 84. Lovell T.A., Tragesser S. Guidance for Relative Motion of Low Earth Orbit Spacecraft Based on Relative Orbit Elements. AIAA Paper 2004-4988, presented at the AAS/AIAA Astrodynamics Specialist Conference, Providence, RI, 2004.https://doi.org/10.2514/6.2004-4988

85. http://www.iadconline.org/index.cgi. Inter-Agency Space Debris Coordination Committee.

86. Khalil H. Nonlinear Systems, Prentice Hall. 1996. 724 p.

87. Kanani K., Petit A., Marchand E., Chabot T., Gerber B. Vision Based Navigation for Debris Removal Missions, Proceedings of 63 rd International Astronautical Congress 2012, 1-5 October 2012, Naples, Italy, IAC-12-A6-5-9-x14900.

88. Khoroshylov S.V. Ion beam shepherd control with no radial axis thrust. Abstracts of the 17 th Ukrainian Space Research Conference (21-25 August 2017, Odessa). 2017. P. 118.

89. Klinkrad H. Space debris Mitigation Activities at ESA. ESA Space Debris Oficce. 2011. 11 p.https://doi.org/10.1002/9780470686652.eae325

90. Klinkrad H. Space debris: Models and risk analysis. Praxis Publishing Ltd., Chichester, UK, 2006. 430 p.

91. Lathi B., Thomas Y. Signals, Systems, and Controls. Crowell Harper & Row Publishers, 1974. 524 p.

92. Lawden D.F. Optimal Trajectories for Space Navigation, London: Butterworths, 1963. 126 p.

93. Levin E. M. Dynamic analysis of space tether missions. San Diego: American Astronautical Society, 2007. 453 p.

94. Liou J.-C. An active debris removal parametric study for LEO environment remediation. Advances in Space Research. 2011. Vol. 47, No. 11, pp. 1865-1876. https://doi.org/10.1016/j.asr.2011.02.003

95. Liou J.-C., Anilkumar A.K., Bastida B. et al. Stability of the Future Leo Environment – an IADC Comparison Study, Proc. “6th European Conference on Space Debris” Darmstadt, Germany, 22-25 April 2013 (ESA SP-723, August 2013), 2013.

96. Lowe D.G. Fitting parameterized three dimensional models to images, IEEE Trans. on Pattern Analysis and Machine Intelligence. 1991. 13(5), pp. 441-450. https://doi.org/10.1109/34.134043

97. Merino M., Cichocki F., Ahedo E. A collisionless plasma thruster plume expansion mode.Plasma Sources Science and Technology. 2015. Vol. 24, No. 3, pp. 035006. https://doi.org/10.1088/0963-0252/24/3/03500

98. Meteoroid and Space Debris Terrestrial Environment Reference Model MASTER-2001. Software User Manual / European Space Agency. 2002. 129 p.

 99. Mohler R. Nonlinear Systems: Dynamics and Control, Prentice Hall, 1991. 258 p.

100. Nesterov Y., Nemirovskii A. The Projective Method for Solving Linear Matrix Inequalities. Math. Programming Series B. 1997. Vol. 77. pp. 163-190. https://doi.org/10.1007/BF02614434

101. Pardini C., Anselmo L. Physical properties and long-term evolution of the debris clouds produced by two catastrophic collisions in Earth orbit. Advances in Space Research. 2011. Vol. 48, No. 3, pp. 557-569. https://doi.org/10.1016/j.asr.2011.04.006

102. Prussing J. Orbital Mechanics. Conway. – Oxford University Press, 1993. 304 p.

103. Phipps C. R., Reilly J.P. ORION: Clearing Near-Earth Space Debris in Two Years Using a 30-kW Repetitively-Pulsed Laser. SPIE Proceedings of the International Society for Optical Engineering. 1997. pp. 728-731. https://doi.org/10.1117/12.270174

104. Rugh W. Linear System Theory, Prentice Hall, 1996. 356 p.

105. Ruiz M., Urdampilleta I., Bombardelli C., Ahedo E., Merino M., Cichocki F. The FP7LEOSWEEP Project: Improving Low Earth Orbit Security With Enhanced Electric Propulsion. Space Propulsion Conference 2014, Köln, Germany, 19-22 May, 2014.

106. Sánchez-Arriaga G., Bombardelli C., Chen X. Impact of Nonideal Effects on Bare Electrodynamic Tether Performance. Journal of Propulsion and Power, 2015. Vol. 31, No. 3, pp. 951-955. https://doi.org/10.2514/1.B35393

107. Sanmartin J. et al., An Universal System to De-Orbit Satellites at End of Life. The Journal of Space Technology and Science. 2012. Vol. 26, No. 1, pp. 21-32.

108. Sanjurjo Rivo M. Self Balanced Bare Electrodynamic Tethers. Space Debris Mitigation and other Applications: thesis doctoral N1839. Madrid, 2009. 215 p.

109. Shan M., Guo J., Gill E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences. 2016. Vol. 80, pp. 18-32.https://doi.org/10.1016/j.paerosci.2015.11.001

110. Takeichi N. Practical Operation Strategy for Deorbit of an Electrodynamic Tethered System. J. of Spacecraft and Rockets. 2006. Vol. 43, No. 6, pp. 1283-1288. https://doi.org/10.2514/1.19635.

111. Trottenberg T., Rutcher J., Kersten H. Experimental Investigation of Momentum Transfer to Solid Surfaces by the Impact of Energetic Ions and Atoms, paper IEPC-2013-329. 33rd International Electric Propulsion Conference, Washington, 2013.

112. Tschauner J. Rendezvous zu einem in elliptischer Bahn unlaufenden Ziel. Astronautica Acta. 1965. Vol. 11, No. 2. pp. 104-109.

113. Wie B. Space Vehicle Dynamics and Control. Reston: American Institute of Aeronautics and Astronautics, 1998. 660 p.

114. Zhou K., Doyle J.C., Glover K. Robust and Optimal Control. NY : Prentice-Hall, 1996. 596 p.

115. Hormann K., Agathos A. The point in polygon problem for arbitrary polygons. Comput. Geom. Theory Appl., 2001. 20, pp. 131-144.https://doi.org/10.1016/S0925-7721(01)00012-

116. Lowe D.G. Fitting parameterized three dimensional models to images, IEEE Trans. on Pattern Analysis and Machine Intelligence. 1991. 13(5), pp. 441-450. https://doi.org/10.1109/34.134043

117. Drummond T., Cipolla R. Real-time visual tracking of complex structures, IEEE Trans. On Pattern Analysis and Machine Intelligence. 2002. 24 (7), pp. 932-946. https://doi.org/10.1109/TPAMI.2002.1017620

118. Kanani K., Petit A., Marchand E., Chabot T., Gerber B. Vision Based Navigation for Debris Removal Missions, Proceedings of 63rd International Astronautical Congress 2012, 1-5 October 2012, Naples, Italy, IAC-12-A6-5-9-x14900.

119. Clark F., Spehar P., Brazzel J., Hinkel H. Laser based relative navigation and guidance for space shuttle proximity operations, Guidance and Control Conference AAS, 2003. 113, pp. 171-186.

120. Rems F., Risse E.-A., Benninghoff H. Rendezvous GNC-system for autonomous orbital servicing of uncooperative targets, 10 th International ESA Conference on Guidance, Navigation& Control Systems, Salzburg, Austria, 29 May – 2 June 2017.

121. Benninghoff H., Rems F., and Boge T. Development and hardware-in-the-loop test of agui dance, navigation and control system for on-orbit servicing. Acta Astronautica. 2014. 102, pp. 67-80. https://doi.org/10.1016/j.actaastro.2014.05.023

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top